Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
BMC Oral Health ; 23(1): 305, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37202781

ABSTRACT

BACKGROUND: Symmetry is critical in perceived attractiveness, especially in female faces. The palate determines the teeth' alignment and supports facial soft tissues. Therefore, the study aimed to assess the effects of sex, orthodontic treatment, age, and heritability on the directional, anti-, and fluctuational asymmetry in the digital palatal model. METHODS: The palate of 113 twins, 86 female and 27 male subjects, with and without previous orthodontic treatment, were scanned by the Emerald (Planmeca) intraoral scanner. Three lines were constructed horizontally in the digital model, one between the right and left first upper molars and two between the first molars and incisive papilla. Two observers calculated the left and right angles between the mid-sagittal plane and molar-papilla lines. The intraclass correlation coefficient was used to assess the inter-observer absolute agreement. The directional symmetry was determined by comparing the mean left and right angles. The antisymmetry was estimated from the distribution curve of the signed side difference. The fluctuating asymmetry was approximated from the magnitude of the absolute side difference. Finally, the genetic background was assessed by correlating the absolute side difference between monozygotic twin siblings. RESULTS: The right angle (31.1 degrees) was not significantly different from the left one (31.6 degrees). The signed side difference followed a normal distribution with a mean of -0.48 degrees. The absolute side difference (2.29 degrees, p < 0.001) was significantly different from zero and negatively correlated (r=-0.46, p < 0.05) between siblings. None of the asymmetries was affected by sex, orthodontic treatment or age. CONCLUSIONS: The palate illustrates neither directional asymmetry nor antisymmetry, indicating that most people's palates are symmetric. However, the significant fluctuating asymmetry suggests that some subject has considerable asymmetry but is not influenced by sex, orthodontic treatment, age, and genetics. The proposed digital method is a reliable and non-invasive tool that could facilitate achieving a more symmetrical structure during orthodontic and aesthetic rehabilitation. TRIAL REGISTRATION: The Clinicatrial.gov registration number is NCT05349942 (27/04/2022).


Subject(s)
Palate , Tooth , Humans , Male , Female , Retrospective Studies , Dental Care , Molar
2.
J Dent ; 145: 105014, 2024 06.
Article in English | MEDLINE | ID: mdl-38648874

ABSTRACT

OBJECTIVES: To assess the impact of including the palate and the number of images recorded during intraoral digital scanning procedure on the accuracy of complete arch scans. METHODS: An experienced operator conducted 40 digital scans of a 3D printed maxillary model and divided them into two groups: 20 with inclusion of the palate (PAL) and 20 without (NPAL). Each set of scans was performed using an intraoral scanner (IOS) (Trios 5; 3Shape A/S; Copenhagen, Denmark). The resulting STL files were imported into the Geomagic Control X software (3D Systems, Rock Hill, SC, USA) for accuracy comparison. A reference STL file was created using a 3Shape E3 laboratory scanner (3Shape Scanlt Dental 2.2.1.0; Copenhagen, Denmark). The number of images captured was recorded during the scanning procedure. RESULTS: In the case of the right side no statistically significant difference in trueness was detected (84 µm ± 45.6 for PAL and 80.4 ± 40.4 µm for NPAL). In the case of the left side no significant difference in trueness was observed (215.1 ± 70.2 µm for PAL and 233.9 ± 70.7 µm for NPAL). In the case of the arch distortion a statistically significant difference in trueness was seen between the two types of scans (135.3 ± 71.9 µm for PAL and 380.4 ± 255.1 µm for NPAL). The average number of images was 831.25, and 593.8 for PAL and NPAL, respectively. CONCLUSIONS: Scanning of the palatal area can significantly improve the accuracy of dental scans in cases of complete arches. In terms of the number of images, based on the current results, obvious conclusions could not be drawn, and further investigation is required. CLINICAL SIGNIFICANCE: Scanning the palate may be beneficial for improving the accuracy of intraoral scans in dentate patients. Consequently, this should be linked to an appropriate scanning strategy that predicts palatal scanning.


Subject(s)
Dental Arch , Dental Impression Technique , Maxilla , Models, Dental , Palate , Humans , Palate/diagnostic imaging , Palate/anatomy & histology , Dental Arch/diagnostic imaging , Dental Arch/anatomy & histology , Maxilla/diagnostic imaging , Maxilla/anatomy & histology , Image Processing, Computer-Assisted/methods , Computer-Aided Design , Imaging, Three-Dimensional/methods , Software , Printing, Three-Dimensional , In Vitro Techniques , Dental Impression Materials
SELECTION OF CITATIONS
SEARCH DETAIL