Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Methods ; 50(4): S15-8, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20215015

ABSTRACT

The next-generation DNA sequencing workflows require an accurate quantification of the DNA molecules to be sequenced which assures optimal performance of the instrument. Here, we demonstrate the use of qPCR for quantification of DNA libraries used in next-generation sequencing. In addition, we find that qPCR quantification may allow improvements to current NGS workflows, including reducing the amount of library DNA required, increasing the accuracy in quantifying amplifiable DNA, and avoiding amplification bias by reducing or eliminating the need to amplify DNA before sequencing.


Subject(s)
Gene Library , Polymerase Chain Reaction/methods , Sequence Analysis, DNA/methods , Nucleic Acid Hybridization , Sensitivity and Specificity
2.
Genome Biol ; 22(1): 109, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33863344

ABSTRACT

BACKGROUND: Targeted sequencing using oncopanels requires comprehensive assessments of accuracy and detection sensitivity to ensure analytical validity. By employing reference materials characterized by the U.S. Food and Drug Administration-led SEquence Quality Control project phase2 (SEQC2) effort, we perform a cross-platform multi-lab evaluation of eight Pan-Cancer panels to assess best practices for oncopanel sequencing. RESULTS: All panels demonstrate high sensitivity across targeted high-confidence coding regions and variant types for the variants previously verified to have variant allele frequency (VAF) in the 5-20% range. Sensitivity is reduced by utilizing VAF thresholds due to inherent variability in VAF measurements. Enforcing a VAF threshold for reporting has a positive impact on reducing false positive calls. Importantly, the false positive rate is found to be significantly higher outside the high-confidence coding regions, resulting in lower reproducibility. Thus, region restriction and VAF thresholds lead to low relative technical variability in estimating promising biomarkers and tumor mutational burden. CONCLUSION: This comprehensive study provides actionable guidelines for oncopanel sequencing and clear evidence that supports a simplified approach to assess the analytical performance of oncopanels. It will facilitate the rapid implementation, validation, and quality control of oncopanels in clinical use.


Subject(s)
Biomarkers, Tumor , Genetic Testing/methods , Genomics/methods , Neoplasms/genetics , Oncogenes , DNA Copy Number Variations , Genetic Testing/standards , Genomics/standards , Humans , Molecular Diagnostic Techniques/methods , Molecular Diagnostic Techniques/standards , Mutation , Neoplasms/diagnosis , Polymorphism, Single Nucleotide , Reproducibility of Results , Sensitivity and Specificity
3.
J Mol Diagn ; 21(5): 808-823, 2019 09.
Article in English | MEDLINE | ID: mdl-31173928

ABSTRACT

Next-generation DNA sequencing is rapidly becoming an indispensable tool for genome-directed cancer diagnostics, but next-generation RNA sequencing (RNA-seq) is currently not standardly used in clinical diagnostics for expression assessment. However, multigene RNA diagnostic assays are used increasingly in the routine diagnosis of early-stage breast cancer. Two of the most widely used tests are currently available only as a central laboratory service, which limits their clinical use. We evaluated the use of RNA-seq as a decentralized method to perform such tests. The MammaPrint and BluePrint RNA-seq tests were found to be equivalent to the clinically validated microarray tests. The RNA-seq tests were highly reproducible when performed in different locations and were stable over time. The MammaPrint RNA-seq test was clinically validated. Our data demonstrate that RNA-seq can be used as a decentralized platform, yielding results substantially equivalent to results derived from the predicate diagnostic device.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Microarray Analysis/methods , Pathology, Molecular/methods , Biomarkers, Tumor/analysis , Breast Neoplasms/pathology , Female , Humans
4.
Genome Biol ; 10(10): R116, 2009.
Article in English | MEDLINE | ID: mdl-19835619

ABSTRACT

To exploit fully the potential of current sequencing technologies for population-based studies, one must enrich for loci from the human genome. Here we evaluate the hybridization-based approach by using oligonucleotide capture probes in solution to enrich for approximately 3.9 Mb of sequence target. We demonstrate that the tiling probe frequency is important for generating sequence data with high uniform coverage of targets. We obtained 93% sensitivity to detect SNPs, with a calling accuracy greater than 99%.


Subject(s)
Genome, Human/genetics , Nucleic Acid Hybridization/methods , Sequence Analysis, DNA/methods , Base Sequence , Cell Line , DNA Probes/metabolism , Exons/genetics , Gene Library , Genotype , Humans , Mutation/genetics , Oligonucleotide Array Sequence Analysis , Reproducibility of Results , Solutions
5.
Hepatology ; 40(1): 27-38, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15239083

ABSTRACT

Progressive familial intrahepatic cholestasis (PFIC) and benign recurrent intrahepatic cholestasis (BRIC) are clinically distinct hereditary disorders. PFIC patients suffer from chronic cholestasis and develop liver fibrosis. BRIC patients experience intermittent attacks of cholestasis that resolve spontaneously. Mutations in ATP8B1 (previously FIC1) may result in PFIC or BRIC. We report the genomic organization of ATP8B1 and mutation analyses of 180 families with PFIC or BRIC that identified 54 distinct disease mutations, including 10 mutations predicted to disrupt splicing, 6 nonsense mutations, 11 small insertion or deletion mutations predicted to induce frameshifts, 1 large genomic deletion, 2 small inframe deletions, and 24 missense mutations. Most mutations are rare, occurring in 1-3 families, or are limited to specific populations. Many patients are compound heterozygous for 2 mutations. Mutation type or location correlates overall with clinical severity: missense mutations are more common in BRIC (58% vs. 38% in PFIC), while nonsense, frameshifting, and large deletion mutations are more common in PFIC (41% vs. 16% in BRIC). Some mutations, however, lead to a wide range of phenotypes, from PFIC to BRIC or even no clinical disease. ATP8B1 mutations were detected in 30% and 41%, respectively, of the PFIC and BRIC patients screened.


Subject(s)
Adenosine Triphosphatases/genetics , Cholestasis/genetics , Mutation , Gene Frequency , Genetic Variation , Genome, Human , Genotype , Heterozygote , Humans , Pedigree , Penetrance , Phenotype , Recurrence
SELECTION OF CITATIONS
SEARCH DETAIL