Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 335
Filter
Add more filters

Publication year range
1.
Brain Behav Immun ; 119: 494-506, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657842

ABSTRACT

Alcohol Use Disorder (AUD) is a persistent condition linked to neuroinflammation, neuronal oxidative stress, and neurodegenerative processes. While the inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has demonstrated effectiveness in reducing liver inflammation associated with alcohol, its impact on the brain remains largely unexplored. This study aimed to assess the effects of alirocumab, a monoclonal antibody targeting PCSK9 to lower systemic low-density lipoprotein cholesterol (LDL-C), on central nervous system (CNS) pathology in a rat model of chronic alcohol exposure. Alirocumab (50 mg/kg) or vehicle was administered weekly for six weeks in 32 male rats subjected to a 35 % ethanol liquid diet or a control liquid diet (n = 8 per group). The study evaluated PCSK9 expression, LDL receptor (LDLR) expression, oxidative stress, and neuroinflammatory markers in brain tissues. Chronic ethanol exposure increased PCSK9 expression in the brain, while alirocumab treatment significantly upregulated neuronal LDLR and reduced oxidative stress in neurons and brain vasculature (3-NT, p22phox). Alirocumab also mitigated ethanol-induced microglia recruitment in the cortex and hippocampus (Iba1). Additionally, alirocumab decreased the expression of pro-inflammatory cytokines and chemokines (TNF, CCL2, CXCL3) in whole brain tissue and attenuated the upregulation of adhesion molecules in brain vasculature (ICAM1, VCAM1, eSelectin). This study presents novel evidence that alirocumab diminishes oxidative stress and modifies neuroimmune interactions in the brain elicited by chronic ethanol exposure. Further investigation is needed to elucidate the mechanisms by which PCSK9 signaling influences the brain in the context of chronic ethanol exposure.


Subject(s)
Antibodies, Monoclonal, Humanized , Brain , Ethanol , Neurons , Oxidative Stress , PCSK9 Inhibitors , Proprotein Convertase 9 , Animals , Oxidative Stress/drug effects , Male , Rats , Neurons/metabolism , Neurons/drug effects , PCSK9 Inhibitors/pharmacology , Proprotein Convertase 9/metabolism , Brain/metabolism , Brain/drug effects , Antibodies, Monoclonal, Humanized/pharmacology , Alcoholism/metabolism , Alcoholism/drug therapy , Microglia/metabolism , Microglia/drug effects , Receptors, LDL/metabolism , Rats, Sprague-Dawley , Disease Models, Animal
2.
Annu Rev Pharmacol Toxicol ; 60: 637-659, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31580774

ABSTRACT

Research in the cannabinoid field, namely on phytocannabinoids, the endogenous cannabinoids anandamide and 2-arachidonoyl glycerol and their metabolizing and synthetic enzymes, the cannabinoid receptors, and anandamide-like cannabinoid compounds, has expanded tremendously over the last few years. Numerous endocannabinoid-like compounds have been discovered. The Cannabis plant constituent cannabidiol (CBD) was found to exert beneficial effects in many preclinical disease models ranging from epilepsy, cardiovascular disease, inflammation, and autoimmunity to neurodegenerative and kidney diseases and cancer. CBD was recently approved in the United States for the treatment of rare forms of childhood epilepsy. This has triggered the development of many CBD-based products for human use, often with overstated claims regarding their therapeutic effects. In this article, the recently published research on the chemistry and biological effects of plant cannabinoids (specifically CBD), endocannabinoids, certain long-chain fatty acid amides, and the variety of relevant receptors is critically reviewed.


Subject(s)
Cannabinoids/pharmacology , Dronabinol/pharmacology , Endocannabinoids/metabolism , Animals , Arachidonic Acids/metabolism , Cannabinoid Receptor Agonists/pharmacology , Glycerides/metabolism , Humans , Polyunsaturated Alkamides/metabolism
3.
Respir Res ; 24(1): 186, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37438813

ABSTRACT

BACKGROUND: Trauma and a subsequent hemorrhagic shock (T/HS) result in insufficient oxygen delivery to tissues and multiple organ failure. Extracellular adenosine, which is a product of the extracellular degradation of adenosine 5' triphosphate (ATP) by the membrane-embedded enzymes CD39 and CD73, is organ protective, as it participates in signaling pathways, which promote cell survival and suppress inflammation through adenosine receptors including the A2BR. The aim of this study was to evaluate the role of CD39 and CD73 delivering adenosine to A2BRs in regulating the host's response to T/HS. METHODS: T/HS shock was induced by blood withdrawal from the femoral artery in wild-type, global knockout (CD39, CD73, A2BR) and conditional knockout (intestinal epithelial cell-specific deficient VillinCre-A2BRfl/fl) mice. At 3 three hours after resuscitation, blood and tissue samples were collected to analyze organ injury. RESULTS: T/HS upregulated the expression of CD39, CD73, and the A2BR in organs. ATP and adenosine levels increased after T/HS in bronchoalveolar lavage fluid. CD39, CD73, and A2BR mimics/agonists alleviated lung and liver injury. Antagonists or the CD39, CD73, and A2BR knockout (KO) exacerbated lung injury, inflammatory cytokines, and chemokines as well as macrophage and neutrophil infiltration and accumulation in the lung. Agonists reduced the levels of the liver enzymes aspartate transferase and alanine transaminase in the blood, whereas antagonist administration or CD39, CD73, and A2BR KO enhanced enzyme levels. In addition, intestinal epithelial cell-specific deficient VillinCre-A2BRfl/fl mice showed increased intestinal injury compared to their wild-type VillinCre controls. CONCLUSION: In conclusion, the CD39-CD73-A2BR axis protects against T/HS-induced multiple organ failure.


Subject(s)
Adenosine , Multiple Organ Failure , Animals , Mice , Adenosine Triphosphate , Signal Transduction , Bronchoalveolar Lavage Fluid
4.
J Immunol ; 206(9): 1983-1990, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33879578

ABSTRACT

Nucleoside triphosphate diphosphohydrolases (NTPDases) are a family of enzymes that hydrolyze nucleotides such as ATP, UTP, ADP, and UDP to monophosphates derivates such as AMP and UMP. The NTPDase family consists of eight enzymes, of which NTPDases 1, 2, 3, and 8 are expressed on cell membranes thereby hydrolyzing extracellular nucleotides. Cell membrane NTPDases are expressed in all tissues, in which they regulate essential physiological tissue functions such as development, blood flow, hormone secretion, and neurotransmitter release. They do so by modulating nucleotide-mediated purinergic signaling through P2 purinergic receptors. NTPDases 1, 2, 3, and 8 also play a key role during infection, inflammation, injury, and cancer. Under these conditions, NTPDases can contribute and control the pathophysiology of infectious, inflammatory diseases and cancer. In this review, we discuss the role of NTPDases, focusing on the less understood NTPDases 2-8, in regulating inflammation and immunity during infectious, inflammatory diseases, and cancer.


Subject(s)
Adenosine Triphosphatases/genetics , Gene Expression Regulation, Enzymologic , Immunity/genetics , Inflammation/genetics , Multigene Family , Neoplasms/genetics , Adenosine Triphosphatases/metabolism , Animals , Humans , Inflammation/enzymology , Isoenzymes/genetics , Isoenzymes/metabolism , Neoplasms/enzymology , Nucleotides/metabolism
5.
Int J Mol Sci ; 24(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37762130

ABSTRACT

The identification of novel drug targets is needed to improve the outcomes of heart failure (HF). G-protein-coupled receptors (GPCRs) represent the largest family of targets for already approved drugs, thus providing an opportunity for drug repurposing. Here, we aimed (i) to investigate the differential expressions of 288 cardiac GPCRs via droplet digital PCR (ddPCR) and bulk RNA sequencing (RNAseq) in a rat model of left ventricular pressure-overload; (ii) to compare RNAseq findings with those of ddPCR; and (iii) to screen and test for novel, translatable GPCR drug targets in HF. Male Wistar rats subjected to transverse aortic constriction (TAC, n = 5) showed significant systolic dysfunction vs. sham operated animals (SHAM, n = 5) via echocardiography. In TAC vs. SHAM hearts, RNAseq identified 69, and ddPCR identified 27 significantly differentially expressed GPCR mRNAs, 8 of which were identified using both methods, thus showing a correlation between the two methods. Of these, Prostaglandin-F2α-receptor (Ptgfr) was further investigated and localized on cardiomyocytes and fibroblasts in murine hearts via RNA-Scope. Antagonizing Ptgfr via AL-8810 reverted angiotensin-II-induced cardiomyocyte hypertrophy in vitro. In conclusion, using ddPCR as a novel screening method, we were able to identify GPCR targets in HF. We also show that the antagonism of Ptgfr could be a novel target in HF by alleviating cardiomyocyte hypertrophy.


Subject(s)
Heart Failure , Male , Rats , Mice , Animals , Rats, Wistar , Heart Failure/genetics , Myocytes, Cardiac , Polymerase Chain Reaction , Hypertrophy
6.
Trends Immunol ; 40(2): 88-97, 2019 02.
Article in English | MEDLINE | ID: mdl-30611647

ABSTRACT

Quorum sensing was first described as the communication process bacteria employ to coordinate changes in gene expression and therefore, their collective behavior in response to population density. Emerging new evidence suggests that quorum sensing can also contribute to the regulation of immune cell responses. Quorum sensing might be achieved by the ability of immune cells to perceive the density of their own populations or those of other cells in their environment; responses to alterations in cell density might then be coordinated via changes in gene expression and protein signaling. Quorum sensing mechanisms can regulate T and B cell as well as macrophage function. We posit that perturbations in quorum sensing may undermine the balance between diverse immune cell populations and predispose the host to immune abnormalities.


Subject(s)
Immune System/immunology , Quorum Sensing/immunology , Animals , Humans
7.
Nat Chem Biol ; 16(6): 667-675, 2020 06.
Article in English | MEDLINE | ID: mdl-32393901

ABSTRACT

N-acylethanolamines (NAEs), which include the endocannabinoid anandamide, represent an important family of signaling lipids in the brain. The lack of chemical probes that modulate NAE biosynthesis in living systems hamper the understanding of the biological role of these lipids. Using a high-throughput screen, chemical proteomics and targeted lipidomics, we report here the discovery and characterization of LEI-401 as a CNS-active N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) inhibitor. LEI-401 reduced NAE levels in neuroblastoma cells and in the brain of freely moving mice, but not in NAPE-PLD KO cells and mice, respectively. LEI-401 activated the hypothalamus-pituitary-adrenal axis and impaired fear extinction, thereby emulating the effect of a cannabinoid CB1 receptor antagonist, which could be reversed by a fatty acid amide hydrolase inhibitor. Our findings highlight the distinctive role of NAPE-PLD in NAE biosynthesis in the brain and suggest the presence of an endogenous NAE tone controlling emotional behavior.


Subject(s)
Behavior, Animal/drug effects , Enzyme Inhibitors/chemistry , Lipid Metabolism/drug effects , Phosphatidylethanolamines/metabolism , Phospholipase D/antagonists & inhibitors , Amidohydrolases/metabolism , Animals , Blood Proteins/metabolism , Brain/metabolism , Cannabinoid Receptor Antagonists/metabolism , Cell Line, Tumor , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Fear/drug effects , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Receptors, Cannabinoid/metabolism , Signal Transduction
8.
FASEB J ; 35(11): e21935, 2021 11.
Article in English | MEDLINE | ID: mdl-34591327

ABSTRACT

Inosine monophosphate (IMP) is the intracellular precursor for both adenosine monophosphate and guanosine monophosphate and thus plays a central role in intracellular purine metabolism. IMP can also serve as an extracellular signaling molecule, and can regulate diverse processes such as taste sensation, neutrophil function, and ischemia-reperfusion injury. How IMP regulates inflammation induced by bacterial products or bacteria is unknown. In this study, we demonstrate that IMP suppressed tumor necrosis factor (TNF)-α production and augmented IL-10 production in endotoxemic mice. IMP exerted its effects through metabolism to inosine, as IMP only suppressed TNF-α following its CD73-mediated degradation to inosine in lipopolysaccharide-activated macrophages. Studies with gene targeted mice and pharmacological antagonism indicated that A2A , A2B, and A3 adenosine receptors are not required for the inosine suppression of TNF-α production. The inosine suppression of TNF-α production did not require its metabolism to hypoxanthine through purine nucleoside phosphorylase or its uptake into cells through concentrative nucleoside transporters indicating a role for alternative metabolic/uptake pathways. Inosine augmented IL-ß production by macrophages in which inflammasome was activated by lipopolysaccharide and ATP. In contrast to its effects in endotoxemia, IMP failed to affect the inflammatory response to abdominal sepsis and pneumonia. We conclude that extracellular IMP and inosine differentially regulate the inflammatory response.


Subject(s)
Endotoxemia/metabolism , Inosine Monophosphate/metabolism , Inosine/metabolism , Pneumonia, Pneumococcal/metabolism , Streptococcus pneumoniae , Adenosine A2 Receptor Antagonists/pharmacology , Adenosine A3 Receptor Antagonists/pharmacology , Animals , Disease Models, Animal , Interleukin-10/biosynthesis , Male , Mice , Mice, Inbred C57BL , Pneumonia, Pneumococcal/microbiology , Quinazolines/pharmacology , Receptor, Adenosine A2A/metabolism , Receptor, Adenosine A2B/metabolism , Receptor, Adenosine A3/metabolism , Signal Transduction/drug effects , Triazoles/pharmacology , Tumor Necrosis Factor-alpha/biosynthesis
9.
Alcohol Clin Exp Res ; 46(8): 1433-1448, 2022 08.
Article in English | MEDLINE | ID: mdl-35692084

ABSTRACT

BACKGROUND: Excessive alcohol consumption during pregnancy is associated with high risk of congenital heart defects, but it is unclear how alcohol specifically affects heart development during the acute aftermath of a maternal binge drinking episode. We hypothesize that administration of a single maternal binge dose of alcohol to pregnant mice at embryonic day 9.5 (E9.5) causes perturbations in the expression patterns of specific genes in the developing heart in the acute period (1-3 days) following the binge episode. To test this hypothesis and identify strong candidate ethanol-sensitive target genes of interest, we adapted a mouse binge alcohol model that is associated with a high incidence of congenital heart defects as described below. METHODS/RESULTS: Pregnant mice were administered a single dose of alcohol (2.5 g/kg in saline) or control (saline alone) via oral gavage. To evaluate the impact of maternal binge alcohol on cardiac gene expression profiles, we isolated embryonic hearts from both groups (n = 5/group) at 24, 48, and 72 h post-gavage for transcriptomic analyses. RNA was extracted and evaluated using quantitative RNA-sequencing (RNA-Seq) methods. To identify a cohort of binge-altered cardiac genes, we set the threshold for change at >2.0-fold difference with adjusted p < 0.05 versus control.  RNA-Seq analysis of cardiac gene expression revealed that of the 17 genes that were altered within the first 48 h post-binge, with the largest category consisting of transcription factors (Alx1, Alx4, HoxB7, HoxD8, and Runx2), followed by signaling molecules (Adamts18, Dkk2, Rtl1, and Wnt7a). Furthermore, multiple comparative and pathway analyses suggested that several of the candidate genes identified through differential RNA-Seq analysis may interact through certain common pathways. To investigate this further, we performed gene-specific qPCR analyses for three representative candidate targets: Runx2, Wnt7a, and Mlxipl. Notably, only Wnt7a showed significantly (p < 0.05) decreased expression in response to maternal binge alcohol in the qPCR assays. CONCLUSIONS: These findings identify Wnt7a and a short list of potential other candidate genes and pathways for further study, which could provide mechanistic insights into how maternal binge alcohol consumption produces congenital cardiac malformations.


Subject(s)
Binge Drinking , Heart Defects, Congenital , Alcohol Drinking/genetics , Animals , Binge Drinking/genetics , Binge Drinking/metabolism , Female , Heart Defects, Congenital/chemically induced , Heart Defects, Congenital/genetics , Mice , Pregnancy , RNA , Transcriptome , Wnt Proteins/genetics
10.
Purinergic Signal ; 18(3): 345-358, 2022 09.
Article in English | MEDLINE | ID: mdl-35838900

ABSTRACT

Extracellular adenosine is a biologically active signaling molecule that accumulates at sites of metabolic stress in sepsis. Extracellular adenosine has potent immunosuppressive effects by binding to and activating G protein-coupled A2A adenosine receptors (A2AARs) on the surface of neutrophils. A2AAR signaling reproduces many of the phenotypic changes in neutrophils that are characteristic of sepsis, including decreased degranulation, impaired chemotaxis, and diminished ability to ingest and kill bacteria. We hypothesized that A2AARs also suppress neutrophil aging, which precedes cell death, and N1 to N2 polarization. Using human neutrophils isolated from healthy subjects, we demonstrate that A2AAR stimulation slows neutrophil aging, suppresses cell death, and promotes the polarization of neutrophils from an N1 to N2 phenotype. Using genetic knockout and pharmacological blockade, we confirmed that A2AARs decrease neutrophil aging in murine sepsis induced by cecal ligation and puncture. A2AARs expression is increased in neutrophils from septic patients compared to healthy subject but A2AAR expression fails to correlate with aging or N1/N2 polarization. Our data reveals that A2AARs regulate neutrophil aging in healthy but not septic neutrophils.


Subject(s)
Neutrophils , Sepsis , Adenosine , Aging , Animals , Humans , Mice , Mice, Knockout , Neutrophils/metabolism , Phenotype , Receptor, Adenosine A2A/metabolism
11.
Pharmacol Rev ; 71(3): 345-382, 2019 07.
Article in English | MEDLINE | ID: mdl-31235653

ABSTRACT

Immune-mediated inflammatory diseases (IMIDs) encompass a wide range of seemingly unrelated conditions, such as multiple sclerosis, rheumatoid arthritis, psoriasis, inflammatory bowel diseases, asthma, chronic obstructive pulmonary disease, and systemic lupus erythematosus. Despite differing etiologies, these diseases share common inflammatory pathways, which lead to damage in primary target organs and frequently to a plethora of systemic effects as well. The purinergic signaling complex comprising extracellular nucleotides and nucleosides and their receptors, the P2 and P1 purinergic receptors, respectively, as well as catabolic enzymes and nucleoside transporters is a major regulatory system in the body. The purinergic signaling complex can regulate the development and course of IMIDs. Here we provide a comprehensive review on the role of purinergic signaling in controlling immunity, inflammation, and organ function in IMIDs. In addition, we discuss the possible therapeutic applications of drugs acting on purinergic pathways, which have been entering clinical development, to manage patients suffering from IMIDs.


Subject(s)
Inflammation/drug therapy , Inflammation/immunology , Purinergic Agonists/pharmacology , Purinergic Antagonists/pharmacology , Purines/metabolism , Receptors, Purinergic/metabolism , Animals , Humans , Inflammation/metabolism , Molecular Targeted Therapy , Purines/immunology , Receptors, Purinergic/immunology , Signal Transduction/drug effects
12.
Hepatology ; 71(4): 1391-1407, 2020 04.
Article in English | MEDLINE | ID: mdl-31469200

ABSTRACT

BACKGROUND AND AIMS: Hepatic cardiomyopathy, a special type of heart failure, develops in up to 50% of patients with cirrhosis and is a major determinant of survival. However, there is no reliable model of hepatic cardiomyopathy in mice. We aimed to characterize the detailed hemodynamics of mice with bile duct ligation (BDL)-induced liver fibrosis, by monitoring echocardiography and intracardiac pressure-volume relationships and myocardial structural alterations. Treatment of mice with a selective cannabinoid-2 receptor (CB2 -R) agonist, known to attenuate inflammation and fibrosis, was used to explore the impact of liver inflammation and fibrosis on cardiac function. APPROACH AND RESULTS: BDL induced massive inflammation (increased leukocyte infiltration, inflammatory cytokines, and chemokines), oxidative stress, microvascular dysfunction, and fibrosis in the liver. These pathological changes were accompanied by impaired diastolic, systolic, and macrovascular functions; cardiac inflammation (increased macrophage inflammatory protein 1, interleukin-1, P-selectin, cluster of differentiation 45-positive cells); and oxidative stress (increased malondialdehyde, 3-nitrotyrosine, and nicotinamide adenine dinucleotide phosphate oxidases). CB2 -R up-regulation was observed in both livers and hearts of mice exposed to BDL. CB2 -R activation markedly improved hepatic inflammation, impaired microcirculation, and fibrosis. CB2 -R activation also decreased serum tumor necrosis factor-alpha levels and improved cardiac dysfunction, myocardial inflammation, and oxidative stress, underlining the importance of inflammatory mediators in the pathology of hepatic cardiomyopathy. CONCLUSIONS: We propose BDL-induced cardiomyopathy in mice as a model for hepatic/cirrhotic cardiomyopathy. This cardiomyopathy, similar to cirrhotic cardiomyopathy in humans, is characterized by systemic hypotension and impaired macrovascular and microvascular function accompanied by both systolic and diastolic dysfunction. Our results indicate that the liver-heart inflammatory axis has a pivotal pathophysiological role in the development of hepatic cardiomyopathy. Thus, controlling liver and/or myocardial inflammation (e.g., with selective CB2 -R agonists) may delay or prevent the development of cardiomyopathy in severe liver disease.


Subject(s)
Cardiomyopathies/etiology , Heart Failure/etiology , Liver Cirrhosis/complications , Receptor, Cannabinoid, CB2/metabolism , Animals , Cardiomyopathies/pathology , Disease Models, Animal , Heart Failure/pathology , Hepatitis/metabolism , Hepatitis/pathology , Inflammation/metabolism , Inflammation/pathology , Liver , Liver Cirrhosis/pathology , Male , Mice , Mice, Inbred C57BL , Myocarditis/metabolism , Myocarditis/pathology , Myocardium/metabolism , Myocardium/pathology , Receptor, Cannabinoid, CB2/agonists , Signal Transduction
13.
Purinergic Signal ; 17(4): 713-724, 2021 12.
Article in English | MEDLINE | ID: mdl-34604944

ABSTRACT

Sepsis is life-threatening organ dysfunction caused by a dysregulated inflammatory and immune response to infection. Sepsis involves the combination of exaggerated inflammation and immune suppression. During systemic infection and sepsis, the liver works as a lymphoid organ with key functions in regulating the immune response. Extracellular nucleotides are considered damage-associated molecular patterns and are involved in the control of inflammation. Their levels are finely tuned by the membrane-associated ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) enzyme family. Although previous studies have addressed the role of NTPDase1 (CD39), the role of the other extracellular NTPDases, NTPDase2, -3, and -8, in sepsis is unclear. In the present studies we identified NTPDase8 as a top downregulated gene in the liver of mice submitted to cecal ligation-induced sepsis. Immunohistochemical analysis confirmed the decrease of NTPDase8 expression at the protein level. In vitro mechanistic studies using HepG2 hepatoma cells demonstrated that IL-6 but not TNF, IL-1ß, bacteria, or lipopolysaccharide are able to suppress NTPDase8 gene expression. NTPDase8, as well as NTPDase2 and NTPDase3 mRNA was downregulated, whereas NTPDase1 (CD39) mRNA was upregulated in polymorphonuclear leukocytes from both inflamed and septic patients compared to healthy controls. Although the host's inflammatory response of polymicrobial septic NTPDase8 deficient mice was no different from that of wild-type mice, IL-6 levels in NTPDase8 deficient mice were higher than IL-6 levels in wild-type mice with pneumonia. Altogether, the present data indicate that extracellular NTPDases are differentially regulated during sepsis.


Subject(s)
Adenosine Triphosphatases/metabolism , Inflammation/metabolism , Leukocytes/metabolism , Sepsis/metabolism , Adenosine Triphosphatases/genetics , Animals , Female , Humans , Inflammation/genetics , Liver/metabolism , Male , Mice , Mice, Knockout , Sepsis/genetics
14.
J Am Chem Soc ; 142(40): 16953-16964, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32902974

ABSTRACT

Pharmacological modulation of cannabinoid type 2 receptor (CB2R) holds promise for the treatment of numerous conditions, including inflammatory diseases, autoimmune disorders, pain, and cancer. Despite the significance of this receptor, researchers lack reliable tools to address questions concerning the expression and complex mechanism of CB2R signaling, especially in cell-type and tissue-dependent contexts. Herein, we report for the first time a versatile ligand platform for the modular design of a collection of highly specific CB2R fluorescent probes, used successfully across applications, species, and cell types. These include flow cytometry of endogenously expressing cells, real-time confocal microscopy of mouse splenocytes and human macrophages, as well as FRET-based kinetic and equilibrium binding assays. High CB2R specificity was demonstrated by competition experiments in living cells expressing CB2R at native levels. The probes were effectively applied to FACS analysis of microglial cells derived from a mouse model relevant to Alzheimer's disease.


Subject(s)
Alzheimer Disease/metabolism , Fluorescent Dyes/chemistry , Microglia/metabolism , Receptor, Cannabinoid, CB2/analysis , Animals , CHO Cells , Cricetulus , Disease Models, Animal , Flow Cytometry , Fluorescence Resonance Energy Transfer , Humans , Ligands , Mice , Molecular Docking Simulation , Molecular Probes/chemistry , Optical Imaging , Sensitivity and Specificity , Signal Transduction
15.
J Hepatol ; 72(4): 736-745, 2020 04.
Article in English | MEDLINE | ID: mdl-31786256

ABSTRACT

BACKGROUND & AIMS: Acute-on-chronic liver failure (ACLF) is a clinical syndrome defined by liver failure on pre-existing chronic liver disease. It is often associated with bacterial infection and high short-term mortality. Experimental models that fully reproduce ACLF are lacking, so too are effective pharmacological therapies for this condition. METHODS: To mimic ACLF conditions, we developed a severe liver injury model by combining chronic injury (chronic carbon tetrachloride [CCl4] injection), acute hepatic insult (injection of a double dose of CCl4), and bacterial infection (intraperitoneal injection of bacteria). Serum and liver samples from patients with ACLF or acute drug-induced liver injury (DILI) were used. Liver injury and regeneration were assessed to ascertain the potential benefits of interleukin-22 (IL-22Fc) administration. RESULTS: This severe liver injury model recapitulated some of the key features of clinical ACLF, including acute-on-chronic liver injury, bacterial infection, multi-organ injury, and high mortality. Liver regeneration in this model was severely impaired because of a shift from the activation of the pro-regenerative IL-6/STAT3 pathway to the anti-regenerative IFN-γ/STAT1 pathway. The impaired IL-6/STAT3 activation was due to the inability of Kupffer cells to produce IL-6; whereas the enhanced STAT1 activation was due to a strong innate immune response and subsequent production of IFN-γ. Compared to patients with DILI, patients with ACLF had higher levels of IFN-γ but lower liver regeneration. IL-22Fc treatment improved survival in ACLF mice by reversing the STAT1/STAT3 pathway imbalance and enhancing expression of many antibacterial genes in a manner involving the anti-apoptotic protein BCL2. CONCLUSIONS: Acute-on-chronic liver injury or bacterial infection is associated with impaired liver regeneration due to a shift from a pro-regenerative to an anti-regenerative pathway. IL-22Fc therapy reverses this shift and attenuates bacterial infection, thus IL-22Fc may have therapeutic potential for ACLF treatment. LAY SUMMARY: A mouse model combining chronic liver injury, acute hepatic insult, and bacterial infection recapitulates some of the key features of acute-on-chronic liver failure (ACLF) in patients. Both fibrosis and bacterial infection contribute to the impaired regenerative capacity of the liver in patients with ACLF. Herein, we show that IL-22Fc therapy improves ACLF by reprogramming impaired regenerative pathways and attenuating bacterial infection. Thus, it may have therapeutic potential for patients with ACLF.


Subject(s)
Acute-On-Chronic Liver Failure/blood , Acute-On-Chronic Liver Failure/drug therapy , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/drug therapy , Interleukins/administration & dosage , Klebsiella Infections/drug therapy , Klebsiella pneumoniae , Liver Regeneration/drug effects , Acute Disease , Acute-On-Chronic Liver Failure/chemically induced , Acute-On-Chronic Liver Failure/microbiology , Adult , Animals , Carbon Tetrachloride/administration & dosage , Carbon Tetrachloride/adverse effects , Chemical and Drug Induced Liver Injury/pathology , Disease Models, Animal , Female , Hepatocytes/metabolism , Humans , Klebsiella Infections/microbiology , Kupffer Cells/metabolism , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Treatment Outcome , Interleukin-22
16.
Pharmacol Res ; 151: 104578, 2020 01.
Article in English | MEDLINE | ID: mdl-31794870

ABSTRACT

AIM: Acute myocardial infarction and subsequent post-infarction heart failure are among the leading causes of mortality worldwide. The endocannabinoid system has emerged as an important modulator of cardiovascular disease, however the role of endocannabinoid metabolic enzymes in heart failure is still elusive. Herein, we investigated the endocannabinoids and their metabolic enzymes in ischemic end-stage failing human hearts and non-failing controls. METHODS AND RESULTS: Quantitative real-time PCR, targeted lipidomics, and activity-based protein profiling (ABPP) enabled assessment of the endocannabinoids and their metabolic enzymes in ischemic end-stage failing human hearts and non-failing controls. Based on lipidomic analysis, two subgroups were identified within the ischemic heart failure group; the first similar to control hearts and the second with decreased levels of the endocannabinoid 2-arachidonoyl-glycerol (2-AG) and drastically increased levels of the endocannabinoid anandamide (AEA), other N-acylethanolamines (NAEs) and free fatty acids. The altered lipid profile was accompanied by strong reductions in the activity of 13 hydrolases, including the 2-AG hydrolytic enzyme monoacylglycerol lipase (MGLL). CONCLUSIONS: Our findings suggest the presence of different biological states within the ischemic heart failure group, based on alterations in the lipid and hydrolase activity profiles. In addition, this study demonstrates that ABPP is a valuable tool to rapidly analyze enzyme activity in clinical samples with potential for novel drug and biomarker discovery.


Subject(s)
Endocannabinoids/metabolism , Heart Failure/metabolism , Hydrolases/metabolism , Myocardial Ischemia/metabolism , Adult , Female , Humans , Lipidomics , Male , Middle Aged , Myocardial Infarction/metabolism , Proteomics
17.
Eur Heart J ; 40(22): 1771-1777, 2019 06 07.
Article in English | MEDLINE | ID: mdl-29982507

ABSTRACT

Unexpected cardiac adverse effects are the leading causes of discontinuation of clinical trials and withdrawal of drugs from the market. Since the original observations in the mid-90s, it has been well established that cardiovascular risk factors and comorbidities (such as ageing, hyperlipidaemia, and diabetes) and their medications (e.g. nitrate tolerance, adenosine triphosphate-dependent potassium inhibitor antidiabetic drugs, statins, etc.) may interfere with cardiac ischaemic tolerance and endogenous cardioprotective signalling pathways. Indeed drugs may exert unwanted effects on the diseased and treated heart that is hidden in the healthy myocardium. Hidden cardiotoxic effects may be due to (i) drug-induced enhancement of deleterious signalling due to ischaemia/reperfusion injury and/or the presence of risk factors and/or (ii) inhibition of cardioprotective survival signalling pathways, both of which may lead to ischaemia-related cell death and/or pro-arrhythmic effects. This led to a novel concept of 'hidden cardiotoxicity', defined as cardiotoxity of a drug that manifests only in the diseased heart with e.g. ischaemia/reperfusion injury and/or in the presence of its major comorbidities. Little is known on the mechanism of hidden cardiotoxocity, moreover, hidden cardiotoxicity cannot be revealed by the routinely used non-clinical cardiac safety testing methods on healthy animals or tissues. Therefore, here, we emphasize the need for development of novel cardiac safety testing platform involving combined experimental models of cardiac diseases (especially myocardial ischaemia/reperfusion and ischaemic conditioning) in the presence and absence of major cardiovascular comorbidities and/or cotreatments.


Subject(s)
Cardiotoxicity/prevention & control , Cardiotoxins , Drug Development/standards , Drug-Related Side Effects and Adverse Reactions/prevention & control , Patient Safety , Animals , Comorbidity , Heart Diseases/chemically induced , Heart Diseases/prevention & control , Humans , Mice
18.
Gut ; 68(7): 1311-1322, 2019 07.
Article in English | MEDLINE | ID: mdl-30121625

ABSTRACT

OBJECTIVE: Aldehyde dehydrogenase 2 (ALDH2), a key enzyme to detoxify acetaldehyde in the liver, exists in both active and inactive forms in humans. Individuals with inactive ALDH2 accumulate acetaldehyde after alcohol consumption. However, how acetaldehyde affects T-cell hepatitis remains unknown. DESIGN: Wild-type (WT) and Aldh2 knockout (Aldh2-/-) mice were subjected to chronic ethanol feeding and concanavalin A (ConA)-induced T-cell hepatitis. Effects of acetaldehyde on T-cell glucose metabolism were investigated in vitro. Human subjects were recruited for binge drinking and plasma cortisol and corticosterone measurement. RESULTS: Ethanol feeding exacerbated ConA-induced hepatitis in WT mice but surprisingly attenuated it in Aldh2-/- mice despite higher acetaldehyde levels in Aldh2-/- mice. Elevation of serum cytokines and their downstream signals in the liver post-ConA injection was attenuated in ethanol-fed Aldh2-/- mice compared to WT mice. In vitro exposure to acetaldehyde inhibited ConA-induced production of several cytokines without affecting their mRNAs in mouse splenocytes. Acetaldehyde also attenuated interferon-γ production in phytohaemagglutinin-stimulated human peripheral lymphocytes. Mechanistically, acetaldehyde interfered with glucose metabolism in T cells by inhibiting aerobic glycolysis-related signal pathways. Finally, compared to WT mice, ethanol-fed Aldh2-/- mice had higher levels of serum corticosterone, a well-known factor that inhibits aerobic glycolysis. Blockade of corticosterone partially restored ConA-mediated hepatitis in ethanol-fed Aldh2-/- mice. Acute alcohol drinking elevated plasma cortisol and corticosterone levels in human subjects with higher levels in those with inactive ALDH2 than those with active ALDH2. CONCLUSIONS: ALDH2 deficiency is associated with elevated acetaldehyde and glucocorticoids post-alcohol consumption, thereby inhibiting T-cell activation and hepatitis.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial/physiology , Binge Drinking/metabolism , Glucose/metabolism , Hepatitis/metabolism , Hepatitis/prevention & control , T-Lymphocytes/physiology , Animals , Binge Drinking/pathology , Concanavalin A , Corticosterone/blood , Disease Models, Animal , Ethanol , Hepatitis/etiology , Humans , Hydrocortisone/blood , Mice
19.
Hepatology ; 68(2): 496-514, 2018 08.
Article in English | MEDLINE | ID: mdl-29457836

ABSTRACT

Alcoholic liver disease (ALD) is characterized by lipid accumulation and liver injury. However, how chronic alcohol consumption causes hepatic lipid accumulation remains elusive. The present study demonstrates that activation of the mechanistic target of rapamycin complex 1 (mTORC1) plays a causal role in alcoholic steatosis, inflammation, and liver injury. Chronic-plus-binge ethanol feeding led to hyperactivation of mTORC1, as evidenced by increased phosphorylation of mTOR and its downstream kinase S6 kinase 1 (S6K1) in hepatocytes. Aberrant activation of mTORC1 was likely attributed to the defects of the DEP domain-containing mTOR-interacting protein (DEPTOR) and the nicotinamide adenine dinucleotide-dependent deacetylase sirtuin 1 (SIRT1) in the liver of chronic-plus-binge ethanol-fed mice and in the liver of patients with ALD. Conversely, adenoviral overexpression of hepatic DEPTOR suppressed mTORC1 signaling and ameliorated alcoholic hepatosteatosis, inflammation, and acute-on-chronic liver injury. Mechanistically, the lipid-lowering effect of hepatic DEPTOR was attributable to decreased proteolytic processing, nuclear translocation, and transcriptional activity of the lipogenic transcription factor sterol regulatory element-binding protein-1 (SREBP-1). DEPTOR-dependent inhibition of mTORC1 also attenuated alcohol-induced cytoplasmic accumulation of the lipogenic regulator lipin 1 and prevented alcohol-mediated inhibition of fatty acid oxidation. Pharmacological intervention with rapamycin alleviated the ability of alcohol to up-regulate lipogenesis, to down-regulate fatty acid oxidation, and to induce steatogenic phenotypes. Chronic-plus-binge ethanol feeding led to activation of SREBP-1 and lipin 1 through S6K1-dependent and independent mechanisms. Furthermore, hepatocyte-specific deletion of SIRT1 disrupted DEPTOR function, enhanced mTORC1 activity, and exacerbated alcoholic fatty liver, inflammation, and liver injury in mice. CONCLUSION: The dysregulation of SIRT1-DEPTOR-mTORC1 signaling is a critical determinant of ALD pathology; targeting SIRT1 and DEPTOR and selectively inhibiting mTORC1-S6K1 signaling may have therapeutic potential for treating ALD in humans. (Hepatology 2018).


Subject(s)
Fatty Liver, Alcoholic/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Lipogenesis/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Animals , Ethanol/pharmacology , Fatty Liver, Alcoholic/pathology , Hepatocytes/metabolism , Humans , Liver/metabolism , Liver/pathology , Mice , Nuclear Proteins/metabolism , Phosphatidate Phosphatase/metabolism , Signal Transduction , Sirtuin 1/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , TOR Serine-Threonine Kinases/metabolism
20.
Hepatology ; 68(4): 1519-1533, 2018 10.
Article in English | MEDLINE | ID: mdl-29631342

ABSTRACT

Tubular dysfunction is an important feature of renal injury in hepatorenal syndrome (HRS) in patients with end-stage liver disease. The pathogenesis of kidney injury in HRS is elusive, and there are no clinically relevant rodent models of HRS. We investigated the renal consequences of bile duct ligation (BDL)-induced hepatic and renal injury in mice in vivo by using biochemical assays, real-time polymerase chain reaction (PCR), Western blot, mass spectrometry, histology, and electron microscopy. BDL resulted in time-dependent hepatic injury and hyperammonemia which were paralleled by tubular dilation and tubulointerstitial nephritis with marked upregulation of lipocalin-2, kidney injury molecule 1 (KIM-1) and osteopontin. Renal injury was associated with dramatically impaired microvascular flow and decreased endothelial nitric oxide synthase (eNOS) activity. Gene expression analyses signified proximal tubular epithelial injury, tissue hypoxia, inflammation, and activation of the fibrotic gene program. Marked changes in renal arginine metabolism (upregulation of arginase-2 and downregulation of argininosuccinate synthase 1), resulted in decreased circulating arginine levels. Arginase-2 knockout mice were partially protected from BDL-induced renal injury and had less impairment in microvascular function. In human-cultured proximal tubular epithelial cells hyperammonemia per se induced upregulation of arginase-2 and markers of tubular cell injury. CONCLUSION: We propose that hyperammonemia may contribute to impaired renal arginine metabolism, leading to decreased eNOS activity, impaired microcirculation, tubular cell death, tubulointerstitial nephritis and fibrosis. Genetic deletion of arginase-2 partially restores microcirculation and thereby alleviates tubular injury. We also demonstrate that BDL in mice is an excellent, clinically relevant model to study the renal consequences of HRS. (Hepatology 2018; 00:000-000).


Subject(s)
Acute Kidney Injury/metabolism , Arginine/metabolism , Hepatorenal Syndrome/pathology , Kidney Tubules/pathology , Nitric Oxide Synthase/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/physiopathology , Animals , Biomarkers/metabolism , Biopsy, Needle , Disease Models, Animal , Disease Progression , Hepatorenal Syndrome/mortality , Hepatorenal Syndrome/physiopathology , Humans , Immunohistochemistry , Kidney Tubules/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Random Allocation , Risk Assessment , Sensitivity and Specificity , Severity of Illness Index , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL