Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Cell ; 165(1): 125-138, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-27015310

ABSTRACT

Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP → LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP → anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP → aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis.


Subject(s)
Adipose Tissue, Brown/metabolism , Appetite Regulation , Glucose/metabolism , Insulin Resistance , Neurons/metabolism , Agouti-Related Protein/metabolism , Animals , Feeding Behavior , Mice , Myostatin/genetics , Optogenetics , Transcriptome
2.
Cell ; 162(6): 1404-17, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26359991

ABSTRACT

Activation of orexigenic AgRP-expressing neurons in the arcuate nucleus of the hypothalamus potently promotes feeding, thus defining new regulators of AgRP neuron activity could uncover potential novel targets for obesity treatment. Here, we demonstrate that AgRP neurons express the purinergic receptor 6 (P2Y6), which is activated by uridine-diphosphate (UDP). In vivo, UDP induces ERK phosphorylation and cFos expression in AgRP neurons and promotes action potential firing of these neurons in brain slice recordings. Consequently, central application of UDP promotes feeding, and this response is abrogated upon pharmacologic or genetic inhibition of P2Y6 as well as upon pharmacogenetic inhibition of AgRP neuron activity. In obese animals, hypothalamic UDP content is elevated as a consequence of increased circulating uridine concentrations. Collectively, these experiments reveal a potential regulatory pathway in obesity, where peripheral uridine increases hypothalamic UDP concentrations, which in turn can promote feeding via PY6-dependent activation of AgRP neurons.


Subject(s)
Appetite Regulation , Hypothalamus/metabolism , Obesity/metabolism , Receptors, Purinergic P2/metabolism , Uridine Diphosphate/metabolism , Agouti-Related Protein/metabolism , Animals , Disease Models, Animal , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL
3.
Cell ; 156(3): 495-509, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24462248

ABSTRACT

Maternal metabolic homeostasis exerts long-term effects on the offspring's health outcomes. Here, we demonstrate that maternal high-fat diet (HFD) feeding during lactation predisposes the offspring for obesity and impaired glucose homeostasis in mice, which is associated with an impairment of the hypothalamic melanocortin circuitry. Whereas the number and neuropeptide expression of anorexigenic proopiomelanocortin (POMC) and orexigenic agouti-related peptide (AgRP) neurons, electrophysiological properties of POMC neurons, and posttranslational processing of POMC remain unaffected in response to maternal HFD feeding during lactation, the formation of POMC and AgRP projections to hypothalamic target sites is severely impaired. Abrogating insulin action in POMC neurons of the offspring prevents altered POMC projections to the preautonomic paraventricular nucleus of the hypothalamus (PVH), pancreatic parasympathetic innervation, and impaired glucose-stimulated insulin secretion in response to maternal overnutrition. These experiments reveal a critical timing, when altered maternal metabolism disrupts metabolic homeostasis in the offspring via impairing neuronal projections, and show that abnormal insulin signaling contributes to this effect.


Subject(s)
Diet, High-Fat , Hyperglycemia/metabolism , Hypothalamus/metabolism , Insulin/metabolism , Lactation , Obesity/metabolism , Animals , Axons/metabolism , Female , Male , Metabolic Diseases/metabolism , Mice , Mice, Inbred C57BL , Neurons/metabolism , Pregnancy , Pro-Opiomelanocortin/metabolism , Receptor, Insulin/metabolism , Signal Transduction
4.
J Neuroinflammation ; 20(1): 68, 2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36906584

ABSTRACT

OBJECTIVES: Reactive gliosis is a common pathological hallmark of CNS pathology resulting from neurodegeneration and neuroinflammation. In this study we investigate the capability of a novel monoamine oxidase B (MAO-B) PET ligand to monitor reactive astrogliosis in a transgenic mouse model of Alzheimer`s disease (AD). Furthermore, we performed a pilot study in patients with a range of neurodegenerative and neuroinflammatory conditions. METHODS: A cross-sectional cohort of 24 transgenic (PS2APP) and 25 wild-type mice (age range: 4.3-21.0 months) underwent 60 min dynamic [18F]fluorodeprenyl-D2 ([18F]F-DED), static 18 kDa translocator protein (TSPO, [18F]GE-180) and ß-amyloid ([18F]florbetaben) PET imaging. Quantification was performed via image derived input function (IDIF, cardiac input), simplified non-invasive reference tissue modelling (SRTM2, DVR) and late-phase standardized uptake value ratios (SUVr). Immunohistochemical (IHC) analyses of glial fibrillary acidic protein (GFAP) and MAO-B were performed to validate PET imaging by gold standard assessments. Patients belonging to the Alzheimer's disease continuum (AD, n = 2), Parkinson's disease (PD, n = 2), multiple system atrophy (MSA, n = 2), autoimmune encephalitis (n = 1), oligodendroglioma (n = 1) and one healthy control underwent 60 min dynamic [18F]F-DED PET and the data were analyzed using equivalent quantification strategies. RESULTS: We selected the cerebellum as a pseudo-reference region based on the immunohistochemical comparison of age-matched PS2APP and WT mice. Subsequent PET imaging revealed that PS2APP mice showed elevated hippocampal and thalamic [18F]F-DED DVR when compared to age-matched WT mice at 5 months (thalamus: + 4.3%; p = 0.048), 13 months (hippocampus: + 7.6%, p = 0.022) and 19 months (hippocampus: + 12.3%, p < 0.0001; thalamus: + 15.2%, p < 0.0001). Specific [18F]F-DED DVR increases of PS2APP mice occurred earlier when compared to signal alterations in TSPO and ß-amyloid PET and [18F]F-DED DVR correlated with quantitative immunohistochemistry (hippocampus: R = 0.720, p < 0.001; thalamus: R = 0.727, p = 0.002). Preliminary experience in patients showed [18F]F-DED VT and SUVr patterns, matching the expected topology of reactive astrogliosis in neurodegenerative (MSA) and neuroinflammatory conditions, whereas the patient with oligodendroglioma and the healthy control indicated [18F]F-DED binding following the known physiological MAO-B expression in brain. CONCLUSIONS: [18F]F-DED PET imaging is a promising approach to assess reactive astrogliosis in AD mouse models and patients with neurological diseases.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Oligodendroglioma , Animals , Humans , Mice , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/metabolism , Cross-Sectional Studies , Gliosis/pathology , Inflammation/metabolism , Mice, Transgenic , Monoamine Oxidase/metabolism , Neurodegenerative Diseases/metabolism , Oligodendroglioma/metabolism , Oligodendroglioma/pathology , Pilot Projects , Positron-Emission Tomography/methods , Receptors, GABA/metabolism
5.
Int J Mol Sci ; 24(12)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37373253

ABSTRACT

Neuroinflammation is one disease hallmark on the road to neurodegeneration in primary tauopathies. Thus, immunomodulation might be a suitable treatment strategy to delay or even prevent the occurrence of symptoms and thus relieve the burden for patients and caregivers. In recent years, the peroxisome proliferator-activated receptor γ (PPARγ) has received increasing attention as it is immediately involved in the regulation of the immune system and can be targeted by the anti-diabetic drug pioglitazone. Previous studies have shown significant immunomodulation in amyloid-ß (Aß) mouse models by pioglitazone. In this study, we performed long-term treatment over six months in P301S mice as a tauopathy model with either pioglitazone or placebo. We performed serial 18 kDa translocator protein positron-emission-tomography (TSPO-PET) imaging and terminal immunohistochemistry to assess microglial activation during treatment. Tau pathology was quantified via immunohistochemistry at the end of the study. Long-term pioglitazone treatment had no significant effect on TSPO-PET, immunohistochemistry read-outs of microglial activation, or tau pathology levels in P301S mice. Thus, we conclude that pioglitazone modifies the time course of Aß-dependent microglial activation, but does not significantly modulate microglial activation in response to tau pathology.


Subject(s)
Alzheimer Disease , Tauopathies , Mice , Animals , Pioglitazone/pharmacology , Microglia/metabolism , Tauopathies/metabolism , Amyloid beta-Peptides/metabolism , PPAR gamma/metabolism , Mice, Transgenic , tau Proteins/metabolism , Disease Models, Animal , Alzheimer Disease/metabolism
7.
J Neurophysiol ; 117(5): 2053-2064, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28179480

ABSTRACT

In this study we analyzed transient voltage-activated K+ currents (IA) of projection neurons and local interneurons in the antennal lobe of the cockroach Periplaneta americana The antennal lobe is the first synaptic processing station for olfactory information in insects. Local interneurons are crucial for computing olfactory information and form local synaptic connections exclusively in the antennal lobe, whereas a primary task of the projection neurons is the transfer of preprocessed olfactory information from the antennal lobe to higher order centers in the protocerebrum. The different physiological tasks of these neurons require specialized physiological and morphological neuronal phenotypes. We asked if and how the different physiological phenotypes are reflected in the functional properties of IA, which is crucial for shaping intrinsic electrophysiological properties of neurons. Whole cell patch-clamp recordings from adult male P. americana showed that all their central antennal lobe neurons can generate IA The current exhibited marked cell type-specific differences in voltage dependence of steady-state activation and inactivation, and differences in inactivation kinetics during sustained depolarization. Pharmacological experiments revealed that IA in all neuron types was partially blocked by α-dendrotoxin and phrixotoxin-2, which are considered blockers with specificity for Shaker- and Shal-type channels, respectively. These findings suggest that IA in each cell type is a mixed current generated by channels of both families. The functional role of IA was analyzed in experiments under current clamp, in which portions of IA were blocked by α-dendrotoxin or phrixotoxin-2. These experiments showed that IA contributes significantly to the intrinsic electrophysiological properties, such as the action potential waveform and membrane excitability.NEW & NOTEWORTHY In the insect olfactory system, projection neurons and local interneurons have task-specific electrophysiological and morphological phenotypes. Voltage-activated potassium channels play a crucial role in shaping functional properties of these neurons. This study revealed marked cell type-specific differences in the biophysical properties of transient voltage-activated potassium currents in central antennal lobe neurons.


Subject(s)
Action Potentials , Arthropod Antennae/physiology , Neurons/metabolism , Potassium Channels, Voltage-Gated/metabolism , Animals , Arthropod Antennae/cytology , Brain/cytology , Brain/physiology , Cells, Cultured , Cockroaches , Neurons/classification , Neurons/drug effects , Neurons/physiology , Potassium Channel Blockers/pharmacology
8.
Cell Calcium ; 97: 102411, 2021 May 10.
Article in English | MEDLINE | ID: mdl-34082340

ABSTRACT

Ca2+ functions as an important intracellular signal for a wide range of cellular processes. These processes are selectively activated by controlled spatiotemporal dynamics of the free cytosolic Ca2+. Intracellular Ca2+ dynamics are regulated by numerous cellular parameters. Here, we established a new way to determine neuronal Ca2+ handling properties by combining the 'added buffer' approach [1] with perforated patch-clamp recordings [2]. Since the added buffer approach typically employs the standard whole-cell configuration for concentration-controlled Ca2+ indicator loading, it only allows for the reliable estimation of the immobile fraction of intracellular Ca2+ buffers. Furthermore, crucial components of intracellular signaling pathways are being washed out during prolonged whole-cell recordings, leading to cellular deterioration. By combining the added buffer approach with perforated patch-clamp recordings, these issues are circumvented, allowing the precise quantification of the cellular Ca2+ handling properties, including immobile as well as mobile Ca2+ buffers.

9.
Brain Commun ; 3(4): fcab273, 2021.
Article in English | MEDLINE | ID: mdl-34877534

ABSTRACT

Considerable fluctuations in cognitive performance and eventual dementia are an important characteristic of alpha-synucleinopathies, such as Parkinson's disease and Lewy Body dementia and are linked to cortical dysfunction. The presence of misfolded and aggregated alpha-synuclein in the cerebral cortex of patients has been suggested to play a crucial role in this process. However, the consequences of a-synuclein accumulation on the function of cortical networks at cellular resolution in vivo are largely unknown. Here, we induced robust a-synuclein pathology in the cerebral cortex using the striatal seeding model in wild-type mice. Nine months after a single intrastriatal injection of a-synuclein preformed fibrils, we observed profound alterations of the function of layer 2/3 cortical neurons in somatosensory cortex by in vivo two-photon calcium imaging in awake mice. We detected increased spontaneous activity levels, an enhanced response to whisking and increased synchrony. Stereological analyses revealed a reduction in glutamic acid decarboxylase 67-positive inhibitory neurons in the somatosensory cortex of mice injected with preformed fibrils. Importantly, these findings point to a disturbed excitation/inhibition balance as a relevant driver of circuit dysfunction, potentially underlying cognitive changes in alpha-synucleinopathies.

10.
Nat Neurosci ; 24(7): 913-929, 2021 07.
Article in English | MEDLINE | ID: mdl-34002087

ABSTRACT

Pro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus represent key regulators of metabolic homeostasis. Electrophysiological and single-cell sequencing experiments have revealed a remarkable degree of heterogeneity of these neurons. However, the exact molecular basis and functional consequences of this heterogeneity have not yet been addressed. Here, we have developed new mouse models in which intersectional Cre/Dre-dependent recombination allowed for successful labeling, translational profiling and functional characterization of distinct POMC neurons expressing the leptin receptor (Lepr) and glucagon like peptide 1 receptor (Glp1r). Our experiments reveal that POMCLepr+ and POMCGlp1r+ neurons represent largely nonoverlapping subpopulations with distinct basic electrophysiological properties. They exhibit a specific anatomical distribution within the arcuate nucleus and differentially express receptors for energy-state communicating hormones and neurotransmitters. Finally, we identify a differential ability of these subpopulations to suppress feeding. Collectively, we reveal a notably distinct functional microarchitecture of critical metabolism-regulatory neurons.


Subject(s)
Feeding Behavior/physiology , Hypothalamus/physiology , Neurons/physiology , Pro-Opiomelanocortin/metabolism , Animals , Energy Metabolism/physiology , Homeostasis/physiology , Hypothalamus/cytology , Mice , Mice, Transgenic , Neurons/cytology
11.
J Neurosci ; 29(3): 716-26, 2009 Jan 21.
Article in English | MEDLINE | ID: mdl-19158298

ABSTRACT

Behavioral and physiological studies show that neuronal interactions among the glomeruli in the insect antennal lobe (AL) take place during the processing of odor information. These interactions are mediated by a complex network of inhibitory and excitatory local interneurons (LNs) that restructure the olfactory representation in the AL, thereby regulating the tuning profile of projection neurons. In Periplaneta americana, we characterized two LN types with distinctive physiological properties: (1) type I LNs that generated Na(+)-driven action potentials on odor stimulation and exhibited GABA-like immunoreactivity (GLIR) and (2) type II LNs, in which odor stimulation evoked depolarizations, but no Na(+)-driven action potentials (APs). Type II LNs did not express voltage-dependent transient Na(+) currents and accordingly would not trigger transmitter release by Na(+)-driven APs. Ninety percent of type II LNs did not exhibit GLIR. The distinct intrinsic firing properties were reflected in functional parameters of their voltage-activated Ca(2+) currents (I(Ca)). Consistent with graded synaptic release, we found a shift in the voltage for half-maximal activation of I(Ca) to more hyperpolarized membrane potentials in the type II LNs. These marked physiological differences between the two LN types imply consequences for their computational capacity, synaptic output kinetics, and thus their function in the olfactory circuit.


Subject(s)
Action Potentials/physiology , Calcium/physiology , Interneurons/classification , Interneurons/physiology , Olfactory Bulb/cytology , Action Potentials/drug effects , Analysis of Variance , Animals , Biophysical Phenomena , Cadmium/pharmacology , Electric Stimulation , In Vitro Techniques , Lysine/analogs & derivatives , Lysine/metabolism , Odorants , Patch-Clamp Techniques , Periplaneta , Potassium Channel Blockers/pharmacology , Sodium/metabolism , Sodium Channel Blockers/pharmacology , Tetraethylammonium/pharmacology , Tetrodotoxin/pharmacology , gamma-Aminobutyric Acid/metabolism
12.
Neuron ; 106(6): 1009-1025.e10, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32302532

ABSTRACT

Calorie-rich diets induce hyperphagia and promote obesity, although the underlying mechanisms remain poorly defined. We find that short-term high-fat-diet (HFD) feeding of mice activates prepronociceptin (PNOC)-expressing neurons in the arcuate nucleus of the hypothalamus (ARC). PNOCARC neurons represent a previously unrecognized GABAergic population of ARC neurons distinct from well-defined feeding regulatory AgRP or POMC neurons. PNOCARC neurons arborize densely in the ARC and provide inhibitory synaptic input to nearby anorexigenic POMC neurons. Optogenetic activation of PNOCARC neurons in the ARC and their projections to the bed nucleus of the stria terminalis promotes feeding. Selective ablation of these cells promotes the activation of POMC neurons upon HFD exposure, reduces feeding, and protects from obesity, but it does not affect food intake or body weight under normal chow consumption. We characterize PNOCARC neurons as a novel ARC neuron population activated upon palatable food consumption to promote hyperphagia.


Subject(s)
Arcuate Nucleus of Hypothalamus/physiology , Diet, High-Fat , Feeding Behavior/physiology , GABAergic Neurons/physiology , Hyperphagia , Obesity , Weight Gain/physiology , Animals , Arcuate Nucleus of Hypothalamus/cytology , Arcuate Nucleus of Hypothalamus/metabolism , GABAergic Neurons/metabolism , Mice , Neural Inhibition/physiology , Neurons/metabolism , Neurons/physiology , Optogenetics , Pro-Opiomelanocortin/metabolism , Protein Precursors/metabolism , Receptors, Opioid/metabolism , Septal Nuclei/physiology
13.
J Neurophysiol ; 102(5): 2834-45, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19759323

ABSTRACT

A diverse population of local interneurons (LNs) helps to process, structure, and spatially represent olfactory information in the insect antennal lobe. In Periplaneta americana, we identified two subtypes of nonspiking local interneurons (type II LNs) by their distinct morphological and intrinsic electrophysiological properties. As an important step toward a better understanding of the cellular mechanisms that mediate odor information processing, we present a detailed analysis of their distinct voltage-activated Ca(2+) currents, which clearly correlated with their distinct intrinsic electrophysiological properties. Both type II LNs did not posses voltage-activated Na(+) currents and apparently innervated all glomeruli including the macroglomerulus. Type IIa LNs had significant longer and thicker low-order neurites and innervated each glomerulus entirely and homogeneously, whereas type IIb LNs innervated only parts of each glomerulus. All type II LNs were broadly tuned and responded to odorants of many chemical classes with graded changes in the membrane potential. Type IIa LNs responded with odor-specific elaborate patterns of excitation that could also include "spikelets" riding on the depolarizations and periods of inhibition. In contrast, type IIb LNs responded mostly with sustained, relatively smooth depolarizations. Consistent with the strong active membrane properties of type IIa LNs versus type IIb LNs, the voltage-activated Ca(2+) current of type IIa LNs activated at more hyperpolarized membrane potentials and had a larger transient component.


Subject(s)
Action Potentials/physiology , Biophysical Phenomena/physiology , Calcium Channels/physiology , Interneurons/classification , Interneurons/physiology , Olfactory Pathways/cytology , Action Potentials/drug effects , Analysis of Variance , Animals , Biophysical Phenomena/drug effects , Biophysics/methods , Brain Mapping , Cadmium Chloride/pharmacology , Calcium/metabolism , Electric Stimulation/methods , In Vitro Techniques , Interneurons/drug effects , Lysine/analogs & derivatives , Lysine/metabolism , Nerve Net/cytology , Nerve Net/drug effects , Nerve Net/physiology , Odorants , Patch-Clamp Techniques/methods , Periplaneta/anatomy & histology
14.
Cell Rep ; 25(2): 383-397.e10, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30304679

ABSTRACT

Mitochondrial oxidative phosphorylation (OXPHOS) and substrate utilization critically regulate the function of hypothalamic proopiomelanocortin (POMC)-expressing neurons. Here, we demonstrate that inactivation of apoptosis-inducing factor (AIF) in POMC neurons mildly impairs mitochondrial respiration and decreases firing of POMC neurons in lean mice. In contrast, under diet-induced obese conditions, POMC-Cre-specific inactivation of AIF prevents obesity-induced silencing of POMC neurons, translating into improved glucose metabolism, improved leptin, and insulin sensitivity, as well as increased energy expenditure in AIFΔPOMC mice. On a cellular level, AIF deficiency improves mitochondrial morphology, facilitates the utilization of fatty acids for mitochondrial respiration, and increases reactive oxygen species (ROS) formation in POMC neurons from obese mice, ultimately leading to restored POMC firing upon HFD feeding. Collectively, partial impairment of mitochondrial function shifts substrate utilization of POMC neurons from glucose to fatty acid metabolism and restores their firing properties, resulting in improved systemic glucose and energy metabolism in obesity.


Subject(s)
Fatty Acids/metabolism , Glucose/metabolism , Homeostasis , Mitochondria/pathology , Neurons/metabolism , Obesity/prevention & control , Oxidative Phosphorylation , Pro-Opiomelanocortin/metabolism , Animals , Apoptosis Inducing Factor/physiology , Diet, High-Fat/adverse effects , Energy Metabolism , Glucose Intolerance , Hypothalamus/metabolism , Hypothalamus/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Mitochondria/metabolism , Neurons/pathology , Obesity/etiology , Obesity/metabolism , Obesity/pathology
15.
Elife ; 62017 06 20.
Article in English | MEDLINE | ID: mdl-28632132

ABSTRACT

In the arcuate nucleus of the hypothalamus (ARH) satiety signaling (anorexigenic) pro-opiomelanocortin (POMC)-expressing and hunger signaling (orexigenic) agouti-related peptide (AgRP)-expressing neurons are key components of the neuronal circuits that control food intake and energy homeostasis. Here, we assessed whether the catecholamine noradrenalin directly modulates the activity of these neurons in mice. Perforated patch clamp recordings showed that noradrenalin changes the activity of these functionally antagonistic neurons in opposite ways, increasing the activity of the orexigenic NPY/AgRP neurons and decreasing the activity of the anorexigenic POMC neurons. Cell type-specific transcriptomics and pharmacological experiments revealed that the opposing effect on these neurons is mediated by the activation of excitatory α1A - and ß- adrenergic receptors in NPY/AgRP neurons, while POMC neurons are inhibited via α2A - adrenergic receptors. Thus, the coordinated differential modulation of the key hypothalamic neurons in control of energy homeostasis assigns noradrenalin an important role to promote feeding.


Subject(s)
Agouti-Related Protein/metabolism , Arcuate Nucleus of Hypothalamus/drug effects , Neurons/drug effects , Neurons/metabolism , Norepinephrine/metabolism , Pro-Opiomelanocortin/metabolism , Animals , Gene Expression Profiling , Mice , Patch-Clamp Techniques
16.
Elife ; 62017 08 01.
Article in English | MEDLINE | ID: mdl-28762947

ABSTRACT

Satiety-signaling, pro-opiomelanocortin (POMC)-expressing neurons in the arcuate nucleus of the hypothalamus play a pivotal role in the regulation of energy homeostasis. Recent studies reported altered mitochondrial dynamics and decreased mitochondria- endoplasmic reticulum contacts in POMC neurons during diet-induced obesity. Since mitochondria play a crucial role in Ca2+ signaling, we investigated whether obesity alters Ca2+ handling of these neurons in mice. In diet-induced obesity, cellular Ca2+ handling properties including mitochondrial Ca2+ uptake capacity are impaired, and an increased resting level of free intracellular Ca2+ is accompanied by a marked decrease in neuronal excitability. Experimentally increasing or decreasing intracellular Ca2+ concentrations reproduced electrophysiological properties observed in diet-induced obesity. Taken together, we provide the first direct evidence for a diet-dependent deterioration of Ca2+ homeostasis in POMC neurons during obesity development resulting in impaired function of these critical energy homeostasis-regulating neurons.


Subject(s)
Action Potentials , Arcuate Nucleus of Hypothalamus/physiology , Calcium/metabolism , Homeostasis , Mitochondria/metabolism , Neurons/physiology , Animals , Diet , Energy Metabolism , Mice , Neurons/chemistry , Obesity , Pro-Opiomelanocortin/analysis
17.
Cell Rep ; 18(7): 1587-1597, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28199831

ABSTRACT

Uridine-diphosphate (UDP) and its receptor P2Y6 have recently been identified as regulators of AgRP neurons. UDP promotes feeding via activation of P2Y6 receptors on AgRP neurons, and hypothalamic UDP concentrations are increased in obesity. However, it remained unresolved whether inhibition of P2Y6 signaling pharmacologically, globally, or restricted to AgRP neurons can improve obesity-associated metabolic dysfunctions. Here, we demonstrate that central injection of UDP acutely promotes feeding in diet-induced obese mice and that acute pharmacological blocking of CNS P2Y6 receptors reduces food intake. Importantly, mice with AgRP-neuron-restricted inactivation of P2Y6 exhibit reduced food intake and fat mass as well as improved systemic insulin sensitivity with improved insulin action in liver. Our results reveal that P2Y6 signaling in AgRP neurons is involved in the onset of obesity-associated hyperphagia and systemic insulin resistance. Collectively, these experiments define P2Y6 as a potential target to pharmacologically restrict both feeding and systemic insulin resistance in obesity.


Subject(s)
Agouti-Related Protein/metabolism , Eating/drug effects , Insulin Resistance/physiology , Neurons/drug effects , Obesity/drug therapy , Receptors, Purinergic P2/metabolism , Signal Transduction/drug effects , Animals , Diet/methods , Disease Models, Animal , Feeding Behavior/drug effects , Hyperphagia/drug therapy , Hyperphagia/metabolism , Insulin/metabolism , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Neurons/metabolism , Obesity/metabolism , Uridine Diphosphate/pharmacology
18.
Front Cell Neurosci ; 10: 180, 2016.
Article in English | MEDLINE | ID: mdl-27507934

ABSTRACT

Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2(gt/gt) mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2(gt/gt) with increased number of excitatory synapses. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2(gt/gt) neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin Ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics.

19.
Cell Rep ; 9(4): 1495-506, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25456138

ABSTRACT

Activation of c-Jun N-terminal kinase 1 (JNK1)- and inhibitor of nuclear factor kappa-B kinase 2 (IKK2)-dependent signaling plays a crucial role in the development of obesity-associated insulin and leptin resistance not only in peripheral tissues but also in the CNS. Here, we demonstrate that constitutive JNK activation in agouti-related peptide (AgRP)-expressing neurons of the hypothalamus is sufficient to induce weight gain and adiposity in mice as a consequence of hyperphagia. JNK activation increases spontaneous action potential firing of AgRP cells and causes both neuronal and systemic leptin resistance. Similarly, activation of IKK2 signaling in AgRP neurons also increases firing of these cells but fails to cause obesity and leptin resistance. In contrast to JNK activation, IKK2 activation blunts insulin signaling in AgRP neurons and impairs systemic glucose homeostasis. Collectively, these experiments reveal both overlapping and nonredundant effects of JNK- and IKK-dependent signaling in AgRP neurons, which cooperate in the manifestation of the metabolic syndrome.


Subject(s)
Agouti-Related Protein/metabolism , I-kappa B Kinase/metabolism , Insulin Resistance , JNK Mitogen-Activated Protein Kinases/metabolism , Neurons/enzymology , Obesity/enzymology , Action Potentials/drug effects , Adiposity/drug effects , Animals , Body Weight/drug effects , Enzyme Activation/drug effects , Glucose/metabolism , Homeostasis/drug effects , Insulin/metabolism , Leptin/pharmacology , MAP Kinase Signaling System/drug effects , Male , Mice, Inbred C57BL , Mutant Proteins/metabolism , Neurons/drug effects
20.
Endocrinology ; 154(1): 172-83, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23161869

ABSTRACT

In many mammals, body weight increases continuously throughout adulthood until late middle age. The hormone leptin is necessary for maintaining body weight, in that high levels of leptin promote negative energy balance. As animals age, however, their increase in body weight is accompanied by a steady rise in circulating leptin levels, indicating the progressive development of counterregulatory mechanisms to antagonize leptin's anorexigenic effects. Hypothalamic neurons coexpressing agouti-related peptide (AgRP) and neuropeptide Y are direct leptin targets. These neurons promote positive energy balance, and they inhibit anorexigenic proopiomelanocortin (POMC) neurons via direct neuropeptide action and release of γ-aminobutyric acid. We show here that AgRP and neuropeptide Y innvervation onto POMC neurons increases dramatically with age in male mice. This is associated with progressive increase of inhibitory postsynaptic currents and decrease of POMC firing rate with age. Neuronal activity is significantly attenuated in POMC neurons that receive a high density of AgRP puncta. These high-density AgRP inputs correlate with leptin levels in normal mice and are nearly absent in mice lacking leptin. The progression of increased AgRP innervation onto POMC somas is accelerated in hyperleptinemic, diet-induced obese mice. Together our study suggests that modulation of hypothalamic AgRP innervation constitutes one mechanism to counter the effects of the age-associated rise in leptin levels, thus sustaining body weight and fat mass at an elevated level in adulthood.


Subject(s)
Agouti-Related Protein/metabolism , Dietary Fats/adverse effects , Neurons/metabolism , Pro-Opiomelanocortin/metabolism , Animals , Electrophysiology , Fluorescent Antibody Technique , Male , Mice , Neuropeptide Y/metabolism , Radioimmunoassay
SELECTION OF CITATIONS
SEARCH DETAIL