Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Annu Rev Neurosci ; 43: 163-186, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32075518

ABSTRACT

Cells of the oligodendrocyte lineage express a wide range of Ca2+ channels and receptors that regulate oligodendrocyte progenitor cell (OPC) and oligodendrocyte formation and function. Here we define those key channels and receptors that regulate Ca2+ signaling and OPC development and myelination. We then discuss how the regulation of intracellular Ca2+ in turn affects OPC and oligodendrocyte biology in the healthy nervous system and under pathological conditions. Activation of Ca2+ channels and receptors in OPCs and oligodendrocytes by neurotransmitters converges on regulating intracellular Ca2+, making Ca2+ signaling a central candidate mediator of activity-driven myelination. Indeed, recent evidence indicates that localized changes in Ca2+ in oligodendrocytes can regulate the formation and remodeling of myelin sheaths and perhaps additional functions of oligodendrocytes and OPCs. Thus, decoding how OPCs and myelinating oligodendrocytes integrate and process Ca2+ signals will be important to fully understand central nervous system formation, health, and function.


Subject(s)
Calcium Signaling/physiology , Cell Lineage/physiology , Myelin Sheath/physiology , Neurogenesis/physiology , Oligodendroglia/physiology , Animals , Cell Differentiation/physiology , Humans , Oligodendroglia/cytology
2.
J Neurosci ; 43(20): 3614-3629, 2023 05 17.
Article in English | MEDLINE | ID: mdl-36977582

ABSTRACT

To test the hypothesis that the transferrin (Tf) cycle has unique importance for oligodendrocyte development and function, we disrupted the expression of the Tf receptor (Tfr) gene in oligodendrocyte progenitor cells (OPCs) on mice of either sex using the Cre/lox system. This ablation results in the elimination of iron incorporation via the Tf cycle but leaves other Tf functions intact. Mice lacking Tfr, specifically in NG2 or Sox10-positive OPCs, developed a hypomyelination phenotype. Both OPC differentiation and myelination were affected, and Tfr deletion resulted in impaired OPC iron absorption. Specifically, the brains of Tfr cKO animals presented a reduction in the quantity of myelinated axons, as well as fewer mature oligodendrocytes. In contrast, the ablation of Tfr in adult mice affected neither mature oligodendrocytes nor myelin synthesis. RNA-seq analysis performed in Tfr cKO OPCs revealed misregulated genes involved in OPC maturation, myelination, and mitochondrial activity. Tfr deletion in cortical OPCs also disrupted the activity of the mTORC1 signaling pathway, epigenetic mechanisms critical for gene transcription and the expression of structural mitochondrial genes. RNA-seq studies were additionally conducted in OPCs in which iron storage was disrupted by deleting the ferritin heavy chain. These OPCs display abnormal regulation of genes associated with iron transport, antioxidant activity, and mitochondrial activity. Thus, our results indicate that the Tf cycle is central for iron homeostasis in OPCs during postnatal development and suggest that both iron uptake via Tfr and iron storage in ferritin are critical for energy production, mitochondrial activity, and maturation of postnatal OPCs.SIGNIFICANCE STATEMENT By knocking-out transferrin receptor (Tfr) specifically in oligodendrocyte progenitor cells (OPCs), we have established that iron incorporation via the Tf cycle is key for OPC iron homeostasis and for the normal function of these cells during the postnatal development of the CNS. Moreover, RNA-seq analysis indicated that both Tfr iron uptake and ferritin iron storage are critical for proper OPC mitochondrial activity, energy production, and maturation.


Subject(s)
Oligodendroglia , Receptors, Transferrin , Mice , Animals , Mice, Knockout , Oligodendroglia/metabolism , Receptors, Transferrin/genetics , Receptors, Transferrin/metabolism , Iron/metabolism , Cell Differentiation/physiology , Ferritins/metabolism , Homeostasis , Transferrin/metabolism
3.
J Neurosci ; 40(40): 7609-7624, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32868463

ABSTRACT

To define the importance of iron storage in oligodendrocyte development and function, the ferritin heavy subunit (Fth) was specifically deleted in oligodendroglial cells. Blocking Fth synthesis in Sox10 or NG2-positive oligodendrocytes during the first or the third postnatal week significantly reduces oligodendrocyte iron storage and maturation. The brain of Fth KO animals presented an important decrease in the expression of myelin proteins and a substantial reduction in the percentage of myelinated axons. This hypomyelination was accompanied by a decline in the number of myelinating oligodendrocytes and with a reduction in proliferating oligodendrocyte progenitor cells (OPCs). Importantly, deleting Fth in Sox10-positive oligodendroglial cells after postnatal day 60 has no effect on myelin production and/or oligodendrocyte quantities. We also tested the capacity of Fth-deficient OPCs to remyelinate the adult brain in the cuprizone model of myelin injury and repair. Fth deletion in NG2-positive OPCs significantly reduces the number of mature oligodendrocytes and myelin production throughout the remyelination process. Furthermore, the corpus callosum of Fth KO animals presented a significant decrease in the percentage of remyelinated axons and a substantial reduction in the average myelin thickness. These results indicate that Fth synthesis during the first three postnatal weeks is important for an appropriate oligodendrocyte development, and suggest that Fth iron storage in adult OPCs is also essential for an effective remyelination of the mouse brain.SIGNIFICANCE STATEMENT To define the importance of iron storage in oligodendrocyte function, we have deleted the ferritin heavy chain (Fth) specifically in the oligodendrocyte lineage. Fth ablation in oligodendroglial cells throughout early postnatal development significantly reduces oligodendrocyte maturation and myelination. In contrast, deletion of Fth in oligodendroglial cells after postnatal day 60 has no effect on myelin production and/or oligodendrocyte numbers. We have also tested the consequences of disrupting Fth iron storage in oligodendrocyte progenitor cells (OPCs) after demyelination. We have found that Fth deletion in NG2-positive OPCs significantly delays the remyelination process in the adult brain. Therefore, Fth iron storage is essential for early oligodendrocyte development as well as for OPC maturation in the demyelinated adult brain.


Subject(s)
Ferritins/metabolism , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Oxidoreductases/metabolism , Animals , Cells, Cultured , Ferritins/genetics , Iron/metabolism , Mice , Mice, Inbred C57BL , Myelin Sheath/genetics , Neurogenesis , Oligodendroglia/cytology , Oxidoreductases/genetics
4.
J Neurosci ; 40(17): 3332-3347, 2020 04 22.
Article in English | MEDLINE | ID: mdl-32169969

ABSTRACT

To determine whether Cav1.2 voltage-gated Ca2+ channels contribute to astrocyte activation, we generated an inducible conditional knock-out mouse in which the Cav1.2 α subunit was deleted in GFAP-positive astrocytes. This astrocytic Cav1.2 knock-out mouse was tested in the cuprizone model of myelin injury and repair which causes astrocyte and microglia activation in the absence of a lymphocytic response. Deletion of Cav1.2 channels in GFAP-positive astrocytes during cuprizone-induced demyelination leads to a significant reduction in the degree of astrocyte and microglia activation and proliferation in mice of either sex. Concomitantly, the production of proinflammatory factors such as TNFα, IL1ß and TGFß1 was significantly decreased in the corpus callosum and cortex of Cav1.2 knock-out mice through demyelination. Furthermore, this mild inflammatory environment promotes oligodendrocyte progenitor cells maturation and myelin regeneration across the remyelination phase of the cuprizone model. Similar results were found in animals treated with nimodipine, a Cav1.2 Ca2+ channel inhibitor with high affinity to the CNS. Mice of either sex injected with nimodipine during the demyelination stage of the cuprizone treatment displayed a reduced number of reactive astrocytes and showed a faster and more efficient brain remyelination. Together, these results indicate that Cav1.2 Ca2+ channels play a crucial role in the induction and proliferation of reactive astrocytes during demyelination; and that attenuation of astrocytic voltage-gated Ca2+ influx may be an effective therapy to reduce brain inflammation and promote myelin recovery in demyelinating diseases.SIGNIFICANCE STATEMENT Reducing voltage-gated Ca2+ influx in astrocytes during brain demyelination significantly attenuates brain inflammation and astrocyte reactivity. Furthermore, these changes promote myelin restoration and oligodendrocyte maturation throughout remyelination.


Subject(s)
Astrocytes/metabolism , Brain/metabolism , Calcium Channels/metabolism , Demyelinating Diseases/metabolism , Inflammation/metabolism , Myelin Sheath/metabolism , Remyelination/physiology , Animals , Astrocytes/drug effects , Brain/drug effects , Calcium Channel Blockers/pharmacology , Calcium Channels/genetics , Cuprizone , Demyelinating Diseases/chemically induced , Demyelinating Diseases/genetics , Female , Inflammation/genetics , Male , Mice , Mice, Knockout , Myelin Sheath/drug effects , Nimodipine/pharmacology , Remyelination/drug effects
5.
Glia ; 69(12): 2981-2998, 2021 12.
Article in English | MEDLINE | ID: mdl-34460113

ABSTRACT

How iron is delivered to the CNS for myelination is poorly understood. Astrocytes are the most abundant glial cells in the brain and are the only cells in close contact with blood vessels. Therefore, they are strategically located to obtain nutrients, such as iron, from circulating blood. To determine the importance of astrocyte iron uptake and storage in myelination and remyelination, we conditionally knocked-out the expression of the divalent metal transporter 1 (DMT1), the transferrin receptor 1 (Tfr1), and the ferritin heavy subunit (Fth) in Glast-1-positive astrocytes. DMT1 or Tfr1 ablation in astrocytes throughout early brain development did not significantly affects oligodendrocyte maturation or iron homeostasis. However, blocking Fth production in astrocytes during the first postnatal week drastically delayed oligodendrocyte development and myelin synthesis. Fth knockout animals presented an important decrease in the number of myelinating oligodendrocytes and a substantial reduction in the percentage of myelinated axons. This postnatal hypomyelination was accompanied by a decline in oligodendrocyte iron uptake and with an increase in brain oxidative stress. We also tested the relevance of astrocytic Fth expression in the cuprizone model of myelin damage and repair. Fth deletion in Glast1-positive astrocytes significantly reduced myelin production and the density of mature myelinating oligodendrocytes throughout the complete remyelination process. These results indicate that Fth iron storage in astrocytes is vital for early oligodendrocyte development as well as for the remyelination of the CNS.


Subject(s)
Apoferritins , Astrocytes , Animals , Apoferritins/metabolism , Astrocytes/metabolism , Mice , Mice, Knockout , Myelin Sheath/metabolism , Oligodendroglia/metabolism
6.
J Neurosci ; 39(50): 9940-9953, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31676601

ABSTRACT

Iron is an essential cofactor for many cellular enzymes involved in myelin synthesis, and iron homeostasis unbalance is a central component of peripheral neuropathies. However, iron absorption and management in the PNS are poorly understood. To study iron metabolism in Schwann cells (SCs), we have created 3 inducible conditional KO mice in which three essential proteins implicated in iron uptake and storage, the divalent metal transporter 1 (DMT1), the ferritin heavy chain (Fth), and the transferrin receptor 1 (Tfr1), were postnatally ablated specifically in SCs. Deleting DMT1, Fth, or Tfr1 in vitro significantly reduce SC proliferation, maturation, and the myelination of DRG axons. This was accompanied by an important reduction in iron incorporation and storage. When these proteins were KO in vivo during the first postnatal week, the sciatic nerve of all 3 conditional KO animals displayed a significant reduction in the synthesis of myelin proteins and in the percentage of myelinated axons. Knocking out Fth produced the most severe phenotype, followed by DMT1 and, last, Tfr1. Importantly, DMT1 as well as Fth KO mice showed substantial motor coordination deficits. In contrast, deleting these proteins in mature myelinating SCs results in milder phenotypes characterized by small reductions in the percentage of myelinated axons and minor changes in the g-ratio of myelinated axons. These results indicate that DMT1, Fth, and Tfr1 are critical proteins for early postnatal iron uptake and storage in SCs and, as a consequence, for the normal myelination of the PNS.SIGNIFICANCE STATEMENT To determine the function of the divalent metal transporter 1, the transferrin receptor 1, and the ferritin heavy chain in Schwann cell (SC) maturation and myelination, we created 3 conditional KO mice in which these proteins were postnatally deleted in Sox10-positive SCs. We have established that these proteins are necessary for normal SC iron incorporation and storage, and, as a consequence, for an effective myelination of the PNS. Since iron is indispensable for SC maturation, understanding iron metabolism in SCs is an essential prerequisite for developing therapies for demyelinating diseases in the PNS.


Subject(s)
Apoferritins/genetics , Cation Transport Proteins/genetics , Iron/metabolism , Myelin Sheath/metabolism , Receptors, Transferrin/genetics , Schwann Cells/metabolism , Animals , Apoferritins/metabolism , Axons/metabolism , Cation Transport Proteins/metabolism , Cell Proliferation/physiology , Mice , Mice, Knockout , Neurogenesis/physiology , Receptors, Transferrin/metabolism
7.
J Neurosci ; 38(43): 9142-9159, 2018 10 24.
Article in English | MEDLINE | ID: mdl-30190412

ABSTRACT

The divalent metal transporter 1 (DMT1) is a multimetal transporter with a primary role in iron transport. Although DMT1 has been described previously in the CNS, nothing was known about the role of this metal transporter in oligodendrocyte maturation and myelination. To determine whether DMT1 is required for oligodendrocyte progenitor cell (OPC) maturation, we used siRNAs and the Cre-lox system to knock down/knock out DMT1 expression in vitro as well as in vivo Blocking DMT1 synthesis in primary cultures of OPCs reduced oligodendrocyte iron uptake and significantly delayed OPC development. In vivo, a significant hypomyelination was found in DMT1 conditional knock-out mice in which DMT1 was postnatally deleted in NG2- or Sox10-positive OPCs. The brain of DMT1 knock-out animals presented a decrease in the expression levels of myelin proteins and a substantial reduction in the percentage of myelinated axons. This reduced postnatal myelination was accompanied by a decrease in the number of myelinating oligodendrocytes and a rise in proliferating OPCs. Furthermore, using the cuprizone model of demyelination, we established that DMT1 deletion in NG2-positive OPCs lead to less efficient remyelination of the adult brain. These results indicate that DMT1 is vital for OPC maturation and for the normal myelination of the mouse brain.SIGNIFICANCE STATEMENT To determine whether divalent metal transporter 1 (DMT1), a multimetal transporter with a primary role in iron transport, is essential for oligodendrocyte development, we created two conditional knock-out mice in which DMT1 was postnatally deleted in NG2- or Sox10-positive oligodendrocyte progenitor cells (OPCs). We have established that DMT1 is necessary for normal OPC maturation and is required for an efficient remyelination of the adult brain. Since iron accumulation by OPCs is indispensable for myelination, understanding the iron incorporation mechanism as well as the molecules involved is critical to design new therapeutic approaches to intervene in diseases in which the myelin sheath is damaged or lost.


Subject(s)
Cation Transport Proteins/deficiency , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Iron/metabolism , Oligodendrocyte Precursor Cells/metabolism , Animals , Cation Transport Proteins/genetics , Cells, Cultured , Female , Male , Mice , Mice, Knockout , Mice, Transgenic , Random Allocation
8.
J Neurosci ; 38(31): 6921-6932, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29959237

ABSTRACT

Muscarinic receptor antagonists act as potent inducers of oligodendrocyte differentiation and accelerate remyelination. However, the use of muscarinic antagonists in the clinic is limited by poor understanding of the operant receptor subtype, and questions regarding possible species differences between rodents and humans. Based on high selective expression in human oligodendrocyte progenitor cells (OPCs), we hypothesized that M3R is the functionally relevant receptor. Lentiviral M3R knockdown in human primary CD140a/PDGFαR+ OPCs resulted in enhanced differentiation in vitro and substantially reduced the calcium response following muscarinic agonist treatment. Importantly, following transplantation in hypomyelinating shiverer/rag2 mice, M3R knockdown improved remyelination by human OPCs. Furthermore, conditional M3R ablation in adult NG2-expressing OPCs increased oligodendrocyte differentiation and led to improved spontaneous remyelination in mice. Together, we demonstrate that M3R receptor mediates muscarinic signaling in human OPCs that act to delay differentiation and remyelination, suggesting that M3 receptors are viable targets for human demyelinating disease.SIGNIFICANCE STATEMENT The identification of drug targets aimed at improving remyelination in patients with demyelination disease is a key step in development of effective regenerative therapies to treat diseases, such as multiple sclerosis. Muscarinic receptor antagonists have been identified as effective potentiators of remyelination, but the receptor subtypes that mediate these receptors are unclear. In this study, we show that genetic M3R ablation in both mouse and human cells results in improved remyelination and is mediated by acceleration of oligodendrocyte commitment from oligodendrocyte progenitor cells. Therefore, M3R represents an attractive target for induced remyelination in human disease.


Subject(s)
Myelin Sheath/physiology , Neurogenesis/physiology , Oligodendrocyte Precursor Cells/physiology , Receptor, Muscarinic M3/physiology , Remyelination/physiology , Animals , Brain Tissue Transplantation , Calcium Signaling , Cells, Cultured , Fetal Tissue Transplantation , Gene Knockdown Techniques , Humans , Mice , Mice, Neurologic Mutants , Muscarinic Agonists/pharmacology , Muscarinic Antagonists/pharmacology , Prosencephalon/embryology , Prosencephalon/transplantation , RNA Interference , Receptor, Muscarinic M3/agonists , Receptor, Muscarinic M3/antagonists & inhibitors , Spinal Cord/chemistry , Spinal Cord/ultrastructure
9.
J Neurosci ; 37(42): 10038-10051, 2017 10 18.
Article in English | MEDLINE | ID: mdl-28899915

ABSTRACT

Exploring the molecular mechanisms that drive the maturation of oligodendrocyte progenitor cells (OPCs) during the remyelination process is essential to developing new therapeutic tools to intervene in demyelinating diseases such as multiple sclerosis. To determine whether L-type voltage-gated calcium channels (L-VGCCs) are required for OPC development during remyelination, we generated an inducible conditional knock-out mouse in which the L-VGCC isoform Cav1.2 was deleted in NG2-positive OPCs (Cav1.2KO). Using the cuprizone (CPZ) model of demyelination and mice of either sex, we establish that Cav1.2 deletion in OPCs leads to less efficient remyelination of the adult brain. Specifically, Cav1.2KO OPCs mature slower and produce less myelin than control oligodendrocytes during the recovery period after CPZ intoxication. This reduced remyelination was accompanied by an important decline in the number of myelinating oligodendrocytes and in the rate of OPC proliferation. Furthermore, during the remyelination phase of the CPZ model, the corpus callosum of Cav1.2KO animals presented a significant decrease in the percentage of myelinated axons and a substantial increase in the mean g-ratio of myelinated axons compared with controls. In addition, in a mouse line in which the Cav1.2KO OPCs were identified by a Cre reporter, we establish that Cav1.2KO OPCs display a reduced maturational rate through the entire remyelination process. These results suggest that Ca2+ influx mediated by L-VGCCs in oligodendroglial cells is necessary for normal remyelination and is an essential Ca2+ channel for OPC maturation during the remyelination of the adult brain.SIGNIFICANCE STATEMENT Ion channels implicated in oligodendrocyte differentiation and maturation may induce positive signals for myelin recovery. Voltage-gated Ca2+ channels (VGCCs) are important for normal myelination by acting at several critical steps during oligodendrocyte progenitor cell (OPC) development. To determine whether voltage Ca2+ entry is involved in oligodendrocyte differentiation and remyelination, we used a conditional knockout mouse for VGCCs in OPCs. Our results indicate that VGCCs can modulate oligodendrocyte maturation in the demyelinated brain and suggest that voltage-gated Ca2+ influx in OPCs is critical for remyelination. These findings could lead to novel approaches for obtaining a better understanding of the factors that control OPC maturation in order to stimulate this pool of progenitors to replace myelin in demyelinating diseases.


Subject(s)
Antigens/biosynthesis , Calcium Channels, L-Type/deficiency , Gene Deletion , Myelin Sheath/metabolism , Nerve Fibers, Myelinated/metabolism , Proteoglycans/biosynthesis , Animals , Antigens/genetics , Brain/metabolism , Brain/pathology , Calcium Channels, L-Type/genetics , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myelin Sheath/genetics , Nerve Fibers, Myelinated/pathology , Oligodendroglia/metabolism , Oligodendroglia/pathology , Proteoglycans/genetics
10.
Glia ; 66(11): 2324-2339, 2018 11.
Article in English | MEDLINE | ID: mdl-30151840

ABSTRACT

To study the role of L-type voltage-gated Ca++ channels in oligodendrocyte development, we used a mouse model of Timothy syndrome (TS) in which a gain-of-function mutation in the α1 subunit of the L-type Ca++ channel Cav1.2 gives rise to an autism spectrum disorder (ASD). Oligodendrocyte progenitor cells (OPCs) isolated from the cortex of TS mice showed greater L-type Ca++ influx and displayed characteristics suggestive of advanced maturation compared to control OPCs, including a more complex morphology and higher levels of myelin protein expression. Consistent with this, expression of Cav1.2 channels bearing the TS mutation in wild-type OPCs triggered process formation and promoted oligodendrocyte-neuron interaction via the activation of Ca++ /calmodulin-dependent protein kinase II. To ascertain whether accelerated OPC maturation correlated with functional enhancements, we examined myelination in the TS brain at different postnatal time points. The expression of myelin proteins was significantly higher in the corpus callosum, cortex and striatum of TS animals, and immunohistochemical analysis for oligodendrocyte stage-specific markers revealed an increase in the density of myelinating oligodendrocytes in several areas of the TS brain. Along the same line, electron microscopy studies in the corpus callosum of TS animals showed significant increases both in the percentage of myelinated axons and in the thickness of myelin sheaths. In summary, these data indicate that OPC development and oligodendrocyte myelination is enhanced in the brain of TS mice, and suggest that this mouse model of a syndromic ASD is a useful tool to explore the role of L-type Ca++ channels in myelination.


Subject(s)
Autistic Disorder/complications , Autistic Disorder/pathology , Cell Differentiation/genetics , Gene Expression Regulation, Developmental/genetics , Long QT Syndrome/complications , Long QT Syndrome/pathology , Myelin Proteins/metabolism , Oligodendroglia/physiology , Syndactyly/complications , Syndactyly/pathology , Animals , Animals, Newborn , Autistic Disorder/genetics , Autophagy-Related Proteins , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Calcium/metabolism , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Cells, Cultured , Cerebral Cortex/cytology , Coculture Techniques , Disease Models, Animal , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Long QT Syndrome/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Transgenic , Mutation/genetics , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neurons/ultrastructure , Oligodendrocyte Precursor Cells/drug effects , Oligodendrocyte Precursor Cells/metabolism , Oligodendrocyte Precursor Cells/pathology , Oligodendroglia/pathology , Oligodendroglia/ultrastructure , Potassium/pharmacology , Syndactyly/genetics
11.
J Neurosci ; 36(42): 10853-10869, 2016 10 19.
Article in English | MEDLINE | ID: mdl-27798140

ABSTRACT

To determine whether L-type voltage-operated Ca2+ channels (L-VOCCs) are required for oligodendrocyte progenitor cell (OPC) development, we generated an inducible conditional knock-out mouse in which the L-VOCC isoform Cav1.2 was postnatally deleted in NG2-positive OPCs. A significant hypomyelination was found in the brains of the Cav1.2 conditional knock-out (Cav1.2KO) mice specifically when the Cav1.2 deletion was induced in OPCs during the first 2 postnatal weeks. A decrease in myelin proteins expression was visible in several brain structures, including the corpus callosum, cortex, and striatum, and the corpus callosum of Cav1.2KO animals showed an important decrease in the percentage of myelinated axons and a substantial increase in the mean g-ratio of myelinated axons. The reduced myelination was accompanied by an important decline in the number of myelinating oligodendrocytes and in the rate of OPC proliferation. Furthermore, using a triple transgenic mouse in which all of the Cav1.2KO OPCs were tracked by a Cre reporter, we found that Cav1.2KO OPCs produce less mature oligodendrocytes than control cells. Finally, live-cell imaging in early postnatal brain slices revealed that the migration and proliferation of subventricular zone OPCs is decreased in the Cav1.2KO mice. These results indicate that the L-VOCC isoform Cav1.2 modulates oligodendrocyte development and suggest that Ca2+ influx mediated by L-VOCCs in OPCs is necessary for normal myelination. SIGNIFICANCE STATEMENT: Overall, it is clear that cells in the oligodendrocyte lineage exhibit remarkable plasticity with regard to the expression of Ca2+ channels and that perturbation of Ca2+ homeostasis likely plays an important role in the pathogenesis underlying demyelinating diseases. To determine whether voltage-gated Ca2+ entry is involved in oligodendrocyte maturation and myelination, we used a conditional knock-out mouse for voltage-operated Ca2+ channels in oligodendrocyte progenitor cells. Our results indicate that voltage-operated Ca2+ channels can modulate oligodendrocyte development in the postnatal brain and suggest that voltage-gated Ca2+ influx in oligodendroglial cells is critical for normal myelination. These findings could lead to novel approaches to intervene in neurodegenerative diseases in which myelin is lost or damaged.


Subject(s)
Calcium Channels, L-Type/genetics , Myelin Sheath/physiology , Neural Stem Cells/physiology , Oligodendroglia/physiology , Animals , Animals, Newborn , Cell Proliferation , Female , Gene Deletion , Male , Mice , Mice, Knockout , Myelin Proteins/biosynthesis , Primary Cell Culture
12.
Glia ; 64(8): 1396-415, 2016 08.
Article in English | MEDLINE | ID: mdl-27247164

ABSTRACT

We have found a significant upregulation of L-type voltage-operated Ca(++) channels (VOCCs) in reactive astrocytes. To test if VOCCs are centrally involved in triggering astrocyte reactivity, we used in vitro models of astrocyte activation in combination with pharmacological inhibitors, siRNAs and the Cre/lox system to reduce the activity of L-type VOCCs in primary cortical astrocytes. The endotoxin lipopolysaccharide (LPS) as well as high extracellular K(+) , glutamate, and ATP promote astrogliosis in vitro. L-type VOCC inhibitors drastically reduce the number of reactive cells, astrocyte hypertrophy, and cell proliferation after these treatments. Astrocytes transfected with siRNAs for the Cav1.2 subunit that conducts L-type Ca(++) currents as well as Cav1.2 knockout astrocytes showed reduce Ca(++) influx by ∼80% after plasma membrane depolarization. Importantly, Cav1.2 knock-down/out prevents astrocyte activation and proliferation induced by LPS. Similar results were found using the scratch wound assay. After injuring the astrocyte monolayer, cells extend processes toward the cell-free scratch region and subsequently migrate and populate the scratch. We found a significant increase in the activity of L-type VOCCs in reactive astrocytes located in the growing line in comparison to quiescent astrocytes situated away from the scratch. Moreover, the migration of astrocytes from the scratching line as well as the number of proliferating astrocytes was reduced in Cav1.2 knock-down/out cultures. In summary, our results suggest that Cav1.2 L-type VOCCs play a fundamental role in the induction and/or proliferation of reactive astrocytes, and indicate that the inhibition of these Ca(++) channels may be an effective way to prevent astrocyte activation. GLIA 2016. GLIA 2016;64:1396-1415.


Subject(s)
Astrocytes/metabolism , Calcium Channels, L-Type/metabolism , Adenosine Triphosphate/metabolism , Animals , Astrocytes/drug effects , Astrocytes/pathology , Calcium/metabolism , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/genetics , Cations/metabolism , Cell Movement/physiology , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cytokines/metabolism , Gliosis/metabolism , Gliosis/pathology , Glutamic Acid/metabolism , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice, Inbred C57BL , Potassium/metabolism
13.
Ann Neurol ; 72(5): 750-65, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22941903

ABSTRACT

OBJECTIVE: Pathological findings in neonatal brain injury associated with preterm birth include focal and/or diffuse white matter injury (WMI). Despite the heterogeneous nature of this condition, reactive astrogliosis and microgliosis are frequently observed. Thus, molecular mechanisms by which glia activation contribute to WMI were investigated. METHODS: Postmortem brains of neonatal brain injury were investigated to identify molecular features of reactive astrocytes. The contribution of astrogliosis to WMI was further tested in a mouse model in genetically engineered mice. RESULTS: Activated STAT3 signaling in reactive astrocytes was found to be a common feature in postmortem brains of neonatal brain injury. In a mouse model of neonatal WMI, conditional deletion of STAT3 in astrocytes resulted in exacerbated WMI, which was associated with delayed maturation of oligodendrocytes. Mechanistically, the delay occurred in association with overexpression of transforming growth factor (TGF)ß-1 in microglia, which in healthy controls decreased with myelin maturation in an age-dependent manner. TGFß-1 directly and dose-dependently inhibited the maturation of purified oligodendrocyte progenitors, and pharmacological inhibition of TGFß-1 signaling in vivo reversed the delay in myelin development. Factors secreted from STAT3-deficient astrocytes promoted elevated TGFß-1 production in cultured microglia compared to wild-type astrocytes. INTERPRETATION: These results suggest that myelin development is regulated by a mechanism involving crosstalk between microglia and oligodendrocyte progenitors. Reactive astrocytes may modify this signaling in a STAT3-dependent manner, preventing the pathological expression of TGFß-1 in microglia and the impairment of oligodendrocyte maturation.


Subject(s)
Astrocytes/metabolism , Brain Injuries/complications , Brain Injuries/pathology , Gliosis/etiology , Myelin Sheath/metabolism , STAT3 Transcription Factor/metabolism , Age Factors , Animals , Animals, Newborn , Astrocytes/chemistry , Astrocytes/drug effects , Benzamides/pharmacology , Benzamides/therapeutic use , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Proliferation/drug effects , Cells, Cultured , Culture Media, Conditioned/pharmacology , Dioxoles/pharmacology , Dioxoles/therapeutic use , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Gene Expression Regulation, Developmental/drug effects , Glial Fibrillary Acidic Protein/metabolism , Gliosis/drug therapy , Humans , Infant , Infant, Newborn , Lipopolysaccharides/toxicity , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Postmortem Changes , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , STAT3 Transcription Factor/deficiency , Signal Transduction/drug effects , Signal Transduction/genetics , Smad2 Protein/metabolism , Stem Cells/drug effects , Transforming Growth Factor beta1/metabolism
14.
J Neurosci ; 31(10): 3625-37, 2011 Mar 09.
Article in English | MEDLINE | ID: mdl-21389218

ABSTRACT

Golli proteins, products of the myelin basic protein gene, function as a new type of modulator of intracellular Ca(2+) levels in oligodendrocyte progenitor cells (OPCs). Because of this, they affect a number of Ca(2+)-dependent functions, such as OPC migration and process extension. To examine further the Ca(2+) channels regulated by golli, we studied the store-operated Ca(2+) channels (SOCCs) in OPCs and acute brain slice preparations from golli knock-out and golli-overexpressing mice. Our results showed that pharmacologically induced Ca(2+) release from intracellular stores evoked a significant extracellular Ca(2+) entry after store depletion in OPCs. They also indicated that, under these pharmacological conditions, golli promoted activation of Ca(2+) influx by SOCCs in cultured OPCs as well as in tissue slices. The canonical transient receptor potential family of Ca(2+) channels (TRPCs) has been postulated to be SOCC subunits in oligodendrocytes. Using a small interfering RNA knockdown approach, we provided direct evidence that TRPC1 is involved in store-operated Ca(2+) influx in OPCs and that it is modulated by golli. Furthermore, our data indicated that golli is probably associated with TRPC1 at OPC processes. Additionally, we found that TRPC1 expression is essential for the effects of golli on OPC proliferation. In summary, our data indicate a key role for golli proteins in the regulation of TRPC-mediated Ca(2+) influx, a finding that has profound consequences for the regulation of multiple biological processes in OPCs. More important, we have shown that extracellular Ca(2+) uptake through TRPC1 is an essential component in the mechanism of OPC proliferation.


Subject(s)
Cerebral Cortex/metabolism , Nerve Tissue Proteins/metabolism , Oligodendroglia/metabolism , Stem Cells/metabolism , TRPC Cation Channels/metabolism , Transcription Factors/metabolism , Animals , Blotting, Western , Calcium/metabolism , Cell Cycle , Cell Proliferation , Cells, Cultured , Cerebral Cortex/cytology , Immunohistochemistry , Mice , Mice, Transgenic , Myelin Basic Protein , Nerve Tissue Proteins/genetics , Oligodendroglia/cytology , Reverse Transcriptase Polymerase Chain Reaction , Stem Cells/cytology , Transcription Factors/genetics
15.
Glia ; 60(10): 1540-54, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22736466

ABSTRACT

Our previous studies showed that the intracerebral injection of apotransferrin (aTf) attenuates white matter damage and accelerates the remyelination process in a neonatal rat model of cerebral hypoxia-ischemia (HI) injury. However, the intracerebral injection of aTf might not be practical for clinical treatments. Therefore, the development of less invasive techniques capable of delivering aTf to the central nervous system would clearly aid in its effective clinical use. In this work, we have determined whether intranasal (iN) administration of human aTf provides neuroprotection to the neonatal mouse brain following a cerebral hypoxic-ischemic event. Apotransferrin was infused into the naris of neonatal mice and the HI insult was induced by right common carotid artery ligation followed by exposure to low oxygen concentration. Our results showed that aTf was successfully delivered into the neonatal HI brain and detected in the olfactory bulb, forebrain and posterior brain 30 min after inhalation. This treatment successfully reduced white matter damage, neuronal loss and astrogliosis in different brain regions and enhanced the proliferation and survival of oligodendroglial progenitor cells (OPCs) in the subventricular zone and corpus callosum (CC). Additionally, using an in vitro hypoxic model, we demonstrated that aTf prevents oligodendrocyte progenitor cell death by promoting their differentiation. In summary, these data suggest that iN administration of aTf has the potential to be used for clinical treatment to protect myelin and to induce remyelination in demyelinating hypoxic-ischemic events in the neonatal brain.


Subject(s)
Apoproteins/administration & dosage , Brain Injuries/prevention & control , Hypoxia-Ischemia, Brain/pathology , Nerve Fibers, Myelinated/drug effects , Neuroprotective Agents/administration & dosage , Transferrin/administration & dosage , 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/genetics , Administration, Intranasal , Age Factors , Animals , Animals, Newborn , Antigens/metabolism , Autophagy-Related Proteins , Brain Injuries/etiology , Bromodeoxyuridine/metabolism , Caspase 3/metabolism , Cell Death/drug effects , Cell Death/genetics , Cell Proliferation/drug effects , Cells, Cultured , Cerebral Cortex/cytology , Colchicine/pharmacology , Corpus Callosum/drug effects , Corpus Callosum/pathology , Cytochalasin B/pharmacology , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Green Fluorescent Proteins/genetics , Humans , Hypoxia/drug therapy , Hypoxia-Ischemia, Brain/complications , Hypoxia-Ischemia, Brain/drug therapy , Intermediate Filament Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Lateral Ventricles/drug effects , Lateral Ventricles/physiology , Male , Mice , Mice, Transgenic , Myelin Basic Protein/metabolism , Nerve Fibers, Myelinated/metabolism , Nerve Tissue Proteins/metabolism , Nestin , Neurogenesis/drug effects , Oligodendroglia/drug effects , Platelet-Derived Growth Factor/metabolism , Proteoglycans/metabolism , SOXB1 Transcription Factors/metabolism , Time Factors
16.
Glia ; 60(7): 1078-93, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22447683

ABSTRACT

Golli myelin basic proteins are necessary for normal myelination, acting via voltage and store-dependent Ca(2+) entry at multiple steps during oligodendrocyte progenitor cell (OPC) development. To date nothing is known regarding the role of golli proteins in demyelination or remyelination events. Here the effects of golli ablation and overexpression in myelin loss and recovery were examined using the cuprizone (CPZ) model of demyelination/remyelination. We found severe demyelination in the corpus callosum (CC) of golli-overexpressing mice (JOE) during the CPZ treatment, which was accompanied by an increased number of reactive astrocytes and activation of microglia/macrophages. During demyelination of JOE brains, a significant increase in the number of proliferating OPCs was found in the CC as well as in the subventricular zone, and our data indicate that these progenitors matured and fully remyelinated the CC of JOE animals after CPZ withdrawal. In contrast, in the absence of golli (golli-KO mice) delayed myelin loss associated with a smaller immune response, and a lower number of OPCs was found in these mice during the CPZ treatment. Furthermore, incomplete remyelination was observed after CPZ removal in large areas of the CC of golli-KO mice, reflecting irregular recovery of the oligodendrocyte population and subsequent myelin sheath formation. Our findings demonstrate that golli proteins sensitize mature oligodendrocytes to CPZ-induced demyelination, while at the same time stimulate the proliferation/recruitment of OPCs during demyelination, resulting in accelerated remyelination.


Subject(s)
Cell Differentiation/physiology , Cell Proliferation , Corpus Callosum/cytology , Myelin Basic Protein/metabolism , Myelin Sheath/metabolism , Neural Stem Cells/cytology , Oligodendroglia/cytology , Animals , Astrocytes/cytology , Astrocytes/metabolism , Calcium/metabolism , Corpus Callosum/metabolism , Cuprizone , Demyelinating Diseases/chemically induced , Demyelinating Diseases/metabolism , Macrophages/cytology , Macrophages/metabolism , Mice , Mice, Knockout , Microglia/cytology , Microglia/metabolism , Myelin Basic Protein/genetics , Neural Stem Cells/metabolism , Oligodendroglia/metabolism
17.
J Neurosci Res ; 90(1): 28-47, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21887699

ABSTRACT

The developmentally regulated myelin basic proteins (MBPs), which arise from the golli (gene of oligodendrocyte lineage) complex, are highly positively charged, intrinsically disordered, multifunctional proteins having several alternatively spliced isoforms and posttranslational modifications, and they play key roles in myelin compaction. The classic 18.5-kDa MBP isoform has a proline-rich region comprising amino acids 92-99 (murine sequence -T(92)PRTPPPS(99)-) that contains a minimal SH3 ligand domain. We have previously shown that 18.5-kDa MBP binds to several SH3 domains, including that of Fyn, a member of the Src family of tyrosine kinases involved in a number of signaling pathways during CNS development. To determine the physiological role of this binding as well as the role of phosphorylation of Thr92 and Thr95, in the current study we have produced several MBP variants specifically targeting phosphorylation sites and key structural regions of MBP's SH3 ligand domain. Using isothermal titration calorimetry, we have demonstrated that, compared with the wild-type protein, these variants have lower affinity for the SH3 domain of Fyn. Moreover, overexpression of N-terminal-tagged GFP versions in immortalized oligodendroglial N19 and N20.1 cell cultures results in aberrant elongation of membrane processes and increased branching complexity and inhibits the ability of MBP to decrease Ca(2+) influx. Phosphorylation of Thr92 can also cause MBP to traffic to the nucleus, where it may participate in additional protein-protein interactions. Coexpression of MBP with a constitutively active form of Fyn kinase resulted in membrane process elaboration, a phenomenon that was abolished by point amino acid substitutions in MBP's SH3 ligand domain. These results suggest that MBP's SH3 ligand domain plays a key role in intracellular protein interactions in vivo and may be required for proper membrane elaboration of developing oligodendrocytes and, further, that phosphorylation of Thr92 and Thr95 can regulate this function.


Subject(s)
Myelin Basic Protein , Oligodendroglia/metabolism , Proline/genetics , Proto-Oncogene Proteins c-fyn/metabolism , Threonine/genetics , src Homology Domains/physiology , Amino Acid Sequence , Analysis of Variance , Animals , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Calcium Signaling/genetics , Calorimetry , Cell Line, Transformed , Cell Size , Green Fluorescent Proteins/genetics , Mice , Myelin Basic Protein/chemistry , Myelin Basic Protein/genetics , Myelin Basic Protein/metabolism , Protein Binding/genetics , Protein Biosynthesis/genetics , Protein Processing, Post-Translational/genetics , Proto-Oncogene Proteins c-fyn/genetics , Transfection
18.
ASN Neuro ; 14: 17590914221112352, 2022.
Article in English | MEDLINE | ID: mdl-35791633

ABSTRACT

Although over 20 disease modifying therapies are approved to treat Multiple Sclerosis (MS), these do not increase remyelination of demyelinated axons or mitigate axon damage. Previous studies showed that lanthionine ketenamine ethyl ester (LKE) reduces clinical signs in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS and increased maturation of oligodendrocyte (OL) progenitor cells (OPCs) in vitro. In the current study, we used the cuprizone (CPZ) demyelination model of MS to test if LKE could increase remyelination. The corpus callosum (CC) and somatosensory cortex was examined by immunohistochemistry (IHC), electron microscopy and for mRNA expression changes in mice provided 5 weeks of CPZ diet followed by 2 weeks of normal diet in the presence of LKE or vehicle. A significant increase in the number of myelinated axons, and increased myelin thickness was observed in the CC of LKE-treated groups compared to vehicle-treated groups. LKE also increased myelin basic protein and proteolipid protein expression in the CC and cortex, and increased the number of mature OLs in the cortex. In contrast, LKE did not increase the percentage of proliferating OPCs suggesting effects on OPC survival and differentiation but not proliferation. The effects of LKE on OL maturation and remyelination were supported by similar changes in their relative mRNA levels. Interestingly, LKE did not have significant effects on GFAP or Iba1 immunostaining or mRNA levels. These findings suggest that remyelinating actions of LKE can potentially be formulated to induce remyelination in neurological diseases associated with demyelination including MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Remyelination , Amino Acids, Sulfur , Animals , Cuprizone/toxicity , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Esters/pharmacology , Mice , Multiple Sclerosis/drug therapy , RNA, Messenger
19.
J Neurosci ; 30(18): 6422-33, 2010 May 05.
Article in English | MEDLINE | ID: mdl-20445068

ABSTRACT

It is becoming increasingly clear that voltage-operated Ca(2+) channels (VOCCs) play a fundamental role in the development of oligodendrocyte progenitor cells (OPCs). Because direct phosphorylation by different kinases is one of the most important mechanisms involved in VOCC modulation, the aim of this study was to evaluate the participation of serine-threonine kinases and tyrosine kinases (TKs) on Ca(2+) influx mediated by VOCCs in OPCs. Calcium imaging revealed that OPCs exhibited Ca(2+) influx after plasma membrane depolarization via L-type VOCCs. Furthermore, VOCC-mediated Ca(2+) influx declined with OPC differentiation, indicating that VOCCs are developmentally regulated in OPCs. PKC activation significantly increased VOCC activity in OPCs, whereas PKA activation produced the opposite effect. The results also indicated that OPC morphological changes induced by PKC activation were partially mediated by VOCCs. Our data clearly suggest that TKs exert an activating influence on VOCC function in OPCs. Furthermore, using the PDGF response as a model to probe the role of TK receptors (TKr) on OPC Ca(2+) uptake, we found that TKr activation potentiated Ca(2+) influx after membrane depolarization. Interestingly, this TKr modulation of VOCCs appeared to be essential for the PDGF enhancement of OPC migration rate, because cell motility was completely blocked by TKr antagonists, as well as VOCC inhibitors, in migration assays. The present study strongly demonstrates that PKC and TKrs enhance Ca(2+) influx induced by depolarization in OPCs, whereas PKA has an inhibitory effect. These kinases modulate voltage-operated Ca(2+) uptake in OPCs and participate in the modulation of process extension and migration.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium/metabolism , Oligodendroglia/metabolism , Protein Serine-Threonine Kinases/physiology , Protein-Tyrosine Kinases/physiology , Stem Cells/metabolism , Animals , Animals, Newborn , Benzophenanthridines/pharmacology , Brain/drug effects , Brain/metabolism , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/drug effects , Cell Culture Techniques , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Movement/drug effects , Cell Movement/physiology , Mice , Oligodendroglia/cytology , Platelet-Derived Growth Factor/pharmacology , Potassium/pharmacology , Protein Serine-Threonine Kinases/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/agonists , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Signal Transduction/drug effects , Signal Transduction/physiology , Stem Cells/cytology , Tetradecanoylphorbol Acetate/pharmacology , Vanadates/pharmacology
20.
J Neurosci Res ; 89(4): 467-80, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21312222

ABSTRACT

The myelin basic protein (MBP) family arises from different transcription start sites of the golli (gene of oligodendrocyte lineage) complex, with further variety generated by differential splicing. The "classical" MBP isoforms are peripheral membrane proteins that facilitate compaction of the mature myelin sheath but also have multiple protein interactions. The early developmental golli isoforms have previously been shown to promote process extension and enhance Ca(2+) influx into primary and immortalized oligodendrocyte cell lines. Here, we have performed similar studies with the classical 18.5- and 21.5-kDa isoforms of MBP. In contrast to golli proteins, overexpression of classical MBP isoforms significantly reduces Ca(2+) influx in the oligodendrocyte cell line N19 as well as in primary cultures of oligodendroglial progenitor cells. Pharmacological experiments demonstrate that this effect is mediated by voltage-operated Ca(2+) channels (VOCCs) and not by ligand-gated Ca(2+) channels or Ca(2+) release from intracellular stores. The pseudo-deiminated 18.5-kDa and the full-length 21.5-kDa isoforms do not reduce Ca(2+) influx as much as the unmodified 18.5-kDa isoform. However, more efficient membrane localization (of overexpressed, pseudo-deiminated 18.5-kDa and 21.5-kDa isoforms of classical MBP containing the 21-nt 3'-untranslated region transit signal) further reduces the Ca(2+) response after plasma membrane depolarization, suggesting that binding of classical MBP isoforms to the plasma membrane is important for modulation of Ca(2+) homeostasis. Furthermore, we have found that the mature 18.5-kDa isoform expressed in oligodendrocytes colocalizes with VOCCs, particularly at the leading edge of extending membrane processes. In summary, our findings suggest a key role for classical MBP proteins in regulating voltage-gated Ca(2+) channels at the plasma membrane of oligodendroglial cells and thus also in regulation of multiple developmental stages in this cell lineage.


Subject(s)
Calcium Signaling/physiology , Calcium/metabolism , Myelin Basic Protein/metabolism , Oligodendroglia/metabolism , 3' Untranslated Regions , Animals , Blotting, Western , Calcium Channels/metabolism , Cell Line , Cell Membrane/metabolism , Fluorescent Antibody Technique , Humans , Image Processing, Computer-Assisted , Mice , Microscopy, Confocal , Molecular Weight , Polymerase Chain Reaction , Protein Isoforms/metabolism , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL