Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
Add more filters

Publication year range
1.
PLoS Biol ; 21(9): e3002311, 2023 09.
Article in English | MEDLINE | ID: mdl-37695771

ABSTRACT

Noncommunicable diseases (NCDs) are on the rise worldwide. Obesity, cardiovascular disease, and type 2 diabetes are among a long list of "lifestyle" diseases that were rare throughout human history but are now common. The evolutionary mismatch hypothesis posits that humans evolved in environments that radically differ from those we currently experience; consequently, traits that were once advantageous may now be "mismatched" and disease causing. At the genetic level, this hypothesis predicts that loci with a history of selection will exhibit "genotype by environment" (GxE) interactions, with different health effects in "ancestral" versus "modern" environments. To identify such loci, we advocate for combining genomic tools in partnership with subsistence-level groups experiencing rapid lifestyle change. In these populations, comparisons of individuals falling on opposite extremes of the "matched" to "mismatched" spectrum are uniquely possible. More broadly, the work we propose will inform our understanding of environmental and genetic risk factors for NCDs across diverse ancestries and cultures.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Humans , Disease Susceptibility , Diabetes Mellitus, Type 2/genetics , Biological Evolution , Genomics
2.
Am J Hum Genet ; 109(1): 24-32, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34861179

ABSTRACT

Genetic correlation is an important parameter in efforts to understand the relationships among complex traits. Current methods that analyze individual genotype data for estimating genetic correlation are challenging to scale to large datasets. Methods that analyze summary data, while being computationally efficient, tend to yield estimates of genetic correlation with reduced precision. We propose SCORE (scalable genetic correlation estimator), a randomized method of moments estimator of genetic correlation that is both scalable and accurate. SCORE obtains more precise estimates of genetic correlations relative to summary-statistic methods that can be applied at scale; it achieves a 44% reduction in standard error relative to LD-score regression (LDSC) and a 20% reduction relative to high-definition likelihood (HDL) (averaged over all simulations). The efficiency of SCORE enables computation of genetic correlations on the UK Biobank dataset, consisting of ≈300 K individuals and ≈500 K SNPs, in a few h (orders of magnitude faster than methods that analyze individual data, such as GCTA). Across 780 pairs of traits in 291,273 unrelated white British individuals in the UK Biobank, SCORE identifies significant genetic correlation between 200 additional pairs of traits over LDSC (beyond the 245 pairs identified by both).


Subject(s)
Biological Specimen Banks , Genetic Association Studies , Genetic Background , Models, Genetic , Phenotype , Algorithms , Genetic Variation , Humans , Multifactorial Inheritance , Reproducibility of Results , United Kingdom
3.
Am J Hum Genet ; 109(1): 66-80, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34995504

ABSTRACT

Alternate splicing events can create isoforms that alter gene function, and genetic variants associated with alternate gene isoforms may reveal molecular mechanisms of disease. We used subcutaneous adipose tissue of 426 Finnish men from the METSIM study and identified splice junction quantitative trait loci (sQTLs) for 6,077 splice junctions (FDR < 1%). In the same individuals, we detected expression QTLs (eQTLs) for 59,443 exons and 15,397 genes (FDR < 1%). We identified 595 genes with an sQTL and exon eQTL but no gene eQTL, which could indicate potential isoform differences. Of the significant sQTL signals, 2,114 (39.8%) included at least one proxy variant (linkage disequilibrium r2 > 0.8) located within an intron spanned by the splice junction. We identified 203 sQTLs that colocalized with 141 genome-wide association study (GWAS) signals for cardiometabolic traits, including 25 signals for lipid traits, 24 signals for body mass index (BMI), and 12 signals for waist-hip ratio adjusted for BMI. Among all 141 GWAS signals colocalized with an sQTL, we detected 26 that also colocalized with an exon eQTL for an exon skipped by the sQTL splice junction. At a GWAS signal for high-density lipoprotein cholesterol colocalized with an NR1H3 sQTL splice junction, we show that the alternative splice product encodes an NR1H3 transcription factor that lacks a DNA binding domain and fails to activate transcription. Together, these results detect splicing events and candidate mechanisms that may contribute to gene function at GWAS loci.


Subject(s)
Alternative Splicing , Cardiometabolic Risk Factors , Gene Expression Regulation , Quantitative Trait Loci , Quantitative Trait, Heritable , Subcutaneous Fat/metabolism , Binding Sites , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Computational Biology/methods , Exons , Finland , Genes, Reporter , Genetic Association Studies , Genetic Predisposition to Disease , Genetics, Population , Genome-Wide Association Study/methods , High-Throughput Nucleotide Sequencing , Humans , Liver X Receptors/genetics , Male , Metabolic Syndrome/etiology , Metabolic Syndrome/metabolism , Molecular Sequence Annotation , Phenotype , Protein Isoforms/genetics , RNA Splice Sites , RNA-Binding Proteins
4.
Am J Hum Genet ; 108(3): 411-430, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33626337

ABSTRACT

Genetic factors underlying coronary artery disease (CAD) have been widely studied using genome-wide association studies (GWASs). However, the functional understanding of the CAD loci has been limited by the fact that a majority of GWAS variants are located within non-coding regions with no functional role. High cholesterol and dysregulation of the liver metabolism such as non-alcoholic fatty liver disease confer an increased risk of CAD. Here, we studied the function of non-coding single-nucleotide polymorphisms in CAD GWAS loci located within liver-specific enhancer elements by identifying their potential target genes using liver cis-eQTL analysis and promoter Capture Hi-C in HepG2 cells. Altogether, 734 target genes were identified of which 121 exhibited correlations to liver-related traits. To identify potentially causal regulatory SNPs, the allele-specific enhancer activity was analyzed by (1) sequence-based computational predictions, (2) quantification of allele-specific transcription factor binding, and (3) STARR-seq massively parallel reporter assay. Altogether, our analysis identified 1,277 unique SNPs that display allele-specific regulatory activity. Among these, susceptibility enhancers near important cholesterol homeostasis genes (APOB, APOC1, APOE, and LIPA) were identified, suggesting that altered gene regulatory activity could represent another way by which genetic variation regulates serum lipoprotein levels. Using CRISPR-based perturbation, we demonstrate how the deletion/activation of a single enhancer leads to changes in the expression of many target genes located in a shared chromatin interaction domain. Our integrative genomics approach represents a comprehensive effort in identifying putative causal regulatory regions and target genes that could predispose to clinical manifestation of CAD by affecting liver function.


Subject(s)
Coronary Artery Disease/genetics , Enhancer Elements, Genetic/genetics , Genetic Predisposition to Disease , Quantitative Trait Loci/genetics , Alleles , Chromatin/genetics , Coronary Artery Disease/pathology , Female , Genome-Wide Association Study/methods , Genomics , Humans , Liver/metabolism , Male , Molecular Sequence Annotation , Organ Specificity/genetics , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Protein Binding/genetics , Risk Factors
5.
J Transl Med ; 22(1): 623, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965596

ABSTRACT

BACKGROUND: Obesity is a worldwide epidemic characterized by adipose tissue (AT) inflammation. AT is also a source of extracellular vesicles (EVs) that have recently been implicated in disorders related to metabolic syndrome. However, our understanding of mechanistic aspect of obesity's impact on EV secretion from human AT remains limited. METHODS: We investigated EVs from human Simpson Golabi Behmel Syndrome (SGBS) adipocytes, and from AT as well as plasma of subjects undergoing bariatric surgery. SGBS cells were treated with TNFα, palmitic acid, and eicosapentaenoic acid. Various analyses, including nanoparticle tracking analysis, electron microscopy, high-resolution confocal microscopy, and gas chromatography-mass spectrometry, were utilized to study EVs. Plasma EVs were analyzed with imaging flow cytometry. RESULTS: EVs from mature SGBS cells differed significantly in size and quantity compared to preadipocytes, disagreeing with previous findings in mouse adipocytes and indicating that adipogenesis promotes EV secretion in human adipocytes. Inflammatory stimuli also induced EV secretion, and altered EV fatty acid (FA) profiles more than those of cells, suggesting the role of EVs as rapid responders to metabolic shifts. Visceral AT (VAT) exhibited higher EV secretion compared to subcutaneous AT (SAT), with VAT EV counts positively correlating with plasma triacylglycerol (TAG) levels. Notably, the plasma EVs of subjects with obesity contained a higher number of adiponectin-positive EVs than those of lean subjects, further demonstrating higher AT EV secretion in obesity. Moreover, plasma EV counts of people with obesity positively correlated with body mass index and TNF expression in SAT, connecting increased EV secretion with AT expansion and inflammation. Finally, EVs from SGBS adipocytes and AT contained TAGs, and EV secretion increased despite signs of less active lipolytic pathways, indicating that AT EVs could be involved in the mobilization of excess lipids into circulation. CONCLUSIONS: We are the first to provide detailed FA profiles of human AT EVs. We report that AT EV secretion increases in human obesity, implicating their role in TAG transport and association with adverse metabolic parameters, thereby emphasizing their role in metabolic disorders. These findings promote our understanding of the roles that EVs play in human AT biology and metabolic disorders.


Subject(s)
Adipocytes , Adipose Tissue , Extracellular Vesicles , Inflammation , Obesity , Humans , Extracellular Vesicles/metabolism , Obesity/metabolism , Obesity/pathology , Adipocytes/metabolism , Inflammation/pathology , Inflammation/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Lipid Metabolism , Female , Male , Adult , Fatty Acids/metabolism
6.
Arterioscler Thromb Vasc Biol ; 43(10): 1788-1804, 2023 10.
Article in English | MEDLINE | ID: mdl-37409528

ABSTRACT

BACKGROUND: Adipocytes are crucial regulators of cardiovascular health. However, not much is known about gene expression profiles of adipocytes residing in nonfat cardiovascular tissues, their genetic regulation, and contribution to coronary artery disease. Here, we investigated whether and how the gene expression profiles of adipocytes in the subcutaneous adipose tissue differ from adipocytes residing in the heart. METHODS: We used single-nucleus RNA-sequencing data sets of subcutaneous adipose tissue and heart and performed in-depth analysis of tissue-resident adipocytes and their cell-cell interactions. RESULTS: We first discovered tissue-specific features of tissue-resident adipocytes, identified functional pathways involved in their tissue specificity, and found genes with cell type-specific expression enrichment in tissue-resident adipocytes. By following up these results, we discovered the propanoate metabolism pathway as a novel distinct characteristic of the heart-resident adipocytes and found a significant enrichment of coronary artery disease genome-wide association study risk variants among the right atrium-specific adipocyte marker genes. Our cell-cell communication analysis identified 22 specific heart adipocyte-associated ligand-receptor pairs and signaling pathways, including THBS (thrombospondin) and EPHA (ephrin type-A), further supporting the distinct tissue-resident role of heart adipocytes. Our results also suggest chamber-level coordination of heart adipocyte expression profiles as we observed a consistently larger number of adipocyte-associated ligand-receptor interactions and functional pathways in the atriums than ventricles. CONCLUSIONS: Overall, we introduce a new function and genetic link to coronary artery disease for the previously unexplored heart-resident adipocytes.


Subject(s)
Coronary Artery Disease , Propionates , Humans , Propionates/metabolism , RNA , Coronary Artery Disease/metabolism , Genome-Wide Association Study , Ligands , Adipocytes/metabolism , Sequence Analysis, RNA
7.
PLoS Genet ; 16(9): e1009018, 2020 09.
Article in English | MEDLINE | ID: mdl-32925908

ABSTRACT

Reverse causality has made it difficult to establish the causal directions between obesity and prediabetes and obesity and insulin resistance. To disentangle whether obesity causally drives prediabetes and insulin resistance already in non-diabetic individuals, we utilized the UK Biobank and METSIM cohort to perform a Mendelian randomization (MR) analyses in the non-diabetic individuals. Our results suggest that both prediabetes and systemic insulin resistance are caused by obesity (p = 1.2×10-3 and p = 3.1×10-24). As obesity reflects the amount of body fat, we next studied how adipose tissue affects insulin resistance. We performed both bulk RNA-sequencing and single nucleus RNA sequencing on frozen human subcutaneous adipose biopsies to assess adipose cell-type heterogeneity and mitochondrial (MT) gene expression in insulin resistance. We discovered that the adipose MT gene expression and body fat percent are both independently associated with insulin resistance (p≤0.05 for each) when adjusting for the decomposed adipose cell-type proportions. Next, we showed that these 3 factors, adipose MT gene expression, body fat percent, and adipose cell types, explain a substantial amount (44.39%) of variance in insulin resistance and can be used to predict it (p≤2.64×10-5 in 3 independent human cohorts). In summary, we demonstrated that obesity is a strong determinant of both prediabetes and insulin resistance, and discovered that individuals' adipose cell-type composition, adipose MT gene expression, and body fat percent predict their insulin resistance, emphasizing the critical role of adipose tissue in systemic insulin resistance.


Subject(s)
Adipose Tissue/metabolism , Insulin Resistance/physiology , Obesity/genetics , Adipocytes/metabolism , Adiposity , Adult , Body Mass Index , Cohort Studies , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Insulin Resistance/genetics , Male , Middle Aged , Obesity/physiopathology , Prediabetic State/metabolism , Prediabetic State/physiopathology , Subcutaneous Fat/metabolism
8.
PLoS Genet ; 16(9): e1009019, 2020 09.
Article in English | MEDLINE | ID: mdl-32915782

ABSTRACT

Loci identified in genome-wide association studies (GWAS) can include multiple distinct association signals. We sought to identify the molecular basis of multiple association signals for adiponectin, a hormone involved in glucose regulation secreted almost exclusively from adipose tissue, identified in the Metabolic Syndrome in Men (METSIM) study. With GWAS data for 9,262 men, four loci were significantly associated with adiponectin: ADIPOQ, CDH13, IRS1, and PBRM1. We performed stepwise conditional analyses to identify distinct association signals, a subset of which are also nearly independent (lead variant pairwise r2<0.01). Two loci exhibited allelic heterogeneity, ADIPOQ and CDH13. Of seven association signals at the ADIPOQ locus, two signals colocalized with adipose tissue expression quantitative trait loci (eQTLs) for three transcripts: trait-increasing alleles at one signal were associated with increased ADIPOQ and LINC02043, while trait-increasing alleles at the other signal were associated with decreased ADIPOQ-AS1. In reporter assays, adiponectin-increasing alleles at two signals showed corresponding directions of effect on transcriptional activity. Putative mechanisms for the seven ADIPOQ signals include a missense variant (ADIPOQ G90S), a splice variant, a promoter variant, and four enhancer variants. Of two association signals at the CDH13 locus, the first signal consisted of promoter variants, including the lead adipose tissue eQTL variant for CDH13, while a second signal included a distal intron 1 enhancer variant that showed ~2-fold allelic differences in transcriptional reporter activity. Fine-mapping and experimental validation demonstrated that multiple, distinct association signals at these loci can influence multiple transcripts through multiple molecular mechanisms.


Subject(s)
Adiponectin/genetics , Adiponectin/metabolism , Adipose Tissue/metabolism , Alleles , Cadherins/genetics , Cadherins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Frequency/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Humans , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Male , Metabolic Syndrome/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Regulatory Sequences, Nucleic Acid , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Am J Hum Genet ; 105(4): 773-787, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31564431

ABSTRACT

Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with cardiometabolic traits including type 2 diabetes (T2D), lipid levels, body fat distribution, and adiposity, although most causal genes remain unknown. We used subcutaneous adipose tissue RNA-seq data from 434 Finnish men from the METSIM study to identify 9,687 primary and 2,785 secondary cis-expression quantitative trait loci (eQTL; <1 Mb from TSS, FDR < 1%). Compared to primary eQTL signals, secondary eQTL signals were located further from transcription start sites, had smaller effect sizes, and were less enriched in adipose tissue regulatory elements compared to primary signals. Among 2,843 cardiometabolic GWAS signals, 262 colocalized by LD and conditional analysis with 318 transcripts as primary and conditionally distinct secondary cis-eQTLs, including some across ancestries. Of cardiometabolic traits examined for adipose tissue eQTL colocalizations, waist-hip ratio (WHR) and circulating lipid traits had the highest percentage of colocalized eQTLs (15% and 14%, respectively). Among alleles associated with increased cardiometabolic GWAS risk, approximately half (53%) were associated with decreased gene expression level. Mediation analyses of colocalized genes and cardiometabolic traits within the 434 individuals provided further evidence that gene expression influences variant-trait associations. These results identify hundreds of candidate genes that may act in adipose tissue to influence cardiometabolic traits.


Subject(s)
Adipose Tissue/metabolism , Diabetes Mellitus, Type 2/genetics , Gene Expression , Obesity/genetics , Alleles , Body Mass Index , Finland , Genome-Wide Association Study , Humans , Male , Quantitative Trait Loci , Waist-Hip Ratio
10.
Int J Obes (Lond) ; 46(8): 1478-1486, 2022 08.
Article in English | MEDLINE | ID: mdl-35589964

ABSTRACT

BACKGROUND: COVID-19 severity varies widely. Although some demographic and cardio-metabolic factors, including age and obesity, are associated with increasing risk of severe illness, the underlying mechanism(s) are uncertain. SUBJECTS/METHODS: In a meta-analysis of three independent studies of 1471 participants in total, we investigated phenotypic and genetic factors associated with subcutaneous adipose tissue expression of Angiotensin I Converting Enzyme 2 (ACE2), measured by RNA-Seq, which acts as a receptor for SARS-CoV-2 cellular entry. RESULTS: Lower adipose tissue ACE2 expression was associated with multiple adverse cardio-metabolic health indices, including type 2 diabetes (T2D) (P = 9.14 × 10-6), obesity status (P = 4.81 × 10-5), higher serum fasting insulin (P = 5.32 × 10-4), BMI (P = 3.94 × 10-4), and lower serum HDL levels (P = 1.92 × 10-7). ACE2 expression was also associated with estimated proportions of cell types in adipose tissue: lower expression was associated with a lower proportion of microvascular endothelial cells (P = 4.25 × 10-4) and higher proportion of macrophages (P = 2.74 × 10-5). Despite an estimated heritability of 32%, we did not identify any proximal or distal expression quantitative trait loci (eQTLs) associated with adipose tissue ACE2 expression. CONCLUSIONS: Our results demonstrate that individuals with cardio-metabolic features known to increase risk of severe COVID-19 have lower background ACE2 levels in this highly relevant tissue. Reduced adipose tissue ACE2 expression may contribute to the pathophysiology of cardio-metabolic diseases, as well as the associated increased risk of severe COVID-19.


Subject(s)
Adipose Tissue , Angiotensin-Converting Enzyme 2 , COVID-19 , Adipose Tissue/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/genetics , Cardiometabolic Risk Factors , Diabetes Mellitus, Type 2/genetics , Endothelial Cells/metabolism , Humans , Obesity , SARS-CoV-2
11.
PLoS Genet ; 15(4): e1008009, 2019 04.
Article in English | MEDLINE | ID: mdl-30951530

ABSTRACT

Recent and classical work has revealed biologically and medically significant subtypes in complex diseases and traits. However, relevant subtypes are often unknown, unmeasured, or actively debated, making automated statistical approaches to subtype definition valuable. We propose reverse GWAS (RGWAS) to identify and validate subtypes using genetics and multiple traits: while GWAS seeks the genetic basis of a given trait, RGWAS seeks to define trait subtypes with distinct genetic bases. Unlike existing approaches relying on off-the-shelf clustering methods, RGWAS uses a novel decomposition, MFMR, to model covariates, binary traits, and population structure. We use extensive simulations to show that modelling these features can be crucial for power and calibration. We validate RGWAS in practice by recovering a recently discovered stress subtype in major depression. We then show the utility of RGWAS by identifying three novel subtypes of metabolic traits. We biologically validate these metabolic subtypes with SNP-level tests and a novel polygenic test: the former recover known metabolic GxE SNPs; the latter suggests subtypes may explain substantial missing heritability. Crucially, statins, which are widely prescribed and theorized to increase diabetes risk, have opposing effects on blood glucose across metabolic subtypes, suggesting the subtypes have potential translational value.


Subject(s)
Genome-Wide Association Study/methods , Models, Genetic , Multifactorial Inheritance , Phenotype , Algorithms , Blood Glucose/drug effects , Blood Glucose/genetics , Cluster Analysis , Computer Simulation , Coronary Disease/blood , Coronary Disease/drug therapy , Coronary Disease/genetics , Depressive Disorder, Major/classification , Depressive Disorder, Major/genetics , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study/statistics & numerical data , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Lipids/blood , Polymorphism, Single Nucleotide , Prediabetic State/genetics , Quantitative Trait Loci
12.
Hum Mol Genet ; 28(24): 4161-4172, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31691812

ABSTRACT

Integration of genome-wide association study (GWAS) signals with expression quantitative trait loci (eQTL) studies enables identification of candidate genes. However, evaluating whether nearby signals may share causal variants, termed colocalization, is affected by the presence of allelic heterogeneity, different variants at the same locus impacting the same phenotype. We previously identified eQTL in subcutaneous adipose tissue from 770 participants in the Metabolic Syndrome in Men (METSIM) study and detected 15 eQTL signals that colocalized with GWAS signals for waist-hip ratio adjusted for body mass index (WHRadjBMI) from the Genetic Investigation of Anthropometric Traits consortium. Here, we reevaluated evidence of colocalization using two approaches, conditional analysis and the Bayesian test COLOC, and show that providing COLOC with approximate conditional summary statistics at multi-signal GWAS loci can reconcile disagreements in colocalization classification between the two tests. Next, we performed conditional analysis on the METSIM subcutaneous adipose tissue data to identify conditionally distinct or secondary eQTL signals. We used the two approaches to test for colocalization with WHRadjBMI GWAS signals and evaluated the differences in colocalization classification between the two tests. Through these analyses, we identified four GWAS signals colocalized with secondary eQTL signals for FAM13A, SSR3, GRB14 and FMO1. Thus, at loci with multiple eQTL and/or GWAS signals, analyzing each signal independently enabled additional candidate genes to be identified.


Subject(s)
Adipose Tissue/physiology , Body Fat Distribution , Genome-Wide Association Study/methods , Metabolic Syndrome/genetics , Quantitative Trait Loci , Adult , Bayes Theorem , Body Mass Index , Female , Genetic Predisposition to Disease , Humans , Linkage Disequilibrium , Male , Phenotype , Polymorphism, Single Nucleotide , Subcutaneous Fat/metabolism , Waist-Hip Ratio/methods
13.
Am J Hum Genet ; 103(4): 535-552, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30290150

ABSTRACT

Although recent studies provide evidence for a common genetic basis between complex traits and Mendelian disorders, a thorough quantification of their overlap in a phenotype-specific manner remains elusive. Here, we have quantified the overlap of genes identified through large-scale genome-wide association studies (GWASs) for 62 complex traits and diseases with genes containing mutations known to cause 20 broad categories of Mendelian disorders. We identified a significant enrichment of genes linked to phenotypically matched Mendelian disorders in GWAS gene sets; of the total 1,240 comparisons, a higher proportion of phenotypically matched or related pairs (n = 50 of 92 [54%]) than phenotypically unmatched pairs (n = 27 of 1,148 [2%]) demonstrated significant overlap, confirming a phenotype-specific enrichment pattern. Further, we observed elevated GWAS effect sizes near genes linked to phenotypically matched Mendelian disorders. Finally, we report examples of GWAS variants localized at the transcription start site or physically interacting with the promoters of genes linked to phenotypically matched Mendelian disorders. Our results are consistent with the hypothesis that genes that are disrupted in Mendelian disorders are dysregulated by non-coding variants in complex traits and demonstrate how leveraging findings from related Mendelian disorders and functional genomic datasets can prioritize genes that are putatively dysregulated by local and distal non-coding GWAS variants.


Subject(s)
Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Female , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Humans , Male , Phenotype , Promoter Regions, Genetic/genetics , Transcription Initiation Site/physiology
14.
Liver Int ; 41(4): 754-763, 2021 04.
Article in English | MEDLINE | ID: mdl-33219609

ABSTRACT

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) has been associated with multiple metabolic abnormalities. By applying a non-targeted metabolomics approach, we aimed at investigating whether serum metabolite profile that associates with NAFLD would differ in its association with NAFLD-related metabolic risk factors. METHODS & RESULTS: A total of 233 subjects (mean ± SD: 48.3 ± 9.3 years old; BMI: 43.1 ± 5.4 kg/m2 ; 64 male) undergoing bariatric surgery were studied. Of these participants, 164 with liver histology could be classified as normal liver (n = 79), simple steatosis (SS, n = 40) or non-alcoholic steatohepatitis (NASH, n = 45). Among the identified fasting serum metabolites with higher levels in those with NASH when compared to those with normal phenotype were the aromatic amino acids (AAAs: tryptophan, tyrosine and phenylalanine), the branched-chain amino acids (BCAAs: leucine and isoleucine), a phosphatidylcholine (PC(16:0/16:1)) and uridine (all FDRp < 0.05). Only tryptophan was significantly higher in those with NASH compared to those with SS (FDRp < 0.05). Only the AAAs tryptophan and tyrosine correlated positively with serum total and LDL cholesterol (FDRp < 0.1), and accordingly, with liver LDLR at mRNA expression level. In addition, tryptophan was the single AA associated with liver DNA methylation of CpG sites known to be differentially methylated in those with NASH. CONCLUSIONS: We found that serum levels of the NASH-related AAAs and BCAAs demonstrate divergent associations with serum lipids. The specific correlation of tryptophan with LDL-c may result from the molecular events affecting LDLR mRNA expression and NASH-associated methylation of genes in the liver.


Subject(s)
Bariatric Surgery , Non-alcoholic Fatty Liver Disease , Adult , Amino Acids, Branched-Chain , Humans , Male , Middle Aged , Phosphatidylcholines
15.
Am J Hum Genet ; 100(3): 428-443, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28257690

ABSTRACT

Subcutaneous adipose tissue stores excess lipids and maintains energy balance. We performed expression quantitative trait locus (eQTL) analyses by using abdominal subcutaneous adipose tissue of 770 extensively phenotyped participants of the METSIM study. We identified cis-eQTLs for 12,400 genes at a 1% false-discovery rate. Among an approximately 680 known genome-wide association study (GWAS) loci for cardio-metabolic traits, we identified 140 coincident cis-eQTLs at 109 GWAS loci, including 93 eQTLs not previously described. At 49 of these 140 eQTLs, gene expression was nominally associated (p < 0.05) with levels of the GWAS trait. The size of our dataset enabled identification of five loci associated (p < 5 × 10-8) with at least five genes located >5 Mb away. These trans-eQTL signals confirmed and extended the previously reported KLF14-mediated network to 55 target genes, validated the CIITA regulation of class II MHC genes, and identified ZNF800 as a candidate master regulator. Finally, we observed similar expression-clinical trait correlations of genes associated with GWAS loci in both humans and a panel of genetically diverse mice. These results provide candidate genes for further investigation of their potential roles in adipose biology and in regulating cardio-metabolic traits.


Subject(s)
Cardiovascular Diseases/genetics , Gene Expression Regulation , Metabolic Syndrome/genetics , Quantitative Trait Loci , Subcutaneous Fat/metabolism , Aged , Animals , Databases, Genetic , Gene Expression Profiling , Genome-Wide Association Study , Genotyping Techniques , Humans , Male , Mice , Middle Aged , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phenotype , Reproducibility of Results , Trans-Activators/genetics , Trans-Activators/metabolism
16.
Bioinformatics ; 34(8): 1313-1320, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29186329

ABSTRACT

Motivation: Mapping bias causes preferential alignment to the reference allele, forming a major obstacle in allele-specific expression (ASE) analysis. The existing methods, such as simulation and SNP-aware alignment, are either inaccurate or relatively slow. To fast and accurately count allelic reads for ASE analysis, we developed a novel approach, ASElux, which utilizes the personal SNP information and counts allelic reads directly from unmapped RNA-sequence (RNA-seq) data. ASElux significantly reduces runtime by disregarding reads outside single nucleotide polymorphisms (SNPs) during the alignment. Results: When compared to other tools on simulated and experimental data, ASElux achieves a higher accuracy on ASE estimation than non-SNP-aware aligners and requires a much shorter time than the benchmark SNP-aware aligner, GSNAP with just a slight loss in performance. ASElux can process 40 million read-pairs from an RNA-sequence (RNA-seq) sample and count allelic reads within 10 min, which is comparable to directly counting the allelic reads from alignments based on other tools. Furthermore, processing an RNA-seq sample using ASElux in conjunction with a general aligner, such as STAR, is more accurate and still ∼4× faster than STAR + WASP, and ∼33× faster than the lead SNP-aware aligner, GSNAP, making ASElux ideal for ASE analysis of large-scale transcriptomic studies. We applied ASElux to 273 lung RNA-seq samples from GTEx and identified a splice-QTL rs11078928 in lung which explains the mechanism underlying an asthma GWAS SNP rs11078927. Thus, our analysis demonstrated ASE as a highly powerful complementary tool to cis-expression quantitative trait locus (eQTL) analysis. Availability and implementation: The software can be downloaded from https://github.com/abl0719/ASElux. Contact: zmiao@ucla.edu or a5ko@ucla.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Alleles , Gene Expression Profiling/methods , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Software , High-Throughput Nucleotide Sequencing/methods , Humans , Sequence Analysis, RNA/methods
17.
PLoS Genet ; 12(5): e1006078, 2016 05.
Article in English | MEDLINE | ID: mdl-27227539

ABSTRACT

Familial combined hyperlipidemia (FCH) is a complex and common familial dyslipidemia characterized by elevated total cholesterol and/or triglyceride levels with over five-fold risk of coronary heart disease. The genetic architecture and contribution of rare Mendelian and common variants to FCH susceptibility is unknown. In 53 Finnish FCH families, we genotyped and imputed nine million variants in 715 family members with DNA available. We studied the enrichment of variants previously implicated with monogenic dyslipidemias and/or lipid levels in the general population by comparing allele frequencies between the FCH families and population samples. We also constructed weighted polygenic scores using 212 lipid-associated SNPs and estimated the relative contributions of Mendelian variants and polygenic scores to the risk of FCH in the families. We identified, across the whole allele frequency spectrum, an enrichment of variants known to elevate, and a deficiency of variants known to lower LDL-C and/or TG levels among both probands and affected FCH individuals. The score based on TG associated SNPs was particularly high among affected individuals compared to non-affected family members. Out of 234 affected FCH individuals across the families, seven (3%) carried Mendelian variants and 83 (35%) showed high accumulation of either known LDL-C or TG elevating variants by having either polygenic score over the 90th percentile in the population. The positive predictive value of high score was much higher for affected FCH individuals than for similar sporadic cases in the population. FCH is highly polygenic, supporting the hypothesis that variants across the whole allele frequency spectrum contribute to this complex familial trait. Polygenic SNP panels improve identification of individuals affected with FCH, but their clinical utility remains to be defined.


Subject(s)
Apolipoproteins B/genetics , Coronary Artery Disease/genetics , Dyslipidemias/genetics , Hyperlipidemia, Familial Combined/genetics , Adult , Cholesterol, HDL/blood , Cholesterol, HDL/genetics , Coronary Artery Disease/blood , Dyslipidemias/blood , Dyslipidemias/pathology , Female , Genome-Wide Association Study , Humans , Hyperlipidemia, Familial Combined/blood , Hyperlipidemia, Familial Combined/pathology , Lipoproteins, LDL/blood , Lipoproteins, LDL/genetics , Male , Middle Aged , Triglycerides/blood , Triglycerides/genetics
18.
Rev Invest Clin ; 70(5): 217-223, 2018.
Article in English | MEDLINE | ID: mdl-30307448

ABSTRACT

Cardiovascular disease (CVD) is a broad definition for diseases of the heart and blood vessels with high mortality and morbidity worldwide. Atherosclerosis and hypertension are the most common causes of CVD, and multiple factors confer the susceptibility. Some of the predisposing factors are modifiable such as diet, smoking, and exercise, whereas others, including age, sex, and individual's genetic variations contributing to the CVD composition traits, are non-modifiable. This latter group includes serum lipid traits. High serum lipid levels, specifically high levels of serum low-density lipoprotein cholesterol and triglycerides, are well-established key risk factors of atherosclerosis. This review will discuss genomics and systems biology approaches in the study of common dyslipidemias. The non-Mendelian forms of dyslipidemias are highly complex, and the molecular mechanisms underlying these polygenic lipid disorders are estimated to involve hundreds of genes. Interactions between the different genes and environmental factors also contribute to the clinical outcomes; however, very little is known about these interactions and their molecular mechanisms. To better address the complex genetic architecture and multiple properties leading to high serum lipid levels, networks and systems approach combining information at genomic, transcriptomics, methylomics, proteomics, metabolomics, and phenome level are being developed, with the ultimate goal to elucidate the cascade of dynamic changes leading to CVD in humans. (REV INVEST CLIN. 2018;70:217-23).


Subject(s)
Dyslipidemias/therapy , Genomics/methods , Systems Biology/methods , Atherosclerosis/complications , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Dyslipidemias/complications , Humans , Hypertension/complications , Lipids/blood , Risk Factors
19.
J Lipid Res ; 58(3): 481-493, 2017 03.
Article in English | MEDLINE | ID: mdl-28119442

ABSTRACT

The Metabolic Syndrome in Men (METSIM) study is a population-based study including 10,197 Finnish men examined in 2005-2010. The aim of the study is to investigate nongenetic and genetic factors associated with the risk of T2D and CVD, and with cardiovascular risk factors. The protocol includes a detailed phenotyping of the participants, an oral glucose tolerance test, fasting laboratory measurements including proton NMR measurements, mass spectometry metabolomics, adipose tissue biopsies from 1,400 participants, and a stool sample. In our ongoing follow-up study, we have, to date, reexamined 6,496 participants. Extensive genotyping and exome sequencing have been performed for essentially all METSIM participants, and >2,000 METSIM participants have been whole-genome sequenced. We have identified several nongenetic markers associated with the development of diabetes and cardiovascular events, and participated in several genetic association studies to identify gene variants associated with diabetes, hyperglycemia, and cardiovascular risk factors. The generation of a phenotype and genotype resource in the METSIM study allows us to proceed toward a "systems genetics" approach, which includes statistical methods to quantitate and integrate intermediate phenotypes, such as transcript, protein, or metabolite levels, to provide a global view of the molecular architecture of complex traits.


Subject(s)
Cardiovascular Diseases/genetics , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Metabolic Syndrome/genetics , Metabolomics , Adipose Tissue/metabolism , Adipose Tissue/pathology , Aged , Biopsy , Blood Glucose , Cardiovascular Diseases/blood , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/pathology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/pathology , Genetic Association Studies , Genome, Human , Genotype , Glucose Tolerance Test , High-Throughput Nucleotide Sequencing , Humans , Hyperglycemia/blood , Hyperglycemia/genetics , Hyperglycemia/pathology , Male , Metabolic Syndrome/blood , Metabolic Syndrome/epidemiology , Metabolic Syndrome/pathology , Middle Aged , Polymorphism, Single Nucleotide , Risk Factors
20.
Arterioscler Thromb Vasc Biol ; 36(7): 1350-5, 2016 07.
Article in English | MEDLINE | ID: mdl-27199446

ABSTRACT

OBJECTIVE: We recently identified a locus on chromosome 18q11.2 for high serum triglycerides in Mexicans. We hypothesize that the lead genome-wide association study single-nucleotide polymorphism rs9949617, or its linkage disequilibrium proxies, regulates 1 of the 5 genes in the triglyceride-associated region. APPROACH AND RESULTS: We performed a linkage disequilibrium analysis and found 9 additional variants in linkage disequilibrium (r(2)>0.7) with the lead single-nucleotide polymorphism. To select the variants for functional analyses, we annotated the 10 variants using DNase I hypersensitive sites, transcription factor and chromatin states and identified rs17259126 as the lead candidate variant for functional in vitro validation. Using luciferase transcriptional reporter assay in liver HepG2 cells, we found that the G allele exhibits a significantly lower effect on transcription (P<0.05). The electrophoretic mobility shift and ChIPqPCR (chromatin immunoprecipitation coupled with quantitative polymerase chain reaction) assays confirmed that the minor G allele of rs17259126 disrupts an hepatocyte nuclear factor 4 α-binding site. To find the regional candidate gene, we performed a local expression quantitative trait locus analysis and found that rs17259126 and its linkage disequilibrium proxies alter expression of the regional transmembrane protein 241 (TMEM241) gene in 795 adipose RNAs from the Metabolic Syndrome In Men (METSIM) cohort (P=6.11×10(-07)-5.80×10(-04)). These results were replicated in expression profiles of TMEM241 from the Multiple Tissue Human Expression Resource (MuTHER; n=856). CONCLUSIONS: The Mexican genome-wide association study signal for high serum triglycerides on chromosome 18q11.2 harbors a regulatory single-nucleotide polymorphism, rs17259126, which disrupts normal hepatocyte nuclear factor 4 α binding and decreases the expression of the regional TMEM241 gene. Our data suggest that decreased transcript levels of TMEM241 contribute to increased triglyceride levels in Mexicans.


Subject(s)
Chromosomes, Human, Pair 18 , Hepatocyte Nuclear Factor 4/genetics , Lipid Metabolism/genetics , Membrane Proteins/genetics , Polymorphism, Single Nucleotide , Triglycerides/blood , Aged , Binding Sites , Finland , Genes, Reporter , Genetic Markers , Genome-Wide Association Study , Genotype , Hep G2 Cells , Hepatocyte Nuclear Factor 4/metabolism , Humans , Linkage Disequilibrium , Male , Membrane Proteins/metabolism , Mexico , Middle Aged , Phenotype , Quantitative Trait Loci , Transcription, Genetic , Transfection , United States , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL