Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Clin Microbiol Rev ; 37(2): e0006022, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38717124

ABSTRACT

SUMMARYGiven the importance of gut microbial homeostasis in maintaining health, there has been considerable interest in developing innovative therapeutic strategies for restoring gut microbiota. One such approach, fecal microbiota transplantation (FMT), is the main "whole gut microbiome replacement" strategy and has been integrated into clinical practice guidelines for treating recurrent Clostridioides difficile infection (rCDI). Furthermore, the potential application of FMT in other indications such as inflammatory bowel disease (IBD), metabolic syndrome, and solid tumor malignancies is an area of intense interest and active research. However, the complex and variable nature of FMT makes it challenging to address its precise functionality and to assess clinical efficacy and safety in different disease contexts. In this review, we outline clinical applications, efficacy, durability, and safety of FMT and provide a comprehensive assessment of its procedural and administration aspects. The clinical applications of FMT in children and cancer immunotherapy are also described. We focus on data from human studies in IBD in contrast with rCDI to delineate the putative mechanisms of this treatment in IBD as a model, including colonization resistance and functional restoration through bacterial engraftment, modulating effects of virome/phageome, gut metabolome and host interactions, and immunoregulatory actions of FMT. Furthermore, we comprehensively review omics technologies, metagenomic approaches, and bioinformatics pipelines to characterize complex microbial communities and discuss their limitations. FMT regulatory challenges, ethical considerations, and pharmacomicrobiomics are also highlighted to shed light on future development of tailored microbiome-based therapeutics.


Subject(s)
Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Fecal Microbiota Transplantation/methods , Humans , Clostridium Infections/therapy , Clostridium Infections/microbiology , Inflammatory Bowel Diseases/therapy , Inflammatory Bowel Diseases/microbiology , Animals
2.
J Biol Chem ; 300(3): 105675, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272223

ABSTRACT

The O-glycoprotein Mucin-2 (MUC2) forms the protective colon mucus layer. While animal models have demonstrated the importance of Muc2, few studies have explored human MUC2 in similar depth. Recent studies have revealed that secreted MUC2 is bound to human feces. We hypothesized human fecal MUC2 (HF-MUC2) was accessible for purification and downstream structural and functional characterization. We tested this via histologic and quantitative imaging on human fecal sections; extraction from feces for proteomic and O-glycomic characterization; and functional studies via growth and metabolic assays in vitro. Quantitative imaging of solid fecal sections showed a continuous mucus layer of varying thickness along human fecal sections with barrier functions intact. Lectin profiling showed HF-MUC2 bound several lectins but was weak to absent for Ulex europaeus 1 (α1,2 fucose-binding) and Sambucus nigra agglutinin (α2,6 sialic acid-binding), and did not have obvious b1/b2 barrier layers. HF-MUC2 separated by electrophoresis showed high molecular weight glycoprotein bands (∼1-2 MDa). Proteomics and Western analysis confirmed the enrichment of MUC2 and potential MUC2-associated proteins in HF-MUC2 extracts. MUC2 O-glycomics revealed diverse fucosylation, moderate sialylation, and little sulfation versus porcine colonic MUC2 and murine fecal Muc2. O-glycans were functional and supported the growth of Bacteroides thetaiotaomicron (B. theta) and short-chain fatty acid (SCFA) production in vitro. MUC2 could be similarly analyzed from inflammatory bowel disease stools, which displayed an altered glycomic profile and differential growth and SCFA production by B. theta versus healthy samples. These studies describe a new non-invasive platform for human MUC2 characterization in health and disease.


Subject(s)
Colon , Feces , Proteomics , Animals , Humans , Mice , Colon/metabolism , Glycoproteins/metabolism , Intestinal Mucosa/metabolism , Mucin-2/genetics , Mucin-2/metabolism , Mucus/metabolism , Swine , Male , Mice, Inbred C57BL , Gastrointestinal Microbiome
3.
Indoor Air ; 32(7): e13076, 2022 07.
Article in English | MEDLINE | ID: mdl-35904390

ABSTRACT

Built environments play a key role in the transmission of infectious diseases. Ventilation rates, air temperature, and humidity affect airborne transmission while cleaning protocols, material properties and light exposure can influence viability of pathogens on surfaces. We investigated how indoor daylight intensity and spectrum through electrochromic (EC) windows can impact the growth rate and viability of indoor pathogens on different surface materials (polyvinyl chloride [PVC] fabric, polystyrene, and glass) compared to traditional blinds. Results showed that tinted EC windows let in higher energy, shorter wavelength daylight than those with clear window and blind. The growth rates of pathogenic bacteria and fungi were significantly lower in spaces with EC windows compared to blinds: nearly 100% growth rate reduction was observed when EC windows were in their clear state followed by 41%-100% reduction in bacterial growth rate and 26%-42% reduction in fungal growth rate when EC windows were in their darkest tint. Moreover, bacterial viabilities were significantly lower on PVC fabric when they were exposed to indoor light at EC-tinted window. These findings are deemed fundamental to the design of healthy modern buildings, especially those that encompass sick and vulnerable individuals.


Subject(s)
Air Pollution, Indoor , Air Pollution, Indoor/analysis , Bacteria , Humans , Humidity , Polyvinyl Chloride , Temperature
4.
Int J Mol Sci ; 22(6)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809421

ABSTRACT

COVID-19 is a major pandemic facing the world today, which has implications on current microbiome-based treatments such as fecal microbiota transplantation (FMT) used for recurrent Clostridioides difficile infections. The bidirectional relationship between the inhabitants of our gut, the gut microbiota, and COVID-19 pathogenesis, as well as the underlying mechanism involved, must be elucidated in order to increase FMT safety and efficacy. In this perspective, we discuss the crucial cross-talk between the gut microbiota and the lungs, known as the gut-lung axis, during COVID-19 infection, as well as the putative effect of these microorganisms and their functional activity (i.e., short chain fatty acids and bile acids) on FMT treatment. In addition, we highlight the urgent need to investigate the possible impact of COVID-19 on FMT safety and efficacy, as well as instilling stringent screening protocols of donors and recipients during COVID-19 and post-COVID-19 pandemic to produce a cohesive and optimized FMT treatment plan across all centers and in all countries across the globe.


Subject(s)
COVID-19/epidemiology , Fecal Microbiota Transplantation/methods , Pandemics , Clostridium Infections/therapy , Fecal Microbiota Transplantation/adverse effects , Gastrointestinal Microbiome , Humans , Lung/physiopathology , Treatment Outcome
5.
Molecules ; 25(3)2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31979171

ABSTRACT

Natural fibers are gaining wide attention due to their much lower carbon footprint and economic factors compared to synthetic fibers. The moisture affinity of these lignocellulosic fibres, however, is still one of the main challenges when using them, e.g., for outdoor applications, leading to fast degradation rates. Plastination is a technique originally used for the preservation of human and animal body organs for many years, by replacing the water and fat present in the tissues with a polymer. This article investigates the feasibility of adapting such plastination to bamboo natural fibres using the S-10 room-temperature technique in order to hinder their moisture absorption ability. The effect of plastination on the mechanical properties and residual moisture content of the bamboo natural fibre samples was evaluated. Energy dispersive x-ray spectroscopy (EDS) and X-ray micro-computed tomography (Micro-CT) were employed to characterize the chemical composition and 3-dimensional morphology of the plastinated specimens. The results clearly show that, as plastination lessens the hydrophilic tendency of the bamboo fibres, it also decreases the residual moisture content and increases the tensile strength and stiffness of the fibers.


Subject(s)
Cotton Fiber/analysis , Poaceae/chemistry , Plastination , Spectrometry, X-Ray Emission , X-Ray Microtomography
6.
Microb Ecol ; 72(2): 305-12, 2016 08.
Article in English | MEDLINE | ID: mdl-27098176

ABSTRACT

Archaea are widespread and abundant in soils, oceans, or human and animal gastrointestinal (GI) tracts. However, very little is known about the presence of Archaea in indoor environments and factors that can regulate their abundances. Using a quantitative PCR approach, and targeting the archaeal and bacterial 16S rRNA genes in floor dust samples, we found that Archaea are a common part of the indoor microbiota, 5.01 ± 0.14 (log 16S rRNA gene copies/g dust, mean ± SE) in bedrooms and 5.58 ± 0.13 in common rooms, such as living rooms. Their abundance, however, was lower than bacteria: 9.20 ± 0.32 and 9.17 ± 0.32 in bedrooms and common rooms, respectively. In addition, by measuring a broad array of environmental factors, we obtained preliminary insights into how the abundance of total archaeal 16S rRNA gene copies in indoor environment would be associated with building characteristics and occupants' activities. Based on the results, Archaea are not equally distributed within houses, and the areas with greater input of outdoor microbiome and higher traffic and material heterogeneity tend to have a higher abundance of Archaea. Nevertheless, more research is needed to better understand causes and consequences of this microbial group in indoor environments.


Subject(s)
Archaea/isolation & purification , Environmental Microbiology , Housing , Archaea/classification , DNA, Archaeal/genetics , Humans , Microbiota , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
7.
J Hazard Mater ; 469: 134017, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38518696

ABSTRACT

Our study explores the pressing issue of micro- and nanoplastics (MNPs) inhalation and their subsequent penetration into the brain, highlighting a significant environmental health concern. We demonstrate that MNPs can indeed penetrate murine brain, warranting further investigation into their neurotoxic effects in humans. We then proceed to test the impact of MNPs at environmentally relevant concentrations, with focusing on variations in size and shape. Our findings reveal that these MNPs induce oxidative stress, cytotoxicity, and neurodegeneration in human neurons, with cortical neurons being more susceptible than nociceptors. Furthermore, we examine the role of biofilms on MNPs, demonstrating that MNPs can serve as a vehicle for pathogenic biofilms that significantly exacerbate these neurotoxic effects. This sequence of investigations reveals that minimal MNPs accumulation can cause oxidative stress and neurodegeneration in human neurons, significantly risking brain health and highlights the need to understand the neurological consequences of inhaling MNPs. Overall, our developed in vitro testing battery has significance in elucidating the effects of environmental factors and their associated pathological mechanisms in human neurons.


Subject(s)
Microplastics , Neurotoxicity Syndromes , Humans , Animals , Mice , Reactive Oxygen Species , Biofilms , Brain , Neurons , Plastics
8.
Materials (Basel) ; 17(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38255551

ABSTRACT

Antibiotic-resistant bacteria, ESKAPE pathogens, present a significant and alarming threat to public health and healthcare systems. This study addresses the urgent need to combat antimicrobial resistance by exploring alternative ways to reduce the health and cost implications of infections caused by these pathogens. To disrupt their transmission, integrating antimicrobial textiles into personal protective equipment (PPE) is an encouraging avenue. Nevertheless, ensuring the effectiveness and safety of these textiles remains a persistent challenge. To achieve this, we conduct a comprehensive study that systematically compares the effectiveness and potential toxicity of five commonly used antimicrobial agents. To guide decision making, a MULTIMOORA method is employed to select and rank the optimal antimicrobial textile finishes. Through this approach, we determine that silver nitrate is the most suitable choice, while a methoxy-terminated quaternary ammonium compound is deemed less favorable in meeting the desired criteria. The findings of this study offer valuable insights and guidelines for the development of antimicrobial textiles that effectively address the requirements of effectiveness, safety, and durability. Implementing these research outcomes within the textile industry can significantly enhance protection against microbial infections, contribute to the improvement of public health, and mitigate the spread of infectious diseases.

9.
Article in English | MEDLINE | ID: mdl-38248533

ABSTRACT

Adverse childhood experiences (ACEs) encompass negative, stressful, and potentially traumatic events during childhood, impacting physical and mental health outcomes in adulthood. Limited studies suggest ACEs can have short-term effects on children's gut microbiomes and adult cognitive performance under stress. Nevertheless, the long-term effects of ACEs experienced during adulthood remain unexplored. Thus, this study aimed to assess the long-term effects of ACEs on the gut microbiota of adult nursing students. We employed a multidimensional approach, combining 16S rRNA sequencing, bioinformatics tools, and machine learning to predict functional capabilities. High-ACE individuals had an increased abundance of Butyricimonas spp. and Prevotella spp. and decreased levels of Clostridiales, and Lachnospira spp. Prevotella abundance correlated negatively with L-glutamate and L-glutamine biosynthesis, potentially impacting intestinal tissue integrity. While nursing students with high ACE reported increased depression, evidence for a direct gut microbiota-depression relationship was inconclusive. High-ACE individuals also experienced a higher prevalence of diarrhea. These findings highlight the long-lasting impact of ACEs on the gut microbiota and its functions in adulthood, particularly among nursing students. Further research is warranted to develop targeted interventions and strategies for healthcare professionals, optimizing overall health outcomes.


Subject(s)
Adverse Childhood Experiences , Gastrointestinal Microbiome , Students, Nursing , Adult , Child , Humans , RNA, Ribosomal, 16S/genetics , Computational Biology
10.
ACS Nano ; 17(14): 13393-13407, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37417775

ABSTRACT

Detection of viable viruses in the air is critical in order to determine the level of risk associated with the airborne diffusion of viruses. Different methods have been developed for the isolation, purification, and detection of viable airborne viruses, but they require an extensive processing time and often present limitations including low physical efficiency (i.e., the amount of collected viruses), low biological efficiency (i.e., the number of viable viruses), or a combination of all. To mitigate such limitations, we have employed an efficient technique based on the magnetic levitation (Maglev) technique with a paramagnetic solution and successfully identified distinct variations in levitation and density characteristics among bacteria (Escherichia coli), phages (MS2), and human viruses (SARS-CoV-2 and influenza H1N1). Notably, the Maglev approach enabled a significant enrichment of viable airborne viruses in air samples. Furthermore, the enriched viruses obtained through Maglev exhibited high purity, rendering them suitable for direct utilization in subsequent analyses such as reverse transcription-polymerase chain reaction (RT-PCR) or colorimetric assays. The system is portable, easy to use, and cost-efficient and can potentially provide proactive surveillance data for monitoring future outbreaks of airborne infectious diseases and allow for the induction of various preventative and mitigative measures.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Viruses , Humans , SARS-CoV-2 , Magnetic Phenomena
11.
Microb Ecol ; 63(1): 41-50, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21997543

ABSTRACT

The addition of antibiotics to livestock feed has contributed to the selection of antibiotic-resistant bacteria in concentrated animal feeding operations and agricultural ecosystems. The objective of this study was to assess the occurrence of resistance to chlortetracycline and tylosin among bacterial populations at the Swine Complex of McGill University (Province of Quebec, Canada) in the absence of antibiotic administration to pigs for 2.5 years prior to the beginning of this study. Feces from ten pigs born from the same sow and provided feed without antibiotic were sampled during suckling (n = 6 for enumerations, n = 10 for PCR), weanling (n = 10 both for PCR and enumerations), growing (n = 10 both for PCR and enumerations), and finishing (n = 10 both for PCR and enumerations). The percentage of chlortetracycline-resistant anaerobic bacterial populations (Tet(R)) was higher than that of tylosin-resistant anaerobic bacterial populations (Tyl(R)) at weanling, growing, and finishing. Prior to the transportation of animals to the slaughterhouse, resistant populations varied between 6.5 and 9.4 Log colony-forming units g humid feces(-1). In all pigs, tet(L), tet(O), and erm(B) were detected at suckling and weanling, whereas only tet(O) was detected at growing and finishing. The abundance of tet(O) was similar between males and females at weanling and growing and reached 5.1 × 10(5) and 5.6 × 10(5) copies of tet(O)/ng of total DNA in males and females, respectively, at finishing. Results showed high abundances and proportions of Tet(R) and Tyl(R) anaerobic bacterial populations, as well as the occurrence of tet and erm resistance genes within these populations despite the absence of antibiotic administration to pigs at this swine production facility since January 2007, i.e., 2.5 years prior to the beginning of this study. This work showed that the occurrence of bacterial resistance to chlortetracycline and tylosin is high at the Swine Complex of McGill University.


Subject(s)
Animal Husbandry/standards , Anti-Bacterial Agents/administration & dosage , Bacteria/drug effects , Chlortetracycline/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Swine/microbiology , Tylosin/pharmacology , Animal Feed , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Canada , Feces/microbiology , Female , Male , Microbial Sensitivity Tests , RNA, Ribosomal, 16S/genetics , Tetracycline Resistance/genetics , Time Factors
12.
Microbiome ; 8(1): 36, 2020 03 14.
Article in English | MEDLINE | ID: mdl-32169105

ABSTRACT

Coronary artery disease (CAD) is the most common health problem worldwide and remains the leading cause of morbidity and mortality. Over the past decade, it has become clear that the inhabitants of our gut, the gut microbiota, play a vital role in human metabolism, immunity, and reactions to diseases, including CAD. Although correlations have been shown between CAD and the gut microbiota, demonstration of potential causal relationships is much more complex and challenging. In this review, we will discuss the potential direct and indirect causal roots between gut microbiota and CAD development via microbial metabolites and interaction with the immune system. Uncovering the causal relationship of gut microbiota and CAD development can lead to novel microbiome-based preventative and therapeutic interventions. However, an interdisciplinary approach is required to shed light on gut bacterial-mediated mechanisms (e.g., using advanced nanomedicine technologies and incorporation of demographic factors such as age, sex, and ethnicity) to enable efficacious and high-precision preventative and therapeutic strategies for CAD.


Subject(s)
Bacteria/metabolism , Cardiovascular Diseases/microbiology , Gastrointestinal Microbiome , Animals , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/therapy , Cholesterol/metabolism , Coronary Artery Disease/microbiology , Coronary Artery Disease/prevention & control , Coronary Artery Disease/therapy , Feces/microbiology , Humans
13.
Microorganisms ; 8(12)2020 Dec 19.
Article in English | MEDLINE | ID: mdl-33352781

ABSTRACT

Tomato bushy stunt virus (TBSV) and Tomato mosaic virus (ToMV) are important economic pathogens in tomato fields. Rhizoglomus irregulare is a species of arbuscular mycorrhizal (AM) fungus that provides nutrients to host plants. To understand the effect of R. irregulare on the infection by TBSV/ToMV in tomato plants, in a completely randomized design, five treatments, including uninfected control plants without AM fungi (C), uninfected control plants with AM fungi (M) TBSV/ToMV-infected plants without AM fungi (V), TBSV/ToMV-infected plants before mycorrhiza (VM) inoculation, and inoculated plants with mycorrhiza before TBSV/ToMV infection (MV), were studied. Factors including viral RNA accumulation and expression of Pathogenesis Related proteins (PR) coding genes including PR1, PR2, and PR3 in the young leaves were measured. For TBSV, a lower level of virus accumulation and a higher expression of PR genes in MV plants were observed compared to V and VM plants. In contrast, for ToMV, a higher level of virus accumulation and a lower expression of PR genes in MV plants were observed as compared to V and VM plants. These results indicated that mycorrhizal symbiosis reduces or increases the viral accumulation possibly via the regulation of PR genes in tomato plants.

14.
Adv Healthc Mater ; 9(5): e1901608, 2020 03.
Article in English | MEDLINE | ID: mdl-31994348

ABSTRACT

There are several methods (e.g., enzyme-linked immunosorbent assay and liquid chromatography mass spectroscopy) that already use human plasma to detect a variety of possible diseases. However, this paper introduces the capabilities of magnetic levitation (Maglev) to detect disease (Opioid Use Disorder, used here as a model disease) by using levitation of human plasma proteins. The presented proof-of-concept findings revealed that the optical images of magnetically levitated plasma proteins carry important information about the health spectrum of plasma donors. In addition, the liquid chromatography mass spectroscopy analysis of the magnetically levitated plasma proteins demonstrated remarkable differences between the plasma of healthy individuals and patients with opioid use disorders. Overall, the presented method provides diagnostic value for disease detection using optical images of evolving magnetically levitated plasma proteins and/or proteomic information.


Subject(s)
Opioid-Related Disorders , Proteomics , Blood Proteins , Humans , Magnetics
15.
Sci Rep ; 10(1): 18349, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33110112

ABSTRACT

Fundamental restoration ecology and community ecology theories can help us better understand the underlying mechanisms of fecal microbiota transplantation (FMT) and to better design future microbial therapeutics for recurrent Clostridioides difficile infections (rCDI) and other dysbiosis-related conditions. In this study, stool samples were collected from donors and rCDI patients one week prior to FMT (pre-FMT), as well as from patients one week following FMT (post-FMT). Using metagenomic sequencing and machine learning, our results suggested that FMT outcome is not only dependent on the ecological structure of the recipients, but also the interactions between the donor and recipient microbiomes at the taxonomical and functional levels. We observed that the presence of specific bacteria in donors (Clostridioides spp., Desulfovibrio spp., Odoribacter spp. and Oscillibacter spp.) and the absence of fungi (Yarrowia spp.) and bacteria (Wigglesworthia spp.) in recipients prior to FMT could predict FMT success. Our results also suggested a series of interlocked mechanisms for FMT success, including the repair of the disturbed gut ecosystem by transient colonization of nexus species followed by secondary succession of bile acid metabolizers, sporulators, and short chain fatty acid producers.


Subject(s)
Fecal Microbiota Transplantation , Feces/microbiology , Gastrointestinal Microbiome , Adult , Bacteroidetes/metabolism , Clostridiales/metabolism , Clostridioides/metabolism , Clostridium Infections/microbiology , Clostridium Infections/therapy , Desulfovibrio/metabolism , Female , Gastrointestinal Microbiome/genetics , Humans , Machine Learning , Male , Metagenomics , Tissue Donors , Treatment Outcome
16.
Science ; 370(6515): 467-472, 2020 10 23.
Article in English | MEDLINE | ID: mdl-33093110

ABSTRACT

Colon mucus segregates the intestinal microbiota from host tissues, but how it organizes to function throughout the colon is unclear. In mice, we found that colon mucus consists of two distinct O-glycosylated entities of Muc2: a major form produced by the proximal colon, which encapsulates the fecal material including the microbiota, and a minor form derived from the distal colon, which adheres to the major form. The microbiota directs its own encapsulation by inducing Muc2 production from proximal colon goblet cells. In turn, O-glycans on proximal colon-derived Muc2 modulate the structure and function of the microbiota as well as transcription in the colon mucosa. Our work shows how proximal colon control of mucin production is an important element in the regulation of host-microbiota symbiosis.


Subject(s)
Colon/metabolism , Colon/microbiology , Gastrointestinal Microbiome , Mucin-2/metabolism , Mucus/metabolism , Animals , Feces/microbiology , Glycosylation , Mice , Mice, Knockout , Mucin-2/genetics , Transcription, Genetic
17.
PLoS One ; 14(8): e0220556, 2019.
Article in English | MEDLINE | ID: mdl-31374095

ABSTRACT

The new era in the design of modern healthy buildings necessitates multidisciplinary research efforts that link principles of engineering and material sciences with those of building biology, in order to better comprehend and apply underlying interactions among design criteria. As part of this effort, there have been an array of studies in relation to the effects of building characteristics on indoor microbiota and their propensity to cause health issues. Despite the abundance of scientific inquiries, limited studies have been dedicated to concomitantly link these effects to the deterioration of 'structural integrity' in the building materials. This study focuses on the observed biodeteriorative capabilities of indoor fungi upon the ubiquitous gypsum board material as a function of building age and room functionality within a university campus. We observed that the fungal growth significantly affected the physical (weight loss) and mechanical (tensile strength) properties of moisture-exposed gypsum board samples; in some cases, tensile strength and weight decreased by more than 80%. Such intertwined associations between the biodeterioration of building material properties due to viable indoor fungi, and as a function of building characteristics, would suggest a critical need towards multi-criteria design and optimization of next-generation healthy buildings. Next to structural integrity measures, with a better understanding of what factors and environmental conditions trigger fungal growth in built environment materials, we can also optimize the design of indoor living spaces, cleaning strategies, as well as emergency management measures during probable events such as flooding or water damage.


Subject(s)
Air Pollution, Indoor/analysis , Construction Materials/microbiology , Environmental Monitoring , Fungi/growth & development , Environmental Health , Universities
18.
Article in English | MEDLINE | ID: mdl-31334136

ABSTRACT

Oral supplemented nutraceuticals derived from food sources are surmised to improve the human health through interaction with the gastrointestinal bacteria. However, the lack of fundamental quality control and authoritative consensus (e.g., formulation, route of administration, dose, and dosage regimen) of these non-medical yet bioactive compounds are one of the main practical issues resulting in inconsistent individual responsiveness and confounded clinical outcomes of consuming nutraceuticals. Herein, we studied the dose effects of widely used food supplement, microalgae spirulina (Arthrospira platensis), on the colonic microbiota and physiological responses in healthy male Balb/c mice. Based on the analysis of 16s rDNA sequencing, compared to the saline-treated group, oral administration of spirulina once daily for 24 consecutive days altered the diversity, structure, and composition of colonic microbial community at the genus level. More importantly, the abundance of microbial taxa was markedly differentiated at the low (1.5 g/kg) and high (3.0 g/kg) dose of spirulina, among which the relative abundance of Clostridium XIVa, Desulfovibrio, Eubacterium, Barnesiella, Bacteroides, and Flavonifractor were modulated at various degrees. Evaluation of serum biomarkers in mice at the end of spirulina intervention showed reduced the oxidative stress and the blood lipid levels and increased the level of appetite controlling hormone leptin in a dose-response manner, which exhibited the significant correlation with differentially abundant microbiota taxa in the cecum. These findings provide direct evidences of dose-related modulation of gut microbiota and physiological states by spirulina, engendering its future mechanistic investigation of spirulina as potential sources of prebiotics for beneficial health effects via the interaction with gut microbiota.


Subject(s)
Cecum/drug effects , Colon/drug effects , Dietary Supplements/analysis , Gastrointestinal Microbiome/drug effects , Spirulina/chemistry , Animals , Bacteroides/classification , Bacteroides/genetics , Bacteroides/isolation & purification , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Cecum/microbiology , Clostridiales/classification , Clostridiales/genetics , Clostridiales/isolation & purification , Clostridium/classification , Clostridium/genetics , Clostridium/isolation & purification , Colon/microbiology , Complex Mixtures/administration & dosage , Desulfovibrio/classification , Desulfovibrio/genetics , Desulfovibrio/isolation & purification , Dose-Response Relationship, Drug , Eubacterium/classification , Eubacterium/genetics , Eubacterium/isolation & purification , Feces/microbiology , Gastrointestinal Microbiome/genetics , Leptin/blood , Lipids/blood , Male , Mice , Mice, Inbred BALB C , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
19.
ACS Chem Neurosci ; 9(10): 2288-2298, 2018 10 17.
Article in English | MEDLINE | ID: mdl-29851334

ABSTRACT

Opioid drug abuse and dependence/addiction are complex disorders regulated by a wide range of interacting networks of genes and pathways that control a variety of phenotypes. Although the field has been extensively progressed since the birth of the National Institute on Drug Abuse in 1974, the fundamental knowledge and involved mechanisms that lead to drug dependence/addiction are poorly understood, and thus, there has been limited success in the prevention of drug addiction and development of therapeutics for definitive treatment and cure of addiction disease. The lack of success in both identification of addiction in at-risk populations and the development of efficient drugs has resulted in a serious social and economic burden from opioid drug abuse with global increasing rate of mortality from drug overdoses. This perspective aims to draw the attention of scientists to the potential role of nanotechnologies, which might pave the way for the development of more practical platforms for either drug development or identification and screening of patients who may be vulnerable to addiction after using opioid drugs.


Subject(s)
Brain/metabolism , Nanotechnology , Opioid-Related Disorders/drug therapy , Blood-Brain Barrier , Brain/diagnostic imaging , Contrast Media , Drug Development , Dysbiosis/metabolism , Early Diagnosis , Gastrointestinal Microbiome , Humans , Mass Screening , Opioid-Related Disorders/diagnosis , Opioid-Related Disorders/metabolism , RNAi Therapeutics , Risk Assessment , Substance Abuse Detection , Substance-Related Disorders/diagnosis , Substance-Related Disorders/drug therapy , Substance-Related Disorders/metabolism
20.
Materials (Basel) ; 10(11)2017 Oct 31.
Article in English | MEDLINE | ID: mdl-29088118

ABSTRACT

The development and application of bio-sourced composites have been gaining wide attention, yet their deterioration due to the growth of ubiquitous microorganisms during storage/manufacturing/in-service phases is still not fully understood for optimum material selection and design purposes. In this study, samples of non-woven flax fibers, hemp fibers, and mats made of co-mingled randomly-oriented flax or hemp fiber (50%) and polypropylene fiber (50%) were subjected to 28 days of exposure to (i) no water-no fungi, (ii) water only and (iii) water along with the Chaetomium globosum fungus. Biocomposite samples were measured for weight loss over time, to observe the rate of fungal growth and the respiration of cellulose components in the fibers. Tensile testing was conducted to measure mechanical properties of the composite samples under different configurations. Scanning electron microscopy was employed to visualize fungal hyphal growth on the natural fibers, as well as to observe the fracture planes and failure modes of the biocomposite samples. Results showed that fungal growth significantly affects the dry mass as well as the tensile elastic modulus of the tested natural fiber mats and composites, and the effect depends on both the type and the length scale of fibers, as well as the exposure condition and time.

SELECTION OF CITATIONS
SEARCH DETAIL