Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Cell ; 167(5): 1201-1214.e15, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27863241

ABSTRACT

Chromatin dynamics play an essential role in regulating DNA transaction processes, but it is unclear whether transcription-associated chromatin modifications control the mRNA ribonucleoparticles (mRNPs) pipeline from synthesis to nuclear exit. Here, we identify the yeast ISW1 chromatin remodeling complex as an unanticipated mRNP nuclear export surveillance factor that retains export-incompetent transcripts near their transcription site. This tethering activity of ISW1 requires chromatin binding and is independent of nucleosome sliding activity or changes in RNA polymerase II processivity. Combination of in vivo UV-crosslinking and genome-wide RNA immunoprecipitation assays show that Isw1 and its cofactors interact directly with premature mRNPs. Our results highlight that the concerted action of Isw1 and the nuclear exosome ensures accurate surveillance mechanism that proofreads the efficiency of mRNA biogenesis.


Subject(s)
Adenosine Triphosphatases/metabolism , DNA-Binding Proteins/metabolism , Ribonucleoproteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Chromatin Assembly and Disassembly , Exosome Multienzyme Ribonuclease Complex/metabolism , Exosomes/metabolism , Multiprotein Complexes/metabolism , RNA Polymerase II/metabolism
2.
Mol Cell ; 82(16): 2952-2966.e6, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35839782

ABSTRACT

Cellular homeostasis requires the coordination of several machineries concurrently engaged in the DNA. Wide-spread transcription can interfere with other processes, and transcription-replication conflicts (TRCs) threaten genome stability. The conserved Sen1 helicase not only terminates non-coding transcription but also interacts with the replisome and reportedly resolves genotoxic R-loops. Sen1 prevents genomic instability, but how this relates to its molecular functions remains unclear. We generated high-resolution, genome-wide maps of transcription-dependent conflicts and R-loops using a Sen1 mutant that has lost interaction with the replisome but is termination proficient. We show that, under physiological conditions, Sen1 removes RNA polymerase II at TRCs within genes and the rDNA and at sites of transcription-transcription conflicts, thus qualifying as a "key regulator of conflicts." We demonstrate that genomic stability is affected by Sen1 mutation only when in addition to its role at the replisome, the termination of non-coding transcription or R-loop removal are additionally compromised.


Subject(s)
Saccharomyces cerevisiae Proteins , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Replication/genetics , Genomic Instability , RNA Helicases/genetics , RNA Helicases/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription, Genetic
3.
Mol Cell ; 81(11): 2417-2427.e5, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33838103

ABSTRACT

mRNA translation is coupled to multiprotein complex assembly in the cytoplasm or to protein delivery into intracellular compartments. Here, by combining systematic RNA immunoprecipitation and single-molecule RNA imaging in yeast, we have provided a complete depiction of the co-translational events involved in the biogenesis of a large multiprotein assembly, the nuclear pore complex (NPC). We report that binary interactions between NPC subunits can be established during translation, in the cytoplasm. Strikingly, the nucleoporins Nup1/Nup2, together with a number of nuclear proteins, are instead translated at nuclear pores, through a mechanism involving interactions between their nascent N-termini and nuclear transport receptors. Uncoupling this co-translational recruitment further triggers the formation of cytoplasmic foci of unassembled polypeptides. Altogether, our data reveal that distinct, spatially segregated modes of co-translational interactions foster the ordered assembly of NPC subunits and that localized translation can ensure the proper delivery of proteins to the pore and the nucleus.


Subject(s)
Nuclear Pore Complex Proteins/genetics , Protein Biosynthesis , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Active Transport, Cell Nucleus , Cytoplasm/genetics , Cytoplasm/metabolism , Gene Expression Regulation, Fungal , Karyopherins/genetics , Karyopherins/metabolism , Nuclear Pore/genetics , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/classification , Nuclear Pore Complex Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/classification , Saccharomyces cerevisiae Proteins/metabolism
4.
PLoS Genet ; 19(8): e1010848, 2023 08.
Article in English | MEDLINE | ID: mdl-37585488

ABSTRACT

N-terminal ends of polypeptides are critical for the selective co-translational recruitment of N-terminal modification enzymes. However, it is unknown whether specific N-terminal signatures differentially regulate protein fate according to their cellular functions. In this work, we developed an in-silico approach to detect functional preferences in cellular N-terminomes, and identified in S. cerevisiae more than 200 Gene Ontology terms with specific N-terminal signatures. In particular, we discovered that Mitochondrial Targeting Sequences (MTS) show a strong and specific over-representation at position 2 of hydrophobic residues known to define potential substrates of the N-terminal acetyltransferase NatC. We validated mitochondrial precursors as co-translational targets of NatC by selective purification of translating ribosomes, and found that their N-terminal signature is conserved in Saccharomycotina yeasts. Finally, systematic mutagenesis of the position 2 in a prototypal yeast mitochondrial protein confirmed its critical role in mitochondrial protein import. Our work highlights the hydrophobicity of MTS N-terminal residues and their targeting by NatC as important features for the definition of the mitochondrial proteome, providing a molecular explanation for mitochondrial defects observed in yeast or human NatC-depleted cells. Functional mapping of N-terminal residues thus has the potential to support the discovery of novel mechanisms of protein regulation or targeting.


Subject(s)
Proteome , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/genetics , Amino Acid Sequence , Proteome/metabolism , Protein Transport , Fungal Proteins/metabolism , Mitochondrial Proteins/metabolism
5.
Mol Cell ; 67(4): 608-621.e6, 2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28757210

ABSTRACT

Transcription is a source of genetic instability that can notably result from the formation of genotoxic DNA:RNA hybrids, or R-loops, between the nascent mRNA and its template. Here we report an unexpected function for introns in counteracting R-loop accumulation in eukaryotic genomes. Deletion of endogenous introns increases R-loop formation, while insertion of an intron into an intronless gene suppresses R-loop accumulation and its deleterious impact on transcription and recombination in yeast. Recruitment of the spliceosome onto the mRNA, but not splicing per se, is shown to be critical to attenuate R-loop formation and transcription-associated genetic instability. Genome-wide analyses in a number of distant species differing in their intron content, including human, further revealed that intron-containing genes and the intron-richest genomes are best protected against R-loop accumulation and subsequent genetic instability. Our results thereby provide a possible rationale for the conservation of introns throughout the eukaryotic lineage.


Subject(s)
DNA, Fungal/genetics , Genomic Instability , Introns , Nucleic Acid Heteroduplexes/genetics , RNA, Fungal/genetics , Transcription, Genetic , Candida glabrata/genetics , Candida glabrata/metabolism , Cell Line , Computational Biology , Cryptococcus neoformans/genetics , Cryptococcus neoformans/metabolism , DNA Damage , DNA, Fungal/chemistry , DNA, Fungal/metabolism , Databases, Genetic , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Genotype , Humans , Nucleic Acid Conformation , Nucleic Acid Heteroduplexes/chemistry , Nucleic Acid Heteroduplexes/metabolism , Phenotype , RNA Splicing , RNA, Fungal/chemistry , RNA, Fungal/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Spliceosomes/genetics , Spliceosomes/metabolism , Structure-Activity Relationship
6.
PLoS Genet ; 17(11): e1009889, 2021 11.
Article in English | MEDLINE | ID: mdl-34723966

ABSTRACT

Beyond their canonical function in nucleocytoplasmic exchanges, nuclear pore complexes (NPCs) regulate the expression of protein-coding genes. Here, we have implemented transcriptomic and molecular methods to specifically address the impact of the NPC on retroelements, which are present in multiple copies in genomes. We report a novel function for the Nup84 complex, a core NPC building block, in specifically restricting the transcription of LTR-retrotransposons in yeast. Nup84 complex-dependent repression impacts both Copia and Gypsy Ty LTR-retrotransposons, all over the S. cerevisiae genome. Mechanistically, the Nup84 complex restricts the transcription of Ty1, the most active yeast retrotransposon, through the tethering of the SUMO-deconjugating enzyme Ulp1 to NPCs. Strikingly, the modest accumulation of Ty1 RNAs caused by Nup84 complex loss-of-function is sufficient to trigger an important increase of Ty1 cDNA levels, resulting in massive Ty1 retrotransposition. Altogether, our study expands our understanding of the complex interactions between retrotransposons and the NPC, and highlights the importance for the cells to keep retrotransposons under tight transcriptional control.


Subject(s)
Nuclear Pore/metabolism , Retroelements , Transcription, Genetic , Genes, Fungal , Nuclear Pore Complex Proteins/metabolism , RNA, Fungal/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism
8.
Nucleic Acids Res ; 44(18): 8826-8841, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27580715

ABSTRACT

The discovery of novel specific ribosome-associated factors challenges the assumption that translation relies on standardized molecular machinery. In this work, we demonstrate that Tma108, an uncharacterized translation machinery-associated factor in yeast, defines a subpopulation of cellular ribosomes specifically involved in the translation of less than 200 mRNAs encoding proteins with ATP or Zinc binding domains. Using ribonucleoparticle dissociation experiments we established that Tma108 directly interacts with the nascent protein chain. Additionally, we have shown that translation of the first 35 amino acids of Asn1, one of the Tma108 targets, is necessary and sufficient to recruit Tma108, suggesting that it is loaded early during translation. Comparative genomic analyses, molecular modeling and directed mutagenesis point to Tma108 as an original M1 metallopeptidase, which uses its putative catalytic peptide-binding pocket to bind the N-terminus of its targets. The involvement of Tma108 in co-translational regulation is attested by a drastic change in the subcellular localization of ATP2 mRNA upon Tma108 inactivation. Tma108 is a unique example of a nascent chain-associated factor with high selectivity and its study illustrates the existence of other specific translation-associated factors besides RNA binding proteins.


Subject(s)
Aminopeptidases/metabolism , Protein Biosynthesis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphate/metabolism , Aminopeptidases/chemistry , In Situ Hybridization, Fluorescence , Mitochondria/genetics , Mitochondria/metabolism , Peptide Chain Elongation, Translational , Protein Binding , Proton-Translocating ATPases/genetics , RNA Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Zinc/metabolism
9.
J Cell Sci ; 128(2): 305-16, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25413348

ABSTRACT

Pom33 is an integral membrane protein of the yeast nuclear pore complex (NPC), and it is required for proper NPC distribution and assembly. To characterize the Pom33 NPC-targeting determinants, we performed immunoprecipitation experiments followed by mass spectrometry analyses. This identified a new Pom33 partner, the nuclear import factor Kap123. In vitro experiments revealed a direct interaction between the Pom33 C-terminal domain (CTD) and Kap123. In silico analysis predicted the presence of two amphipathic α-helices within Pom33-CTD. Circular dichroism and liposome co-flotation assays showed that this domain is able to fold into α-helices in the presence of liposomes and preferentially binds to highly curved lipid membranes. When expressed in yeast, under conditions abolishing Pom33-CTD membrane association, this domain behaves as a Kap123-dependent nuclear localization signal (NLS). Although deletion of Pom33 C-terminal domain (Pom33(ΔCTD)-GFP) impaired Pom33 stability and NPC targeting, mutants affecting either Kap123 binding or the amphipathic properties of the α-helices did not display any detectable defect. However, combined impairment of lipid and Kap123 binding affects targeting of Pom33 to NPCs. These data highlight the requirement of multiple determinants and mechanisms for proper NPC localization of Pom33.


Subject(s)
Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/metabolism , Saccharomyces cerevisiae Proteins/metabolism , beta Karyopherins/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , Circular Dichroism , Gene Expression Regulation, Fungal , Lipids/genetics , Liposomes/metabolism , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Nuclear Pore/genetics , Nuclear Pore Complex Proteins/genetics , Protein Structure, Secondary , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics , beta Karyopherins/genetics
10.
Nucleic Acids Res ; 43(8): 4249-61, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25845599

ABSTRACT

Several nuclear pore-associated factors, including the SUMO-protease Ulp1, have been proposed to prevent the export of intron-containing messenger ribonucleoparticles (mRNPs) in yeast. However, the molecular mechanisms of this nuclear pore-dependent mRNA quality control, including the sumoylated targets of Ulp1, have remained unidentified. Here, we demonstrate that the apparent 'pre-mRNA leakage' phenotype arising upon ULP1 inactivation is shared by sumoylation mutants of the THO complex, an early mRNP biogenesis factor. Importantly, we establish that alteration of THO complex activity differentially impairs the expression of intronless and intron-containing reporter genes, rather than triggering bona fide 'pre-mRNA leakage'. Indeed, we show that the presence of introns within THO target genes attenuates the effect of THO inactivation on their transcription. Epistasis analyses further clarify that different nuclear pore components influence intron-containing gene expression at distinct stages. Ulp1, whose maintenance at nuclear pores depends on the Nup84 complex, impacts on THO-dependent gene expression, whereas the nuclear basket-associated Mlp1/Pml39 proteins prevent pre-mRNA export at a later stage, contributing to mRNA quality control. Our study thus highlights the multiplicity of mechanisms by which nuclear pores contribute to gene expression, and further provides the first evidence that intronic sequences can alleviate early mRNP biogenesis defects.


Subject(s)
Cysteine Endopeptidases/metabolism , Gene Expression Regulation, Fungal , Introns , Nuclear Pore Complex Proteins/physiology , RNA, Messenger/metabolism , DNA-Binding Proteins/genetics , Mutation , Nuclear Pore/enzymology , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA Precursors/metabolism , Ribonucleoproteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sumoylation , Transcription, Genetic
11.
Mol Microbiol ; 96(5): 951-72, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25732006

ABSTRACT

Flavohemoglobins are the main detoxifiers of nitric oxide (NO) in bacteria and fungi and are induced in response to nitrosative stress. In fungi, the flavohemoglobin encoding gene YHB1 is positively regulated by transcription factors which are activated upon NO exposure. In this study, we show that in the model yeast Saccharomyces cerevisiae and in the human pathogen Candida glabrata, the transcription factor Yap7 constitutively represses YHB1 by binding its promoter. Consequently, YAP7 deletion conferred high NO resistance to the cells. Co-immunoprecipitation experiments and mutant analyses indicated that Yap7 represses YHB1 by recruiting the transcriptional repressor Tup1. In S. cerevisiae, YHB1 repression also involves interaction of Yap7 with the Hap2/3/5 complex through a conserved Hap4-like-bZIP domain, but this interaction has been lost in C. glabrata. The evolutionary origin of this regulation was investigated by functional analyses of Yap7 and of its paralogue Yap5 in different yeast species. These analyses indicated that the negative regulation of YHB1 by Yap7 arose by neofunctionalization after the whole genome duplication which led to the C. glabrata and S. cerevisiae extant species. This work describes a new aspect of the regulation of fungal nitric oxidase and provides detailed insights into its functioning and evolution.


Subject(s)
Candida glabrata/genetics , Dioxygenases/genetics , Gene Duplication , Genome, Fungal , Hemeproteins/genetics , Repressor Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/physiology , Dioxygenases/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Deletion , Gene Expression Regulation, Fungal , Hemeproteins/metabolism , Humans , Mutation , Nitric Oxide/metabolism , Nuclear Proteins/genetics , Repressor Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism
12.
Nucleic Acids Res ; 42(8): 5043-58, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24500206

ABSTRACT

Assembly of messenger ribonucleoparticles (mRNPs) is a pivotal step in gene expression, but only a few molecular mechanisms contributing to its regulation have been described. Here, through a comprehensive proteomic survey of mRNP assembly, we demonstrate that the SUMO pathway specifically controls the association of the THO complex with mRNPs. We further show that the THO complex, a key player in the interplay between gene expression, mRNA export and genetic stability, is sumoylated on its Hpr1 subunit and that this modification regulates its association with mRNPs. Altered recruitment of the THO complex onto mRNPs in sumoylation-defective mutants does not affect bulk mRNA export or genetic stability, but impairs the expression of acidic stress-induced genes and, consistently, compromises viability in acidic stress conditions. Importantly, inactivation of the nuclear exosome suppresses the phenotypes of the hpr1 non-sumoylatable mutant, showing that SUMO-dependent mRNP assembly is critical to allow a specific subset of mRNPs to escape degradation. This article thus provides the first example of a SUMO-dependent mRNP-assembly event allowing a refined tuning of gene expression, in particular under specific stress conditions.


Subject(s)
Nuclear Proteins/metabolism , Ribonucleoproteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Sumoylation , Cysteine Endopeptidases/genetics , Exosome Multienzyme Ribonuclease Complex/metabolism , Gene Expression , Proteome/metabolism , RNA Transport , RNA, Messenger/metabolism , SUMO-1 Protein/metabolism , Stress, Physiological/genetics , Ubiquitination
13.
Chromosoma ; 122(5): 387-99, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23584125

ABSTRACT

mRNA metabolism involves the orchestration of multiple nuclear events, including transcription, processing (e.g., capping, splicing, polyadenylation), and quality control. This leads to the accurate formation of messenger ribonucleoparticles (mRNPs) that are finally exported to the cytoplasm for translation. The production of defined sets of mRNAs in given environmental or physiological situations relies on multiple regulatory mechanisms that target the mRNA biogenesis machineries. Among other regulations, post-translational modification by the small ubiquitin-like modifier SUMO, whose prominence in several cellular processes has been largely demonstrated, also plays a key role in mRNA biogenesis. Analysis of the multiple available SUMO proteomes and functional validations of an increasing number of sumoylated targets have revealed the key contribution of SUMO-dependent regulation in nuclear mRNA metabolism. While sumoylation of transcriptional activators and repressors is so far best documented, SUMO contribution to other stages of mRNA biogenesis is also emerging. Modification of mRNA metabolism factors by SUMO determine their subnuclear targeting and biological activity, notably by regulating their molecular interactions with nucleic acids or protein partners. In particular, sumoylation of DNA-bound transcriptional regulators interfere with their association to target sequences or chromatin modifiers. In addition, the recent identification of enzymes of the SUMO pathway within specialized mRNA biogenesis machineries may provide a further level of regulation to their specificity. These multiple crosstalks between mRNA metabolism and SUMO appear therefore as important players in cellular regulatory networks.


Subject(s)
RNA, Messenger/metabolism , Ribonucleoproteins/metabolism , SUMO-1 Protein/metabolism , Cell Nucleus/metabolism , Gene Regulatory Networks , Humans , Protein Processing, Post-Translational , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Ribonucleoproteins/genetics , SUMO-1 Protein/genetics , Ubiquitination/genetics
14.
Curr Opin Genet Dev ; 84: 102150, 2024 02.
Article in English | MEDLINE | ID: mdl-38215626

ABSTRACT

Nuclear organization has emerged as a critical layer in the coordination of DNA repair activities. Distinct types of DNA lesions have notably been shown to relocate at the vicinity of nuclear pore complexes (NPCs), where specific repair pathways are favored, ultimately safeguarding genome integrity. Here, we review the most recent progress in this field, notably highlighting the increasingly diverse types of DNA structures undergoing repositioning, and the signaling pathways involved. We further discuss our growing knowledge of the molecular mechanisms underlying the choice of repair pathways at NPCs, and their conservation - or divergences. Intriguingly, a series of recent findings suggest that DNA metabolism may be coupled to NPC biogenesis and specialization, challenging our initial vision of these processes.


Subject(s)
DNA Repair , Nuclear Pore , Humans , Nuclear Pore/genetics , DNA Repair/genetics , DNA Damage/genetics , Genomic Instability/genetics , DNA/metabolism , Nuclear Envelope
15.
Nat Commun ; 15(1): 3016, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589367

ABSTRACT

Myelodysplastic syndromes (MDS) with mutated SF3B1 gene present features including a favourable outcome distinct from MDS with mutations in other splicing factor genes SRSF2 or U2AF1. Molecular bases of these divergences are poorly understood. Here we find that SF3B1-mutated MDS show reduced R-loop formation predominating in gene bodies associated with intron retention reduction, not found in U2AF1- or SRSF2-mutated MDS. Compared to erythroblasts from SRSF2- or U2AF1-mutated patients, SF3B1-mutated erythroblasts exhibit augmented DNA synthesis, accelerated replication forks, and single-stranded DNA exposure upon differentiation. Importantly, histone deacetylase inhibition using vorinostat restores R-loop formation, slows down DNA replication forks and improves SF3B1-mutated erythroblast differentiation. In conclusion, loss of R-loops with associated DNA replication stress represents a hallmark of SF3B1-mutated MDS ineffective erythropoiesis, which could be used as a therapeutic target.


Subject(s)
Myelodysplastic Syndromes , R-Loop Structures , Humans , Splicing Factor U2AF/genetics , Serine-Arginine Splicing Factors/genetics , RNA Splicing Factors/genetics , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Mutation , Transcription Factors/genetics , Phosphoproteins/genetics
16.
FEBS Lett ; 597(22): 2705-2727, 2023 11.
Article in English | MEDLINE | ID: mdl-37548888

ABSTRACT

Nuclear pore complexes (NPCs) are sophisticated multiprotein assemblies embedded within the nuclear envelope and controlling the exchanges of molecules between the cytoplasm and the nucleus. In this review, we summarize the mechanisms by which these elaborate complexes are built from their subunits, the nucleoporins, based on our ever-growing knowledge of NPC structural organization and on the recent identification of additional features of this process. We present the constraints faced during the production of nucleoporins, their gathering into oligomeric complexes, and the formation of NPCs within nuclear envelopes, and review the cellular strategies at play, from co-translational assembly to the enrolment of a panel of cofactors. Remarkably, the study of NPCs can inform our perception of the biogenesis of multiprotein complexes in general - and vice versa.


Subject(s)
Nuclear Pore Complex Proteins , Nuclear Pore , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/metabolism , Nuclear Envelope , Cytoplasm/metabolism , Protein Processing, Post-Translational
17.
Nat Commun ; 14(1): 5606, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37730746

ABSTRACT

Nuclear pore complexes (NPCs) have increasingly recognized interactions with the genome, as exemplified in yeast, where they bind transcribed or damaged chromatin. By combining genome-wide approaches with live imaging of model loci, we uncover a correlation between NPC association and the accumulation of R-loops, which are genotoxic structures formed through hybridization of nascent RNAs with their DNA templates. Manipulating hybrid formation demonstrates that R-loop accumulation per se, rather than transcription or R-loop-dependent damages, is the primary trigger for relocation to NPCs. Mechanistically, R-loop-dependent repositioning involves their recognition by the ssDNA-binding protein RPA, and SUMO-dependent interactions with NPC-associated factors. Preventing R-loop-dependent relocation leads to lethality in hybrid-accumulating conditions, while NPC tethering of a model hybrid-prone locus attenuates R-loop-dependent genetic instability. Remarkably, this relocation pathway involves molecular factors similar to those required for the association of stalled replication forks with NPCs, supporting the existence of convergent mechanisms for sensing transcriptional and genotoxic stresses.


Subject(s)
Nuclear Pore , R-Loop Structures , Nuclear Pore/genetics , Chromatin , DNA Damage , DNA Replication/genetics , Saccharomyces cerevisiae/genetics
18.
Sci Rep ; 12(1): 17691, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271106

ABSTRACT

In Saccharomyces cerevisiae, the pre-mRNA leakage 39-kDa protein (ScPml39) was reported to retain unspliced pre-mRNA prior to export through nuclear pore complexes (NPCs). Pml39 homologs outside the Saccharomycetaceae family are currently unknown, and mechanistic insight into Pml39 function is lacking. Here we determined the crystal structure of ScPml39 at 2.5 Å resolution to facilitate the discovery of orthologs beyond Saccharomycetaceae, e.g. in Schizosaccharomyces pombe or human. The crystal structure revealed integrated zf-C3HC and Rsm1 modules, which are tightly associated through a hydrophobic interface to form a single domain. Both zf-C3HC and Rsm1 modules belong to the Zn-containing BIR (Baculovirus IAP repeat)-like super family, with key residues of the canonical BIR domain being conserved. Features unique to the Pml39 modules refer to the spacing between the Zn-coordinating residues, giving rise to a substantially tilted helix αC in the zf-C3HC and Rsm1 modules, and an extra helix αAB' in the Rsm1 module. Conservation of key residues responsible for its distinct features identifies S. pombe Rsm1 and Homo sapiens NIPA/ZC3HC1 as structural orthologs of ScPml39. Based on the recent functional characterization of NIPA/ZC3HC1 as a scaffold protein that stabilizes the nuclear basket of the NPC, our data suggest an analogous function of ScPml39 in S. cerevisiae.


Subject(s)
Nuclear Proteins , Saccharomyces cerevisiae Proteins , Humans , Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Nuclear Pore/metabolism , Nuclear Proteins/chemistry , RNA Precursors/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism
19.
Cells ; 10(6)2021 06 08.
Article in English | MEDLINE | ID: mdl-34201169

ABSTRACT

RNA-containing structures, including ribonucleotide insertions, DNA:RNA hybrids and R-loops, have recently emerged as critical players in the maintenance of genome integrity. Strikingly, different enzymatic activities classically involved in genome maintenance contribute to their generation, their processing into genotoxic or repair intermediates, or their removal. Here we review how this substrate promiscuity can account for the detrimental and beneficial impacts of RNA insertions during genome metabolism. We summarize how in vivo and in vitro experiments support the contribution of DNA polymerases and homologous recombination proteins in the formation of RNA-containing structures, and we discuss the role of DNA repair enzymes in their removal. The diversity of pathways that are thus affected by RNA insertions likely reflects the ancestral function of RNA molecules in genome maintenance and transmission.


Subject(s)
DNA Replication , DNA/metabolism , RNA/metabolism , Transcription, Genetic , Animals , DNA Repair , Homologous Recombination , Humans , R-Loop Structures
20.
Nat Commun ; 12(1): 770, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536434

ABSTRACT

Long non-coding RNAs (lncRNAs) contribute to the regulation of gene expression in response to intra- or extracellular signals but the underlying molecular mechanisms remain largely unexplored. Here, we identify an uncharacterized lncRNA as a central player in shaping the meiotic gene expression program in fission yeast. We report that this regulatory RNA, termed mamRNA, scaffolds the antagonistic RNA-binding proteins Mmi1 and Mei2 to ensure their reciprocal inhibition and fine tune meiotic mRNA degradation during mitotic growth. Mechanistically, mamRNA allows Mmi1 to target Mei2 for ubiquitin-mediated downregulation, and conversely enables accumulating Mei2 to impede Mmi1 activity, thereby reinforcing the mitosis to meiosis switch. These regulations also occur within a unique Mmi1-containing nuclear body, positioning mamRNA as a spatially-confined sensor of Mei2 levels. Our results thus provide a mechanistic basis for the mutual control of gametogenesis effectors and further expand our vision of the regulatory potential of lncRNAs.


Subject(s)
Gene Expression Regulation, Fungal , Meiosis/genetics , Mitosis/genetics , RNA, Fungal/genetics , RNA, Long Noncoding/genetics , Schizosaccharomyces/genetics , Protein Binding , RNA Stability/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , mRNA Cleavage and Polyadenylation Factors/genetics , mRNA Cleavage and Polyadenylation Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL