Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 379(2194): 20200246, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33583272

ABSTRACT

Recent advances in computing algorithms and hardware have rekindled interest in developing high-accuracy, low-cost surrogate models for simulating physical systems. The idea is to replace expensive numerical integration of complex coupled partial differential equations at fine time scales performed on supercomputers, with machine-learned surrogates that efficiently and accurately forecast future system states using data sampled from the underlying system. One particularly popular technique being explored within the weather and climate modelling community is the echo state network (ESN), an attractive alternative to other well-known deep learning architectures. Using the classical Lorenz 63 system, and the three tier multi-scale Lorenz 96 system (Thornes T, Duben P, Palmer T. 2017 Q. J. R. Meteorol. Soc. 143, 897-908. (doi:10.1002/qj.2974)) as benchmarks, we realize that previously studied state-of-the-art ESNs operate in two distinct regimes, corresponding to low and high spectral radius (LSR/HSR) for the sparse, randomly generated, reservoir recurrence matrix. Using knowledge of the mathematical structure of the Lorenz systems along with systematic ablation and hyperparameter sensitivity analyses, we show that state-of-the-art LSR-ESNs reduce to a polynomial regression model which we call Domain-Driven Regularized Regression (D2R2). Interestingly, D2R2 is a generalization of the well-known SINDy algorithm (Brunton SL, Proctor JL, Kutz JN. 2016 Proc. Natl Acad. Sci. USA 113, 3932-3937. (doi:10.1073/pnas.1517384113)). We also show experimentally that LSR-ESNs (Chattopadhyay A, Hassanzadeh P, Subramanian D. 2019 (http://arxiv.org/abs/1906.08829)) outperform HSR ESNs (Pathak J, Hunt B, Girvan M, Lu Z, Ott E. 2018 Phys. Rev. Lett. 120, 024102. (doi:10.1103/PhysRevLett.120.024102)) while D2R2 dominates both approaches. A significant goal in constructing surrogates is to cope with barriers to scaling in weather prediction and simulation of dynamical systems that are imposed by time and energy consumption in supercomputers. Inexact computing has emerged as a novel approach to helping with scaling. In this paper, we evaluate the performance of three models (LSR-ESN, HSR-ESN and D2R2) by varying the precision or word size of the computation as our inexactness-controlling parameter. For precisions of 64, 32 and 16 bits, we show that, surprisingly, the least expensive D2R2 method yields the most robust results and the greatest savings compared to ESNs. Specifically, D2R2 achieves 68 × in computational savings, with an additional 2 × if precision reductions are also employed, outperforming ESN variants by a large margin. This article is part of the theme issue 'Machine learning for weather and climate modelling'.

2.
Philos Trans A Math Phys Eng Sci ; 372(2018): 20130281, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-24842028

ABSTRACT

As pressures, notably from energy consumption, start impeding the growth and scale of computing systems, inevitably, designers and users are increasingly considering the prospect of trading accuracy or exactness. This paper is a perspective on the progress in embracing this somewhat unusual philosophy of innovating computing systems that are designed to be inexact or approximate, in the interests of realizing extreme efficiencies. With our own experience in designing inexact physical systems including hardware as a backdrop, we speculate on the rich potential for considering inexactness as a broad emerging theme if not an entire domain for investigation for exciting research and innovation. If this emerging trend to pursuing inexactness persists and grows, then we anticipate an increasing need to consider system co-design where application domain characteristics and technology features interplay in an active manner. A noteworthy early example of this approach is our own excursion into tailoring and hence co-designing floating point arithmetic units guided by the needs of stochastic climate models. This approach requires a unified effort between software and hardware designers that does away with the normal clean abstraction layers between the two.

3.
Philos Trans A Math Phys Eng Sci ; 372(2018): 20130276, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-24842031

ABSTRACT

Inexact hardware design, which advocates trading the accuracy of computations in exchange for significant savings in area, power and/or performance of computing hardware, has received increasing prominence in several error-tolerant application domains, particularly those involving perceptual or statistical end-users. In this paper, we evaluate inexact hardware for its applicability in weather and climate modelling. We expand previous studies on inexact techniques, in particular probabilistic pruning, to floating point arithmetic units and derive several simulated set-ups of pruned hardware with reasonable levels of error for applications in atmospheric modelling. The set-up is tested on the Lorenz '96 model, a toy model for atmospheric dynamics, using software emulation for the proposed hardware. The results show that large parts of the computation tolerate the use of pruned hardware blocks without major changes in the quality of short- and long-time diagnostics, such as forecast errors and probability density functions. This could open the door to significant savings in computational cost and to higher resolution simulations with weather and climate models.

4.
Adv Mater ; 25(34): 4789-93, 2013 Sep 14.
Article in English | MEDLINE | ID: mdl-23836363

ABSTRACT

An entire 1-kilobit crossbar device based upon SiOx resistive memories with integrated diodes has been made. The SiOx -based one diode-one resistor device system has promise to satisfy the prerequisite conditions for next generation non-volatile memory applications.

SELECTION OF CITATIONS
SEARCH DETAIL