Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Cell ; 166(5): 1117-1131.e14, 2016 Aug 25.
Article in English | MEDLINE | ID: mdl-27565342

ABSTRACT

Cancer cells must evade immune responses at distant sites to establish metastases. The lung is a frequent site for metastasis. We hypothesized that lung-specific immunoregulatory mechanisms create an immunologically permissive environment for tumor colonization. We found that T-cell-intrinsic expression of the oxygen-sensing prolyl-hydroxylase (PHD) proteins is required to maintain local tolerance against innocuous antigens in the lung but powerfully licenses colonization by circulating tumor cells. PHD proteins limit pulmonary type helper (Th)-1 responses, promote CD4(+)-regulatory T (Treg) cell induction, and restrain CD8(+) T cell effector function. Tumor colonization is accompanied by PHD-protein-dependent induction of pulmonary Treg cells and suppression of IFN-γ-dependent tumor clearance. T-cell-intrinsic deletion or pharmacological inhibition of PHD proteins limits tumor colonization of the lung and improves the efficacy of adoptive cell transfer immunotherapy. Collectively, PHD proteins function in T cells to coordinate distinct immunoregulatory programs within the lung that are permissive to cancer metastasis. PAPERCLIP.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Lung/immunology , Oxygen/metabolism , Prolyl Hydroxylases/metabolism , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , Animals , CD8-Positive T-Lymphocytes/enzymology , Glycolysis/immunology , Interferon-gamma/immunology , Lung/pathology , Lung Neoplasms/therapy , Lymphocyte Activation , Mice , Mice, Knockout , Neoplasm Metastasis , Neuropilin-1/metabolism , Prolyl Hydroxylases/genetics , T-Lymphocytes, Regulatory/enzymology , Th1 Cells/enzymology , Th1 Cells/immunology
2.
Nat Immunol ; 17(7): 851-860, 2016 07.
Article in English | MEDLINE | ID: mdl-27158840

ABSTRACT

T cell antigen receptor (TCR) signaling drives distinct responses depending on the differentiation state and context of CD8(+) T cells. We hypothesized that access of signal-dependent transcription factors (TFs) to enhancers is dynamically regulated to shape transcriptional responses to TCR signaling. We found that the TF BACH2 restrains terminal differentiation to enable generation of long-lived memory cells and protective immunity after viral infection. BACH2 was recruited to enhancers, where it limited expression of TCR-driven genes by attenuating the availability of activator protein-1 (AP-1) sites to Jun family signal-dependent TFs. In naive cells, this prevented TCR-driven induction of genes associated with terminal differentiation. Upon effector differentiation, reduced expression of BACH2 and its phosphorylation enabled unrestrained induction of TCR-driven effector programs.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , CD8-Positive T-Lymphocytes/physiology , Transcription Factor AP-1/metabolism , Vaccinia virus/immunology , Vaccinia/immunology , Adaptive Immunity , Animals , Basic-Leucine Zipper Transcription Factors/genetics , CD8-Positive T-Lymphocytes/virology , Cell Differentiation/genetics , Cells, Cultured , Enhancer Elements, Genetic/genetics , Gene Expression Regulation , Immunologic Memory/genetics , Lymphocyte Activation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Oncogene Protein p65(gag-jun) , Signal Transduction/genetics , Transcription Factor AP-1/genetics
3.
Nat Immunol ; 12(12): 1230-7, 2011 Nov 06.
Article in English | MEDLINE | ID: mdl-22057288

ABSTRACT

The transcriptional repressor Blimp-1 promotes the differentiation of CD8(+) T cells into short-lived effector cells (SLECs) that express the lectin-like receptor KLRG-1, but how it operates remains poorly defined. Here we show that Blimp-1 bound to and repressed the promoter of the gene encoding the DNA-binding inhibitor Id3 in SLECs. Repression of Id3 by Blimp-1 was dispensable for SLEC development but limited the ability of SLECs to persist as memory cells. Enforced expression of Id3 was sufficient to restore SLEC survival and enhanced recall responses. Id3 function was mediated in part through inhibition of the transcriptional activity of E2A and induction of genes regulating genome stability. Our findings identify the Blimp-1-Id3-E2A axis as a key molecular switch that determines whether effector CD8(+) T cells are programmed to die or enter the memory pool.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Inhibitor of Differentiation Proteins/metabolism , Transcription Factors/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/deficiency , Basic Helix-Loop-Helix Transcription Factors/genetics , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Line, Tumor , DNA Repair , DNA Replication , Female , Gene Expression Profiling , Gene Expression Regulation , Inhibitor of Differentiation Protein 2/metabolism , Inhibitor of Differentiation Proteins/genetics , Lectins, C-Type , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Positive Regulatory Domain I-Binding Factor 1 , Promoter Regions, Genetic , Receptors, Immunologic/metabolism
4.
Immunity ; 38(4): 742-53, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23601686

ABSTRACT

MicroRNAs (miRNAs) regulate the function of several immune cells, but their role in promoting CD8(+) T cell immunity remains unknown. Here we report that miRNA-155 is required for CD8(+) T cell responses to both virus and cancer. In the absence of miRNA-155, accumulation of effector CD8(+) T cells was severely reduced during acute and chronic viral infections and control of virus replication was impaired. Similarly, Mir155(-/-) CD8(+) T cells were ineffective at controlling tumor growth, whereas miRNA-155 overexpression enhanced the antitumor response. miRNA-155 deficiency resulted in accumulation of suppressor of cytokine signaling-1 (SOCS-1) causing defective cytokine signaling through STAT5. Consistently, enforced expression of SOCS-1 in CD8(+) T cells phenocopied the miRNA-155 deficiency, whereas SOCS-1 silencing augmented tumor destruction. These findings identify miRNA-155 and its target SOCS-1 as key regulators of effector CD8(+) T cells that can be modulated to potentiate immunotherapies for infectious diseases and cancer.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/physiology , Melanoma, Experimental/immunology , MicroRNAs/metabolism , Adoptive Transfer , Animals , Apoptosis/genetics , Cell Proliferation , Cells, Cultured , Cytokines/metabolism , Cytotoxicity, Immunologic/genetics , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , MicroRNAs/genetics , RNA, Small Interfering/genetics , STAT6 Transcription Factor/metabolism , Suppressor of Cytokine Signaling 1 Protein , Suppressor of Cytokine Signaling Proteins/metabolism , Virus Replication/genetics
5.
Nature ; 537(7621): 539-543, 2016 09 22.
Article in English | MEDLINE | ID: mdl-27626381

ABSTRACT

Tumours progress despite being infiltrated by tumour-specific effector T cells. Tumours contain areas of cellular necrosis, which are associated with poor survival in a variety of cancers. Here, we show that necrosis releases intracellular potassium ions into the extracellular fluid of mouse and human tumours, causing profound suppression of T cell effector function. Elevation of the extracellular potassium concentration ([K+]e) impairs T cell receptor (TCR)-driven Akt-mTOR phosphorylation and effector programmes. Potassium-mediated suppression of Akt-mTOR signalling and T cell function is dependent upon the activity of the serine/threonine phosphatase PP2A. Although the suppressive effect mediated by elevated [K+]e is independent of changes in plasma membrane potential (Vm), it requires an increase in intracellular potassium ([K+]i). Accordingly, augmenting potassium efflux in tumour-specific T cells by overexpressing the potassium channel Kv1.3 lowers [K+]i and improves effector functions in vitro and in vivo and enhances tumour clearance and survival in melanoma-bearing mice. These results uncover an ionic checkpoint that blocks T cell function in tumours and identify potential new strategies for cancer immunotherapy.


Subject(s)
Cations, Monovalent/metabolism , Melanoma/immunology , Potassium/metabolism , T-Lymphocytes/immunology , Tumor Escape/immunology , Tumor Microenvironment/immunology , Animals , Humans , Immune Tolerance/immunology , Immunotherapy/methods , Kv1.3 Potassium Channel/metabolism , Male , Melanoma/metabolism , Melanoma/pathology , Melanoma/therapy , Membrane Potentials , Mice , Necrosis , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Survival Analysis , T-Lymphocytes/metabolism , TOR Serine-Threonine Kinases/metabolism
6.
Immunity ; 35(6): 972-85, 2011 Dec 23.
Article in English | MEDLINE | ID: mdl-22177921

ABSTRACT

Th17 cells have been described as short lived, but this view is at odds with their capacity to trigger protracted damage to normal and transformed tissues. We report that Th17 cells, despite displaying low expression of CD27 and other phenotypic markers of terminal differentiation, efficiently eradicated tumors and caused autoimmunity, were long lived, and maintained a core molecular signature resembling early memory CD8(+) cells with stem cell-like properties. In addition, we found that Th17 cells had high expression of Tcf7, a direct target of the Wnt and ß-catenin signaling axis, and accumulated ß-catenin, a feature observed in stem cells. In vivo, Th17 cells gave rise to Th1-like effector cell progeny and also self-renewed and persisted as IL-17A-secreting cells. Multipotency was required for Th17 cell-mediated tumor eradication because effector cells deficient in IFN-γ or IL-17A had impaired activity. Thus, Th17 cells are not always short lived and are a less-differentiated subset capable of superior persistence and functionality.


Subject(s)
Stem Cells/metabolism , Th17 Cells/immunology , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Survival/genetics , Gene Expression Profiling , Interleukin-17/biosynthesis , Mice , Mice, Transgenic , Neoplasms/immunology , Stem Cells/cytology , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Th1 Cells/cytology , Th1 Cells/immunology , Th17 Cells/cytology , Th17 Cells/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
7.
Proc Natl Acad Sci U S A ; 112(2): 476-81, 2015 Jan 13.
Article in English | MEDLINE | ID: mdl-25548153

ABSTRACT

Lymphodepleting regimens are used before adoptive immunotherapy to augment the antitumor efficacy of transferred T cells by removing endogenous homeostatic "cytokine sinks." These conditioning modalities, however, are often associated with severe toxicities. We found that microRNA-155 (miR-155) enabled tumor-specific CD8(+) T cells to mediate profound antitumor responses in lymphoreplete hosts that were not potentiated by immune-ablation. miR-155 enhanced T-cell responsiveness to limited amounts of homeostatic γc cytokines, resulting in delayed cellular contraction and sustained cytokine production. miR-155 restrained the expression of the inositol 5-phosphatase Ship1, an inhibitor of the serine-threonine protein kinase Akt, and multiple negative regulators of signal transducer and activator of transcription 5 (Stat5), including suppressor of cytokine signaling 1 (Socs1) and the protein tyrosine phosphatase Ptpn2. Expression of constitutively active Stat5a recapitulated the survival advantages conferred by miR-155, whereas constitutive Akt activation promoted sustained effector functions. Our results indicate that overexpression of miR-155 in tumor-specific T cells can be used to increase the effectiveness of adoptive immunotherapies in a cell-intrinsic manner without the need for life-threatening, lymphodepleting maneuvers.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytokines/immunology , MicroRNAs/genetics , MicroRNAs/immunology , Animals , Base Sequence , Cell Line, Tumor , Cytokines/biosynthesis , HEK293 Cells , Humans , Immunotherapy, Adoptive , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , MicroRNAs/metabolism , Proto-Oncogene Proteins c-akt/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction , gp100 Melanoma Antigen/genetics , gp100 Melanoma Antigen/immunology
8.
Mol Ther ; 21(7): 1369-77, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23568260

ABSTRACT

Engineering CD8⁺ T cells to deliver interleukin 12 (IL-12) to the tumor site can lead to striking improvements in the ability of adoptively transferred T cells to induce the regression of established murine cancers. We have recently shown that IL-12 triggers an acute inflammatory environment that reverses dysfunctional antigen presentation by myeloid-derived cells within tumors and leads to an increase in the infiltration of adoptively transferred antigen-specific CD8⁺ T cells. Here, we find that local delivery of IL-12 increased the expression of Fas within tumor-infiltrating macrophages, dendritic cells, and myeloid-derived suppressor cells (MDSC), and that these changes were abrogated in mice deficient in IL-12-receptor signaling. Importantly, upregulation of Fas in host mice played a critical role in the proliferation and antitumor activity of adoptively transferred IL-12-modified CD8⁺ T cells. We also observed higher percentages of myeloid-derived cell populations within tumors in Fas-deficient mice, indicating that tumor stromal destruction was dependent on the Fas death receptor. Taken together, these results describe the likely requirement for costimulatory reverse signaling through Fasl on T cells that successfully infiltrate tumors, a mechanism triggered by the induction of Fas expression on myeloid-derived cells by IL-12 and the subsequent collapse of the tumor stroma.


Subject(s)
Interleukin-12/therapeutic use , Melanoma, Experimental/metabolism , fas Receptor/metabolism , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Dendritic Cells/metabolism , Female , Flow Cytometry , Interleukin-12/administration & dosage , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Mice, Transgenic , fas Receptor/genetics
9.
Blood ; 117(3): 808-14, 2011 Jan 20.
Article in English | MEDLINE | ID: mdl-20971955

ABSTRACT

Cluster of differentiation (CD)8(+) T cells exist as naive, central memory, and effector memory subsets, and any of these populations can be genetically engineered into tumor-reactive effector cells for adoptive immunotherapy. However, the optimal subset from which to derive effector CD8(+) T cells for patient treatments is controversial and understudied. We investigated human CD8(+) T cells and found that naive cells were not only the most abundant subset but also the population most capable of in vitro expansion and T-cell receptor transgene expression. Despite increased expansion, naive-derived cells displayed minimal effector differentiation, a quality associated with greater efficacy after cell infusion. Similarly, the markers of terminal differentiation, killer cell lectin-like receptor G1 and CD57, were expressed at lower levels in cells of naive origin. Finally, naive-derived effector cells expressed higher CD27 and retained longer telomeres, characteristics that suggest greater proliferative potential and that have been linked to greater efficacy in clinical trials. Thus, these data suggest that naive cells resist terminal differentiation, or "exhaustion," maintain high replicative potential, and therefore may be the superior subset for use in adoptive immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , Immunotherapy, Adoptive/methods , T-Lymphocyte Subsets/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/transplantation , Cell Differentiation/immunology , Cell Line, Tumor , Cell Proliferation , Cell Survival , Cells, Cultured , Cytokines/metabolism , Flow Cytometry , Gene Expression , Genetic Vectors/genetics , Humans , Retroviridae/genetics , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/transplantation , Telomere/genetics , Transduction, Genetic , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
10.
Trends Immunol ; 30(12): 592-602, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19879803

ABSTRACT

Cytokines are key modulators of T cell biology, but their influence can be attenuated by suppressors of cytokine signaling (SOCS), a family of proteins consisting of eight members, SOCS1-7 and CIS. SOCS proteins regulate cytokine signals that control the polarization of CD4(+) T cells into Th1, Th2, Th17, and T regulatory cell lineages, the maturation of CD8(+) T cells from naïve to "stem-cell memory" (Tscm), central memory (Tcm), and effector memory (Tem) states, and the activation of these lymphocytes. Understanding how SOCS family members regulate T cell maturation, differentiation, and function might prove critical in improving adoptive immunotherapy for cancer and therapies aimed at treating autoimmune and infectious diseases.


Subject(s)
Immunotherapy, Adoptive , Suppressor of Cytokine Signaling Proteins/metabolism , T-Lymphocyte Subsets/immunology , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Cell Differentiation , Communicable Diseases/immunology , Communicable Diseases/therapy , Humans , Immunologic Memory , Lymphoid Progenitor Cells/immunology , Neoplasms/immunology , Neoplasms/therapy , Signal Transduction , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/immunology , T-Lymphocyte Subsets/metabolism
11.
Proc Natl Acad Sci U S A ; 106(41): 17469-74, 2009 Oct 13.
Article in English | MEDLINE | ID: mdl-19805141

ABSTRACT

Effector cells derived from central memory CD8(+) T cells were reported to engraft and survive better than those derived from effector memory populations, suggesting that they are superior for use in adoptive immunotherapy studies. However, previous studies did not evaluate the relative efficacy of effector cells derived from naïve T cells. We sought to investigate the efficacy of tumor-specific effector cells derived from naïve or central memory T-cell subsets using transgenic or retrovirally transduced T cells engineered to express a tumor-specific T-cell receptor. We found that naïve, rather than central memory T cells, gave rise to an effector population that mediated superior antitumor immunity upon adoptive transfer. Effector cells developed from naïve T cells lost the expression of CD62L more rapidly than those derived from central memory T cells, but did not acquire the expression of KLRG-1, a marker for terminal differentiation and replicative senescence. Consistent with this KLRG-1(-) phenotype, naïve-derived cells were capable of a greater proliferative burst and had enhanced cytokine production after adoptive transfer. These results indicate that insertion of genes that confer antitumor specificity into naïve rather than central memory CD8(+) T cells may allow superior efficacy upon adoptive transfer.


Subject(s)
Adoptive Transfer , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Immunotherapy, Adoptive/methods , Neoplasms/immunology , Animals , Animals, Genetically Modified , Autoantigens/immunology , Humans , Immunophenotyping , Neoplasms, Experimental/immunology , Primates/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Survival Rate
12.
Nat Med ; 28(7): 1421-1431, 2022 07.
Article in English | MEDLINE | ID: mdl-35501486

ABSTRACT

Despite breakthroughs in cancer immunotherapy, most tumor-reactive T cells cannot persist in solid tumors due to an immunosuppressive environment. We developed Tres (tumor-resilient T cell), a computational model utilizing single-cell transcriptomic data to identify signatures of T cells that are resilient to immunosuppressive signals, such as transforming growth factor-ß1, tumor necrosis factor-related apoptosis-inducing ligand and prostaglandin E2. Tres reliably predicts clinical responses to immunotherapy in melanoma, lung cancer, triple-negative breast cancer and B cell malignancies using bulk T cell transcriptomic data from pre-treatment tumors from patients who received immune-checkpoint inhibitors (n = 38), infusion products for chimeric antigen receptor T cell therapies (n = 34) and pre-manufacture samples for chimeric antigen receptor T cell or tumor-infiltrating lymphocyte therapies (n = 84). Further, Tres identified FIBP, whose functions are largely unknown, as the top negative marker of tumor-resilient T cells across many solid tumor types. FIBP knockouts in murine and human donor CD8+ T cells significantly enhanced T cell-mediated cancer killing in in vitro co-cultures. Further, Fibp knockout in murine T cells potentiated the in vivo efficacy of adoptive cell transfer in the B16 tumor model. Fibp knockout T cells exhibit reduced cholesterol metabolism, which inhibits effector T cell function. These results demonstrate the utility of Tres in identifying biomarkers of T cell effectiveness and potential therapeutic targets for immunotherapies in solid tumors.


Subject(s)
Melanoma , Receptors, Chimeric Antigen , Animals , CD8-Positive T-Lymphocytes , Carrier Proteins , Humans , Immunotherapy/methods , Immunotherapy, Adoptive/methods , Membrane Proteins , Mice
13.
Cell Rep ; 40(5): 111153, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35926468

ABSTRACT

Adoptive T cell therapies (ACT) have been curative for a limited number of cancer patients. The sensitization of cancer cells to T cell killing may expand the benefit of these therapies for more patients. To this end, we use a three-step approach to identify cancer genes that disfavor T cell immunity. First, we profile gene transcripts upregulated by cancer under selection pressure from T cell killing. Second, we identify potential tumor gene targets and pathways that disfavor T cell killing using signaling pathway activation libraries and genome-wide loss-of-function CRISPR-Cas9 screens. Finally, we implement pharmacological perturbation screens to validate these targets and identify BIRC2, ITGAV, DNPEP, BCL2, and ERRα as potential ACT-drug combination candidates. Here, we establish that BIRC2 limits antigen presentation and T cell recognition of tumor cells by suppressing IRF1 activity and provide evidence that BIRC2 inhibition in combination with ACT is an effective strategy to increase efficacy.


Subject(s)
Neoplasms , T-Lymphocytes , Antigen Presentation , CRISPR-Cas Systems/genetics , Humans , Neoplasms/genetics , Oncogenes , Systems Analysis
14.
Med ; 3(10): 682-704.e8, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36007524

ABSTRACT

BACKGROUND: Adoptive transfer of tumor-infiltrating lymphocytes (TIL) fails to consistently elicit tumor rejection. Manipulation of intrinsic factors that inhibit T cell effector function and neoantigen recognition may therefore improve TIL therapy outcomes. We previously identified the cytokine-induced SH2 protein (CISH) as a key regulator of T cell functional avidity in mice. Here, we investigate the mechanistic role of CISH in regulating human T cell effector function in solid tumors and demonstrate that CRISPR/Cas9 disruption of CISH enhances TIL neoantigen recognition and response to checkpoint blockade. METHODS: Single-cell gene expression profiling was used to identify a negative correlation between high CISH expression and TIL activation in patient-derived TIL. A GMP-compliant CRISPR/Cas9 gene editing process was developed to assess the impact of CISH disruption on the molecular and functional phenotype of human peripheral blood T cells and TIL. Tumor-specific T cells with disrupted Cish function were adoptively transferred into tumor-bearing mice and evaluated for efficacy with or without checkpoint blockade. FINDINGS: CISH expression was associated with T cell dysfunction. CISH deletion using CRISPR/Cas9 resulted in hyper-activation and improved functional avidity against tumor-derived neoantigens without perturbing T cell maturation. Cish knockout resulted in increased susceptibility to checkpoint blockade in vivo. CONCLUSIONS: CISH negatively regulates human T cell effector function, and its genetic disruption offers a novel avenue to improve the therapeutic efficacy of adoptive TIL therapy. FUNDING: This study was funded by Intima Bioscience, U.S. and in part through the Intramural program CCR at the National Cancer Institute.


Subject(s)
Lymphocytes, Tumor-Infiltrating , T-Lymphocytes , Adoptive Transfer , Animals , Cytokines/metabolism , Humans , Immunotherapy, Adoptive/methods , Mice
15.
J Exp Med ; 202(7): 907-12, 2005 Oct 03.
Article in English | MEDLINE | ID: mdl-16203864

ABSTRACT

Depletion of immune elements before adoptive cell transfer (ACT) can dramatically improve the antitumor efficacy of transferred CD8+ T cells, but the specific mechanisms that contribute to this enhanced immunity remain poorly defined. Elimination of CD4+CD25+ regulatory T (T reg) cells has been proposed as a key mechanism by which lymphodepletion augments ACT-based immunotherapy. We found that even in the genetic absence of T reg cells, a nonmyeloablative regimen substantially augmented CD8+ T cell reactivity to self-tissue and tumor. Surprisingly, enhanced antitumor efficacy and autoimmunity was caused by increased function rather than increased numbers of tumor-reactive T cells, as would be expected by homeostatic mechanisms. The gammaC cytokines IL-7 and IL-15 were required for augmenting T cell functionality and antitumor activity. Removal of gammaC cytokine-responsive endogenous cells using antibody or genetic means resulted in the enhanced antitumor responses similar to those seen after nonmyeloablative conditioning. These data indicate that lymphodepletion removes endogenous cellular elements that act as sinks for cytokines that are capable of augmenting the activity of self/tumor-reactive CD8+ T cells. Thus, the restricted availability of homeostatic cytokines can be a contributing factor to peripheral tolerance, as well as a limiting resource for the effectiveness of tumor-specific T cells.


Subject(s)
Adoptive Transfer/methods , Autoimmunity/immunology , CD8-Positive T-Lymphocytes/immunology , Cytokines/immunology , Lymphopenia/immunology , Neoplasms/immunology , Neoplasms/therapy , T-Lymphocytes, Regulatory/immunology , Animals , Cell Line, Tumor , Female , Mice , Mice, Inbred C57BL , Vaccination , Whole-Body Irradiation
16.
Eur J Immunol ; 40(3): 733-43, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20049875

ABSTRACT

Occlusive transplant vasculopathy (TV) is the major cause for chronic graft rejection. Since endothelial cells (EC) are the first graft cells encountered by activated host lymphocytes, it is important to delineate the molecular mechanisms that coordinate the interaction of EC with activated T cells. Here, the interaction of CD8(+) T cells with Ag-presenting EC in vivo was examined using a transgenic heart transplantation model with beta-galactosidase (beta-gal) expression exclusively in EC (Tie2-LacZ hearts). We found that priming with beta-gal peptide-loaded DC failed to generate a strong systemic IFN-gamma response, but elicited pronounced TV in both IFN-gamma receptor (IFNGR)-competent, and ifngr(-/-) Tie2-LacZ hearts. In contrast, stimulation of EC-specific CD8(+) T cells with beta-gal-recombinant mouse cytomegalovirus (MCMV-LacZ) in recipients of ifngr(+/+) Tie2-LacZ hearts did not precipitate significant TV. However, MCMV-LacZ infection of recipients of ifngr(-/-) Tie2-LacZ hearts led to massive activation of beta-gal-specific CD8 T cells, and led to development of fulminant TV. Further analyses revealed that the strong systemic IFN-gamma "storm" associated with MCMV infection induced upregulation of programmed death-1 ligand 1 (PD-L1) on EC, and subsequent attenuation of programmed death-1 (PD-1)-expressing EC-specific CD8(+) T cells. Thus, IFNGR signaling in ECs activates a potent peripheral negative feedback circuit that protects vascularized grafts from occlusive TV.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Endothelial Cells/immunology , Graft Rejection/immunology , Heart Transplantation/immunology , Receptors, Interferon/immunology , Signal Transduction/immunology , Adoptive Transfer , Animals , CD8-Positive T-Lymphocytes/metabolism , Cell Separation , Endothelial Cells/metabolism , Endothelial Cells/pathology , Enzyme-Linked Immunosorbent Assay , Feedback, Physiological , Female , Flow Cytometry , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Interferon/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Interferon gamma Receptor
17.
PLoS Pathog ; 5(5): e1000457, 2009 May.
Article in English | MEDLINE | ID: mdl-19478869

ABSTRACT

Virus-specific CD8(+) T cells (T(CD8+)) are initially triggered by peptide-MHC Class I complexes on the surface of professional antigen presenting cells (pAPC). Peptide-MHC complexes are produced by two spatially distinct pathways during virus infection. Endogenous antigens synthesized within virus-infected pAPC are presented via the direct-presentation pathway. Many viruses have developed strategies to subvert direct presentation. When direct presentation is blocked, the cross-presentation pathway, in which antigen is transferred from virus-infected cells to uninfected pAPC, is thought to compensate and allow the generation of effector T(CD8+). Direct presentation of vaccinia virus (VACV) antigens driven by late promoters does not occur, as an abortive infection of pAPC prevents production of these late antigens. This lack of direct presentation results in a greatly diminished or ablated T(CD8+) response to late antigens. We demonstrate that late poxvirus antigens do not enter the cross-presentation pathway, even when identical antigens driven by early promoters access this pathway efficiently. The mechanism mediating this novel means of viral modulation of antigen presentation involves the sequestration of late antigens within virus factories. Early antigens and cellular antigens are cross-presented from virus-infected cells, as are late antigens that are targeted to compartments outside of the virus factories. This virus-mediated blockade specifically targets the cross-presentation pathway, since late antigen that is not cross-presented efficiently enters the MHC Class II presentation pathway. These data are the first to describe an evasion mechanism employed by pathogens to prevent entry into the cross-presentation pathway. In the absence of direct presentation, this evasion mechanism leads to a complete ablation of the T(CD8+) response and a potential replicative advantage for the virus. Such mechanisms of viral modulation of antigen presentation must also be taken into account during the rational design of antiviral vaccines.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cross-Priming/immunology , Vaccinia virus/immunology , Animals , Antigen Presentation , Antigen-Presenting Cells/immunology , Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/virology , Cell Line , Histocompatibility Antigens Class I , Histocompatibility Antigens Class II , Humans
18.
Blood ; 114(9): 1776-83, 2009 Aug 27.
Article in English | MEDLINE | ID: mdl-19561320

ABSTRACT

Naive and memory CD8(+) T cells can undergo programmed activation and expansion in response to a short T-cell receptor stimulus, but the extent to which in vitro programming can qualitatively substitute for an in vivo antigen stimulation remains unknown. We show that self-/tumor-reactive effector memory CD8(+) T cells (T(EM)) programmed in vitro either with peptide-pulsed antigen-presenting cells or plate-bound anti-CD3/anti-CD28 embark on a highly stereotyped response of in vivo clonal expansion and tumor destruction nearly identical to that of vaccine-stimulated T(EM) cells. This programmed response was associated with an interval of antigen-independent interferon-gamma (IFN-gamma) release that facilitated the dynamic expression of the major histocompatibility complex class I restriction element H-2D(b) on responding tumor cells, leading to recognition and subsequent tumor lysis. Delaying cell transfer for more than 24 hours after stimulation or infusion of cells deficient in IFN-gamma entirely abrogated the benefit of the programmed response, whereas transfer of cells unable to respond to IFN-gamma had no detriment to antitumor immunity. These findings extend the phenomenon of a programmable effector response to memory CD8(+) T cells and have major implications for the design of current adoptive-cell transfer trials.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , Cancer Vaccines/metabolism , Animals , CD28 Antigens/biosynthesis , CD3 Complex/biosynthesis , Cell Separation , Flow Cytometry , Genes, MHC Class I , In Vitro Techniques , Interferon-gamma/metabolism , Major Histocompatibility Complex , Melanoma, Experimental , Mice , Mice, Transgenic , Neoplasms/immunology , Phenotype
19.
PLoS Biol ; 6(8): e191, 2008 Aug 05.
Article in English | MEDLINE | ID: mdl-18684012

ABSTRACT

Although much effort has been directed at dissecting the mechanisms of central tolerance, the role of thymic stromal cells remains elusive. In order to further characterize this event, we developed a mouse model restricting LacZ to thymic stromal cotransporter (TSCOT)-expressing thymic stromal cells (TDLacZ). The thymus of this mouse contains approximately 4,300 TSCOT+ cells, each expressing several thousand molecules of the LacZ antigen. TSCOT+ cells express the cortical marker CDR1, CD40, CD80, CD54, and major histocompatibility complex class II (MHCII). When examining endogenous responses directed against LacZ, we observed significant tolerance. This was evidenced in a diverse T cell repertoire as measured by both a CD4 T cell proliferation assay and an antigen-specific antibody isotype analysis. This tolerance process was at least partially independent of Autoimmune Regulatory Element gene expression. When TDLacZ mice were crossed to a novel CD4 T cell receptor (TCR) transgenic reactive against LacZ (BgII), there was a complete deletion of double-positive thymocytes. Fetal thymic reaggregate culture of CD45- and UEA-depleted thymic stromal cells from TDLacZ and sorted TCR-bearing thymocytes excluded the possibility of cross presentation by thymic dendritic cells and medullary epithelial cells for the deletion. Overall, these results demonstrate that the introduction of a neoantigen into TSCOT-expressing cells can efficiently establish complete tolerance and suggest a possible application for the deletion of antigen-specific T cells by antigen introduction into TSCOT+ cells.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Epithelial Cells/immunology , Immune Tolerance , Lac Operon/immunology , Symporters/immunology , Thymus Gland/cytology , Animals , Antigen-Presenting Cells/immunology , Cell Differentiation , Dendritic Cells/cytology , Dendritic Cells/immunology , Lymphocyte Activation , Mice , Mice, Transgenic , Stromal Cells/cytology , Stromal Cells/immunology , Symporters/genetics , Thymus Gland/immunology
20.
Proc Natl Acad Sci U S A ; 105(23): 8061-6, 2008 Jun 10.
Article in English | MEDLINE | ID: mdl-18523011

ABSTRACT

Nonmutated tissue differentiation antigens expressed by tumors are attractive targets for cancer immunotherapy, but the consequences of a highly effective antitumor immune response on self-tissue have not been fully characterized. We found that the infusion of ex vivo expanded adoptively transferred melanoma/melanocyte-specific CD8+ T cells that mediated robust tumor killing also induced autoimmune destruction of melanocytes in the eye. This severe autoimmunity was associated with the up-regulation of MHC class I molecules in the eye and high levels of IFN-gamma derived from both adoptively transferred CD8+ T cells and host cells. Furthermore, ocular autoimmunity required the presence of the IFN-gamma receptor on target tissues. Data compiled from >200 eyes and tumors in 10 independently performed experiments revealed a highly significant correlation (P < 0.0001) between the efficacy of tumor immunotherapy and the severity of ocular autoimmunity. Administration of high doses of steroids locally mitigated ocular autoimmunity without impairing the antitumor effect. These findings have particular importance for immunotherapies directed against self-antigens and highlight the need for targeting unique tumor antigens not expressed in critical tissues.


Subject(s)
Antigens, Neoplasm/immunology , Autoimmunity/immunology , Eye/immunology , Neoplasms/immunology , Neoplasms/therapy , Animals , CD8-Positive T-Lymphocytes/immunology , Eye/pathology , Histocompatibility Antigens Class I/immunology , Humans , Immunotherapy , Mice , Neoplasms/pathology , Receptors, Interferon/immunology , Up-Regulation , Interferon gamma Receptor
SELECTION OF CITATIONS
SEARCH DETAIL