Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
PLoS Pathog ; 16(7): e1008591, 2020 07.
Article in English | MEDLINE | ID: mdl-32645118

ABSTRACT

Reactive arthritis, an autoimmune disorder, occurs following gastrointestinal infection with invasive enteric pathogens, such as Salmonella enterica. Curli, an extracellular, bacterial amyloid with cross beta-sheet structure can trigger inflammatory responses by stimulating pattern recognition receptors. Here we show that S. Typhimurium produces curli amyloids in the cecum and colon of mice after natural oral infection, in both acute and chronic infection models. Production of curli was associated with an increase in anti-dsDNA autoantibodies and joint inflammation in infected mice. The negative impacts on the host appeared to be dependent on invasive systemic exposure of curli to immune cells. We hypothesize that in vivo synthesis of curli contributes to known complications of enteric infections and suggest that cross-seeding interactions can occur between pathogen-produced amyloids and amyloidogenic proteins of the host.


Subject(s)
Arthritis, Infectious/immunology , Bacterial Proteins/immunology , Typhoid Fever/immunology , Animals , Antibodies, Antinuclear/immunology , Arthritis, Experimental/immunology , Arthritis, Experimental/metabolism , Arthritis, Infectious/metabolism , Bacterial Proteins/biosynthesis , Intestine, Large/immunology , Intestine, Large/microbiology , Mice , Typhoid Fever/metabolism
2.
PLoS Genet ; 15(6): e1008233, 2019 06.
Article in English | MEDLINE | ID: mdl-31233504

ABSTRACT

Pathogenic Salmonella strains that cause gastroenteritis are able to colonize and replicate within the intestines of multiple host species. In general, these strains have retained an ability to form the rdar morphotype, a resistant biofilm physiology hypothesized to be important for Salmonella transmission. In contrast, Salmonella strains that are host-adapted or even host-restricted like Salmonella enterica serovar Typhi, tend to cause systemic infections and have lost the ability to form the rdar morphotype. Here, we investigated the rdar morphotype and CsgD-regulated biofilm formation in two non-typhoidal Salmonella (NTS) strains that caused invasive disease in Malawian children, S. Typhimurium D23580 and S. Enteritidis D7795, and compared them to a panel of NTS strains associated with gastroenteritis, as well as S. Typhi strains. Sequence comparisons combined with luciferase reporter technology identified key SNPs in the promoter region of csgD that either shut off biofilm formation completely (D7795) or reduced transcription of this key biofilm regulator (D23580). Phylogenetic analysis showed that these SNPs are conserved throughout the African clades of invasive isolates, dating as far back as 80 years ago. S. Typhi isolates were negative for the rdar morphotype due to truncation of eight amino acids from the C-terminus of CsgD. We present new evidence in support of parallel evolution between lineages of nontyphoidal Salmonella associated with invasive disease in Africa and the archetypal host-restricted invasive serovar; S. Typhi. We hypothesize that the African invasive isolates are becoming human-adapted and 'niche specialized' with less reliance on environmental survival, as compared to gastroenteritis-causing isolates.


Subject(s)
Biological Evolution , Gastroenteritis/genetics , Salmonella Infections/genetics , Salmonella typhimurium/genetics , Africa/epidemiology , Biofilms/growth & development , Child , Gastroenteritis/epidemiology , Gastroenteritis/microbiology , Humans , Phylogeny , Polymorphism, Single Nucleotide/genetics , Salmonella Infections/microbiology , Salmonella Infections/transmission , Salmonella typhimurium/pathogenicity , Trans-Activators/genetics
3.
Infect Immun ; 89(4)2021 03 17.
Article in English | MEDLINE | ID: mdl-33468583

ABSTRACT

Nontyphoidal Salmonella (NTS) strains are associated with gastroenteritis worldwide but are also the leading cause of bacterial bloodstream infections in sub-Saharan Africa. The invasive NTS (iNTS) strains that cause bloodstream infections differ from standard gastroenteritis-causing strains by >700 single-nucleotide polymorphisms (SNPs). These SNPs are known to alter metabolic pathways and biofilm formation and to contribute to serum resistance and are thought to signify iNTS strains becoming human adapted, similar to typhoid fever-causing Salmonella strains. Identifying SNPs that contribute to invasion or increased virulence has been more elusive. In this study, we identified a SNP in the cache 1 signaling domain of diguanylate cyclase STM1987 in the invasive Salmonella enterica serovar Typhimurium type strain D23580. This SNP was conserved in 118 other iNTS strains analyzed and was comparatively absent in global S Typhimurium isolates associated with gastroenteritis. STM1987 catalyzes the formation of bis-(3',5')-cyclic dimeric GMP (c-di-GMP) and is proposed to stimulate production of cellulose independent of the master biofilm regulator CsgD. We show that the amino acid change in STM1987 leads to a 10-fold drop in cellulose production and increased fitness in a mouse model of acute infection. Reduced cellulose production due to the SNP led to enhanced survival in both murine and human macrophage cell lines. In contrast, loss of CsgD-dependent cellulose production did not lead to any measurable change in in vivo fitness. We hypothesize that the SNP in stm1987 represents a pathoadaptive mutation for iNTS strains.


Subject(s)
Bacterial Proteins/genetics , Genetic Fitness , Polymorphism, Single Nucleotide , Protein Interaction Domains and Motifs , Salmonella Infections/microbiology , Salmonella/genetics , Animals , Bacterial Proteins/metabolism , Humans , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Mice , Microbial Viability , Salmonella/metabolism , Salmonella typhimurium/genetics , Salmonella typhimurium/pathogenicity , Virulence/genetics
4.
J Vis Exp ; (155)2020 01 18.
Article in English | MEDLINE | ID: mdl-32009660

ABSTRACT

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a technique that can be used to discover the regulatory targets of transcription factors, histone modifications, and other DNA-associated proteins. ChIP-seq data can also be used to find differential binding of transcription factors in different environmental conditions or cell types. Initially, ChIP was performed through hybridization on a microarray (ChIP-chip); however, ChIP-seq has become the preferred method through technological advancements, decreasing financial barriers to sequencing, and massive amounts of high-quality data output. Techniques of performing ChIP-seq with bacterial biofilms, a major source of persistent and chronic infections, are described in this protocol. ChIP-seq is performed on Salmonella enterica serovar Typhimurium biofilm and planktonic cells, targeting the master biofilm regulator, CsgD, to determine differential binding in the two cell types. Here, we demonstrate the appropriate amount of biofilm to harvest, normalizing to a planktonic control sample, homogenizing biofilm for cross-linker access, and performing routine ChIP-seq steps to obtain high quality sequencing results.


Subject(s)
Biofilms , Chromatin Immunoprecipitation/methods , High-Throughput Nucleotide Sequencing/methods , Salmonella typhimurium/genetics , Transcription Factors/metabolism
5.
Front Vet Sci ; 4: 138, 2017.
Article in English | MEDLINE | ID: mdl-29159172

ABSTRACT

Salmonella are important pathogens worldwide and a predominant number of human infections are zoonotic in nature. The ability of strains to form biofilms, which is a multicellular behavior characterized by the aggregation of cells, is predicted to be a conserved strategy for increased persistence and survival. It may also contribute to the increasing number of infections caused by ingestion of contaminated fruits and vegetables. There is a correlation between biofilm formation and the ability of strains to colonize and replicate within the intestines of multiple host species. These strains predominantly cause localized gastroenteritis infections in humans. In contrast, there are salmonellae that cause systemic, disseminated infections in a select few host species; these "invasive" strains have a narrowed host range, and most are unable to form biofilms. This includes host-restricted Salmonella serovar Typhi, which are only able to infect humans, and atypical gastroenteritis strains associated with the opportunistic infection of immunocompromised patients. From the perspective of transmission, biofilm formation is advantageous for ensuring pathogen survival in the environment. However, from an infection point of view, biofilm formation may be an anti-virulence trait. We do not know if the capacity to form biofilms prevents a strain from accessing the systemic compartments within the host or if loss of the biofilm phenotype reflects a change in a strain's interaction with the host. In this review, we examine the connections between biofilm formation, Salmonella disease states, degrees of host adaptation, and how this might relate to different transmission patterns. A better understanding of the dynamic lifecycle of Salmonella will allow us to reduce the burden of livestock and human infections caused by these important pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL