Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
Add more filters

Country/Region as subject
Publication year range
1.
New Phytol ; 241(4): 1794-1812, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38135652

ABSTRACT

The SWI/SNF complex is guided to the promoters of designated genes by its co-operator to activate transcription in a timely and appropriate manner to govern development, pathogenesis, and stress responses in fungi. Nevertheless, knowledge of the complexes and their co-operator in phytopathogenic fungi is still fragmented. We demonstrate that the heat shock transcription factor SsHsf1 guides the SWI/SNF complex to promoters of heat shock protein (hsp) genes and antioxidant enzyme genes using biochemistry and pharmacology. This is accomplished through direct interaction with the complex subunit SsSnf5 under heat shock and oxidative stress. This results in the activation of their transcription and mediates histone displacement to maintain reactive oxygen species (ROS) homeostasis. Genetic results demonstrate that the transcription module formed by SsSnf5 and SsHsf1 is responsible for regulating morphogenesis, stress tolerance, and pathogenicity in Sclerotinia sclerotiorum, especially by directly activating the transcription of hsp genes and antioxidant enzyme genes counteracting plant-derived ROS. Furthermore, we show that stress-induced phosphorylation of SsSnf5 is necessary for the formation of the transcription module. This study establishes that the SWI/SNF complex and its co-operator cooperatively regulate the transcription of hsp genes and antioxidant enzyme genes to respond to host and environmental stress in the devastating phytopathogenic fungi.


Subject(s)
Ascomycota , DNA-Binding Proteins , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , DNA-Binding Proteins/metabolism , Reactive Oxygen Species , Antioxidants , Virulence , Heat-Shock Proteins/metabolism , Homeostasis
2.
J Magn Reson Imaging ; 59(5): 1655-1664, 2024 May.
Article in English | MEDLINE | ID: mdl-37555723

ABSTRACT

BACKGROUND: Cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion has been verified as an independent and critical biomarker of negative prognosis and short survival in isocitrate dehydrogenase (IDH)-mutant astrocytoma. Therefore, noninvasive and accurate discrimination of CDKN2A/B homozygous deletion status is essential for the clinical management of IDH-mutant astrocytoma patients. PURPOSE: To develop a noninvasive, robust preoperative model based on MR image features for discriminating CDKN2A/B homozygous deletion status of IDH-mutant astrocytoma. STUDY TYPE: Retrospective. POPULATION: Two hundred fifty-one patients: 107 patients with CDKN2A/B homozygous deletion and 144 patients without CDKN2A/B homozygous deletion. FIELD STRENGTH/SEQUENCE: 3.0 T/1.5 T: Contrast-enhanced T1-weighted spin-echo inversion recovery sequence (CE-T1WI) and T2-weighted fluid-attenuation spin-echo inversion recovery sequence (T2FLAIR). ASSESSMENT: A total of 1106 radiomics and 1000 deep learning features extracted from CE-T1WI and T2FLAIR were used to develop models to discriminate the CDKN2A/B homozygous deletion status. Radiomics models, deep learning-based radiomics (DLR) models and the final integrated model combining radiomics features with deep learning features were developed and compared their preoperative discrimination performance. STATISTICAL TESTING: Pearson chi-square test and Mann Whitney U test were used for assessing the statistical differences in patients' clinical characteristics. The Delong test compared the statistical differences of receiver operating characteristic (ROC) curves and area under the curve (AUC) of different models. The significance threshold is P < 0.05. RESULTS: The final combined model (training AUC = 0.966; validation AUC = 0.935; test group: AUC = 0.943) outperformed the optimal models based on only radiomics or DLR features (training: AUC = 0.916 and 0.952; validation: AUC = 0.886 and 0.912; test group: AUC = 0.862 and 0.902). DATA CONCLUSION: Whether based on a single sequence or a combination of two sequences, radiomics and DLR models have achieved promising performance in assessing CDKN2A/B homozygous deletion status. However, the final model combining both deep learning and radiomics features from CE-T1WI and T2FLAIR outperformed the optimal radiomics or DLR model. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Astrocytoma , Deep Learning , Humans , Homozygote , Isocitrate Dehydrogenase/genetics , Radiomics , Retrospective Studies , Sequence Deletion , Astrocytoma/diagnostic imaging , Astrocytoma/genetics , Magnetic Resonance Imaging , Cyclin-Dependent Kinase Inhibitor p16/genetics
3.
Environ Res ; 243: 117846, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38065387

ABSTRACT

As a major challenge to global food security, soil salinity is an important abiotic stress factor that seriously affects the crop growth and yield. In this study, the mechanism of salt resistance of Pantoea jilinensis D25 and its improving effect on salt tolerance of tomato were explored with salt resistance-related genes identified in strain D25 by genomic sequencing. The results showed that in comparison with the treatment of NaCl, strain D25 significantly increased the fresh weight, shoot length, root length, and chlorophyll content of tomato under salt stress by 46.7%, 20%, 42.4%, and 44.2%, respectively, with increased absorptions of various macronutrients and micronutrients and decreased accumulation of Na+. The activities of defense enzymes (peroxidase, catalase, superoxide dismutase, phenylalanine ammonia-lyase, and polyphenol oxidase) were enhanced, while the content of malondialdehyde was decreased. The results of quantitative real-time PCR analysis showed that the expressions of genes (SlSOS1, SlNHX1, SlHKT1.1, SlSOD1, SlAPX2, SlAOS, SlPin II, Solyc08g066270.1, Solyc03g083420.2 and SlGA20ox1) related to ion transporters, antioxidant machinery, key defense, serine/threonine protein kinase synthesis, and gibberellin (GA) signal protein were up-regulated and were the highest in the treatment of both NaCl and strain D25. The activities of enzymes (dehydrogenase, urease, invertase, and catalase activities) related to soil fertility were enhanced. The results of 16S rRNA sequencing showed that soil microbial diversity and the abundance of probiotics (e.g., Acidibacter, Limnobacter, and Romboutsia) were significantly increased. Our study provided strong experimental evidence to support the agricultural application of strain D25 in the promotion of growth in crops.


Subject(s)
Pantoea , Solanum lycopersicum , Antioxidants/metabolism , Catalase , Salt Tolerance , Pantoea/metabolism , Soil/chemistry , RNA, Ribosomal, 16S/genetics , Sodium Chloride
4.
Mol Carcinog ; 62(4): 427-437, 2023 04.
Article in English | MEDLINE | ID: mdl-36537719

ABSTRACT

Lung cancer is the leading cause of cancer related deaths worldwide. Nonsmall cell lung cancers (NSCLC), the most common histological type of lung cancer, are known to be less well characterized. Long noncoding RNAs are a new class of cancer regulators. Here, we aimed to investigate the effect of lncRNA PLIC11 in NSCLC progression. In our study, we found that PLIC11 was upregulated in lung cancer, particularly in metastatic lung cancer tissues. Overexpression of PLIC11 enhanced cell proliferation, migration, and metastasis in vitro and in vivo. Mechanically, PLIC11 could interact with YY1 and promote PIWIL4 expression by transcription activation. Therefore, PLIC11 upregulation is a potential indicator of aggressive lung cancer, Silencing of PLIC11 has great potential therapeutic strategy in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Cell Line, Tumor , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Up-Regulation , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Proliferation/genetics , MicroRNAs/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , YY1 Transcription Factor/genetics
5.
Eur Radiol ; 33(2): 872-883, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35984514

ABSTRACT

OBJECTIVES: To develop a clinical radiomics-integrated model based on 18 F-fluorodeoxyglucose positron emission tomography ([18F]FDG PET) and multi-modal MRI for predicting alpha thalassemia/mental retardation X-linked (ATRX) mutation status of IDH-mutant lower-grade gliomas (LGGs). METHODS: One hundred and two patients (47 ATRX mutant-type, 55 ATRX wild-type) diagnosed with IDH-mutant LGGs (CNS WHO grades 1 and 2) were retrospectively enrolled. A total of 5540 radiomics features were extracted from structural MR (sMR) images (contrast-enhanced T1-weighted imaging, CE-T1WI; T2-weighted imaging, and T2WI), functional MR (fMR) images (apparent diffusion coefficient, ADC; cerebral blood volume, CBV), and metabolic PET images ([18F]FDG PET). The random forest algorithm was used to establish a clinical radiomics-integrated model, integrating the optimal multi-modal radiomics model with three clinical parameters. The predictive effectiveness of the models was evaluated by receiver operating characteristic (ROC) and decision curve analysis (DCA). RESULTS: The optimal multi-modal model incorporated sMR (CE-T1WI), fMR (ADC), and metabolic ([18F]FDG) images ([18F]FDG PET+ADC+ CE-T1WI) with the area under curves (AUCs) in the training and test groups of 0.971 and 0.962, respectively. The clinical radiomics-integrated model, incorporating [18F]FDG PET+ADC+CE-T1WI, three clinical parameters (KPS, SFSD, and ATGR), showed the best predictive effectiveness in the training and test groups (0.987 and 0.975, respectively). CONCLUSIONS: The clinical radiomics-integrated model with metabolic, structural, and functional information based on [18F]FDG PET and multi-modal MRI achieved promising performance for predicting the ATRX mutation status of IDH-mutant LGGs. KEY POINTS: • The clinical radiomics-integrated model based on [18F]FDG PET and multi-modal MRI achieved promising performance for predicting ATRX mutation status in LGGs. • The study investigated the value of multicenter clinical radiomics-integrated model based on [18F]FDG PET and multi-modal MRI in LGGs regarding ATRX mutation status prediction. • The integrated model provided structural, functional, and metabolic information simultaneously and demonstrated with satisfactory calibration and discrimination in the training and test groups (0.987 and 0.975, respectively).


Subject(s)
Brain Neoplasms , Glioma , Intellectual Disability , alpha-Thalassemia , Humans , Fluorodeoxyglucose F18 , Retrospective Studies , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Glioma/diagnostic imaging , Glioma/genetics , Glioma/metabolism , Magnetic Resonance Imaging/methods , Mutation , X-linked Nuclear Protein/genetics
6.
Mol Cell Probes ; 71: 101923, 2023 10.
Article in English | MEDLINE | ID: mdl-37517598

ABSTRACT

Lung cancer is one of the most common malignant tumors and has a poor prognosis and a low survival rate. Traditional treatments, such as radiotherapy and chemotherapy, still face some challenges because of high drug resistance and toxicity. Therefore, it is necessary to discover a new kind of targeted drug with low toxicity and high efficiency. CDK12 is a cell cycle-dependent kinase whose main function is to activate RNA polymerase II (RNAPII) and promote the transcriptional extension of RNA. However, the role and molecular mechanism of CDK12 in lung cancer are still unclear. In this study, the mutation and RNA-Seq data of CDK12 in lung adenocarcinoma and squamous cell carcinoma were downloaded from The Cancer Genome Atlas (TCGA) database and analyzed with the custom scripts. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8) and cell colony formation assays. A subcutaneous tumor experiment in nude mice was used to examine the effects of CDK12 knockdown on the in vivo tumor growth of NSCLC cells. The cell cycle distribution and the apoptosis rate of lung cancer cells were assessed by flow cytometry. Regulation of TANK-binding kinase 1 (TBK1) by CDK12 was evaluated by quantitative PCR, immunoprecipitation and Western blot analysis. In this study we have analyzed the mutation and expression data of The Cancer Genome Atlas (TCGA) database and found that CDK12 is highly expressed in lung cancer tissues. Clinical correlation analysis showed that high expression of CDK12 in NSCLC reduces patient survival, but its high expression is only related to early tumor progression and has no significant correlation with late tumor progression and metastasis. Furthermore, we present evidence that CDK12 depletion in lung cancer cell lines not only leads to the inhibition of cell growth and induces apoptosis but also inhibits tumor growth of NSCLC cells in vivo. CDK12 positively regulates the expression of the oncogene TBK1 in lung cancer cells. These results revealed that CDK12 affects the progression of non-small cell lung cancer through positive regulation of TBK1 expression, suggesting that CDK12 might be a potential molecular target for the treatment of non-small cell lung cancer.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Mice , Adenocarcinoma of Lung/genetics , Apoptosis/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/genetics , Lung Neoplasms/pathology , Mice, Nude , Humans
7.
J Appl Microbiol ; 134(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37884449

ABSTRACT

AIMS: Soybean root rot, caused by Fusarium oxysporum, leads to significant economic and financial losses to the soybean processing industry globally. In the study, we aimed to explore a biocontrol agent to combat F. oxysporum infection in soybean. METHODS AND RESULTS: From soybean rhizosphere soil, 48 strains were isolated. Among them, the strain DR11 exhibited the highest inhibition rate of 72.27%. Morphological, physiological, biochemical, and 16S rDNA identification revealed that the strain DR11 was Klebsiella grimontii DR11. Strain DR11 could inhibit the growth of F. oxysporum and spore formation and alter the mycelial morphology. At 5.0 × 106 CFU mL-1, pH 7, and 30°C, it exhibited the highest inhibitory rate (72.27%). Moreover, it could decrease the activity of cell-wall-degrading enzymes of F. oxysporum. Simultaneously, the activities of defense-related enzymes and content of malondialdehyde in soybean plants were increased after treatment with strain DR11. In addition, strain DR11 could form aggregates to form biofilm and adsorb on the surface of soybean roots. It inhibited F. oxysporum growth on soybean seedlings, with an inhibitory effect of 62.71%. CONCLUSION: Klebsiella grimontii DR11 had a strong inhibitory effect on F. oxysporum and could be used as a biocontrol agent to combat F. oxysporum infection in soybean.


Subject(s)
Antifungal Agents , Fusarium , Glycine max/microbiology , Plant Diseases/prevention & control , Plant Diseases/microbiology
8.
Exp Cell Res ; 409(1): 112897, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34717919

ABSTRACT

It is urgent to identify new biomarkers and therapeutic targets to ameliorate the clinical prognosis of patients with lung cancer. The functional significance and molecular mechanism of dynein cytoplasmic 1 heavy chain 1 (DYNC1H1) in nonsmall cell lung cancer (NSCLC) progression is still elusive. In our current study, publicly available data and Western blotting experiments confirmed that DYNC1H1 expression was upregulated in lung cancer samples compared with noncancerous samples. Quantitative real-time PCR (qPCR) results indicated that high DYNC1H1 expression in lung cancer tissues was significantly associated with clinical tumor stage and distal metastasis; moreover, its high expression was negatively correlated with prognosis. Functional experiments demonstrated that DYNC1H1 loss of function caused a significant decrease in cell viability and cell proliferative ability, inhibition of the cell cycle, and promotion of both migration potential and invasion potential in vitro. Animal experiments by tail vein injection of lung cancer cells showed that DYNC1H1 knockdown significantly decreased lung cancer metastasis. Mechanistically, the results from a human protein array showed changes in the IFN-γ-JAK-STAT signaling pathway, and analysis of The Cancer Genome Atlas (TCGA) immune data demonstrated that disturbance of the immune microenvironment might be involved in the impaired growth and metastatic ability mediated by DYNC1H1 loss in NSCLC. DYNC1H1 might serve as a promising biological marker of prognosis and a potential clinical therapeutic target for patients with NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Cell Proliferation/genetics , Cytoplasmic Dyneins/genetics , Immunity/genetics , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Signal Transduction/genetics , A549 Cells , Animals , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Interferon-gamma/genetics , Janus Kinase 1/genetics , Lung/immunology , Lung/pathology , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Prognosis , STAT Transcription Factors/genetics , Tumor Microenvironment , Up-Regulation/genetics
9.
Phytopathology ; 112(4): 830-841, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34664975

ABSTRACT

Autophagy is a highly conserved degrading process that is crucial for cell growth and development in eukaryotes, especially when they face starvation and stressful conditions. To evaluate the functions of Atg4 and Atg8 in mycelial growth, asexual and sexual development, and virulence in Cochliobolus heterostrophus, ΔChatg4 and ΔChatg8 mutants were generated by gene replacement. Strains deleted for ChATG4 and ChATG8 genes showed significant changes in vegetative growth and development of conidia and ascospores compared with the wild-type strain. The autophagy process was blocked and virulence was reduced dramatically in ΔChatg4 and ΔChatg8 mutants. In addition, deletion of ChATG4 and ChATG8 disordered Cdc10 subcellular localization and formation of septin rings. The direct physical interaction between ChAtg4 and ChAtg8 was detected by yeast two-hybrid assay, and ChAtg4-GFP was dispersed throughout the cytoplasm, although GFP-ChAtg8 appeared as punctate structures. All phenotypes were restored in complemented strains. Taken together, these findings indicate that ChATG4 and ChATG8 are crucial for autophagy to regulate fungal growth, development, virulence, and localization of septin in C. heterostrophus.


Subject(s)
Ascomycota , Septins , Ascomycota/physiology , Autophagy , Bipolaris , Fungal Proteins/genetics , Fungal Proteins/metabolism , Plant Diseases/microbiology , Septins/genetics , Spores, Fungal/genetics , Virulence/genetics
10.
Phytopathology ; 112(7): 1476-1485, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35021860

ABSTRACT

Sclerotinia sclerotiorum is a notorious phytopathogenic Ascomycota fungus with a host range of >600 plant species worldwide. This homothallic Leotiomycetes species reproduces sexually through a multicellular apothecium that produces and releases ascospores. These ascospores serve as the primary inoculum source for disease initiation in the majority of S. sclerotiorum disease cycles. The regulation of apothecium development for this pathogen and other apothecium-producing fungi remains largely unknown. Here, we report that a C2H2 transcription factor, SsZFH1 (zinc finger homologous protein), is necessary for the proper development and maturation of sclerotia and apothecia in S. sclerotiorum and is required for the normal growth rate of hyphae. Furthermore, ΔSszfh1 strains exhibit decreased H2O2 accumulation in hyphae, increased melanin deposition, and enhanced tolerance to H2O2 in the process of vegetative growth and sclerotia formation. Infection assays on common bean leaves, with thin cuticles, and soybean and tomato leaves, with thick cuticles, suggest that the deletion of Sszfh1 slows the mycelial growth rate, which in turn affects the expansion of leaf lesions. Collectively, our results provide novel insights into a major fungal factor mediating maturation of apothecia with additional effects on hyphae and sclerotia development.


Subject(s)
Ascomycota , Transcription Factors , Hydrogen Peroxide/metabolism , Plant Diseases/microbiology , Spores, Fungal , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Int J Mol Sci ; 23(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35409115

ABSTRACT

Magnaporthe oryzae is a fungal pathogen that causes rice blast, a highly destructive disease. In the present study, the bacteria strain GS-1 was isolated from the rhizosphere soil of ginseng and identified as Bacillus velezensis through 16S rRNA gene sequencing, whole genome assembly, and average nucleotide identity analysis. B. velezensis strain GS-1 exhibited significant antagonistic activity to several plant fungal pathogens. Through whole genome sequencing, 92 Carbohydrate-Active Enzymes and 13 gene clusters that encoded for secondary metabolites were identified. In addition, strain GS-1 was able to produce the lipopeptide compounds, surfactin, fengycin, and plantazolicin. The inhibitory effects of lipopeptide compounds on M. oryzae were confirmed, and the antagonistic mechanism was explored using transcriptomics and metabolomics analysis. Differential expressed genes (DEGs) and differential accumulated metabolites (DAMs) revealed that the inhibition of M. oryzae by lipopeptide produced by GS-1 downregulated the expression of genes involved in amino acid metabolism, sugar metabolism, oxidative phosphorylation, and autophagy. These results may explain why GS-1 has antagonistic activity to fungal pathogens and revealed the mechanisms underlying the inhibitory effects of lipopeptides produced by GS-1 on fungal growth, which may provide a theoretical basis for the potential application of B. velezensis GS-1 in future plant protection.


Subject(s)
Ascomycota , Magnaporthe , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Ascomycota/genetics , Bacillus , Lipopeptides/chemistry , Magnaporthe/genetics , Plant Diseases/microbiology , Plant Diseases/prevention & control , RNA, Ribosomal, 16S
12.
Appl Opt ; 60(22): 6695-6705, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34612913

ABSTRACT

Stray radiation analysis coupled with a temperature field is performed for a semitransparent window, focusing on the temperature-dependent optical properties. The transient temperature response of the optical window-based encapsulation structure is first investigated under an external transient high-heat flux loading. The spectral selectivity of the window to thermal radiation is involved. Subsequently, several typical cases for stray radiation are conducted, considering the inhomogeneous optical properties caused by the temperature heterogeneity. It is found that the stray radiation distribution is more chaotic compared to the results with optical properties independent of temperature. In addition, the stray radiation power has a large deviation (150%) if one neglects the temperature dependence. Meanwhile, the difference in wave band power decreases with the wavelength rising. Additionally, the stray radiation power generated by the window is far less in the visible wave band than that in the near-infrared wave band. The results reveal that the temperature dependence in optical properties of a semitransparent window should be seriously considered when calculating the stray radiation, especially in high-precision detection devices.

13.
Biomed Chromatogr ; 35(5): e5056, 2021 May.
Article in English | MEDLINE | ID: mdl-33341091

ABSTRACT

NK-1375 is a major metabolite of the diamide insecticide cyclaniliprole (CYCP) with toxicological significance. It is formed in various transformation pathways of CYCP, including photolysis and plant metabolism. In the present study, NK-1375 was produced employing the liquid-phase photolysis of CYCP followed by isolation using preparative liquid chromatography. The structure of the isolated substance was confirmed using MS and 1 H NMR spectroscopy, and its purity was measured to be 95.9% using HPLC. As its application, a residue analysis method was first developed for the simultaneous determination of CYCP and NK-1375 in six representative plant-origin foods using fast multi-plug filtration cleanup and UHPLC-MS/MS. Excellent linearity (r > 0.999) was obtained over the calibration range from 0.001 to 0.1 µg mL-1 . The recoveries (intra-day and inter-day) of CYCP and NK-1375 from different matrices ranged from 74 to 112%, with corresponding relative standard deviations less than 13%. The limits of quantitation of these two compounds were defined at 0.01 mg kg-1 . This study can be useful for the subsequent analytical or toxicological research on this important pesticide metabolite.


Subject(s)
Food Contamination/analysis , Insecticides/analysis , Pesticide Residues/analysis , Plant Extracts/chemistry , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry
14.
Plant Cell Environ ; 43(5): 1192-1211, 2020 05.
Article in English | MEDLINE | ID: mdl-31990078

ABSTRACT

Although the function and regulation of SnRK1 have been studied in various plants, its molecular mechanisms in response to abiotic stresses are still elusive. In this work, we identified an AP2/ERF domain-containing protein (designated GsERF7) interacting with GsSnRK1 from a wild soybean cDNA library. GsERF7 gene expressed dominantly in wild soybean roots and was responsive to ethylene, salt, and alkaline. GsERF7 bound GCC cis-acting element and could be phosphorylated on S36 by GsSnRK1. GsERF7 phosphorylation facilitated its translocation from cytoplasm to nucleus and enhanced its transactivation activity. When coexpressed in the hairy roots of soybean seedlings, GsSnRK1(wt) and GsERF7(wt) promoted plants to generate higher tolerance to salt and alkaline stresses than their mutated species, suggesting that GsSnRK1 may function as a biochemical and genetic upstream kinase of GsERF7 to regulate plant adaptation to environmental stresses. Furthermore, the altered expression patterns of representative abiotic stress-responsive and hormone-synthetic genes were determined in transgenic soybean hairy roots after stress treatments. These results will aid our understanding of molecular mechanism of how SnRK1 kinase plays a cardinal role in regulating plant stress resistances through activating the biological functions of downstream factors.


Subject(s)
Glycine max/metabolism , Plant Proteins/metabolism , Transcription Factors/metabolism , DNA, Plant/metabolism , Electrophoretic Mobility Shift Assay , Gene Expression Regulation, Plant , Phosphorylation , Phylogeny , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/physiology , Plant Roots/metabolism , Sequence Alignment , Glycine max/genetics , Glycine max/physiology , Stress, Physiological , Transcription Factors/genetics , Transcription Factors/physiology
15.
FASEB J ; 33(3): 4404-4417, 2019 03.
Article in English | MEDLINE | ID: mdl-30576233

ABSTRACT

Alzheimer's disease (AD) is a leading cause of dementia. However, the mechanisms responsible for development of AD, especially for the sporadic variant, are still not clear. In our previous study, we discovered that a small noncoding RNA (miR-188-3p) targeting ß-site amyloid precursor protein cleaving enzyme (BACE)-1, a key enzyme responsible for Aß formation, plays an important role in the development of neuropathology in AD. In the present study, we identified that miR-338-5p, a new miRNA that also targets BACE1, contributes to AD neuropathology. We observed that expression of miR-338-5p was significantly down-regulated in the hippocampus of patients with AD and 5XFAD transgenic (TG) mice, an animal model of AD. Overexpression of miR-338-5p in the hippocampus of TG mice reduced BACE1 expression, Aß formation, and neuroinflammation. Overexpression of miR-338-5p functionally prevented impairments in long-term synaptic plasticity, learning ability, and memory retention in TG mice. In addition, we provide evidence that down-regulated expression of miR-338-5p in AD is regulated through the NF-κB signaling pathway. Our results suggest that down-regulated expression of miR-338-5p plays an important role in the development of AD.-Qian, Q., Zhang, J., He, F.-P., Bao, W.-X., Zheng, T.-T., Zhou, D.-M., Pan, H.-Y., Zhang, H., Zhang, X.-Q., He, X., Sun, B.-G., Luo, B.-Y., Chen, C., Peng, G.-P. Down-regulated expression of microRNA-338-5p contributes to neuropathology in Alzheimer's disease.


Subject(s)
Alzheimer Disease/genetics , Hippocampus/metabolism , MicroRNAs/physiology , 3' Untranslated Regions , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/biosynthesis , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Peptides/metabolism , Animals , Aspartic Acid Endopeptidases/biosynthesis , Aspartic Acid Endopeptidases/genetics , Cells, Cultured , Disease Models, Animal , Down-Regulation , Humans , Inflammation , Male , Maze Learning , Memory Disorders/genetics , Memory Disorders/prevention & control , Mice , Mice, Transgenic , MicroRNAs/biosynthesis , MicroRNAs/genetics , NF-kappa B/physiology , Neuronal Plasticity , Neurons/metabolism , Peptide Fragments/metabolism , Primary Cell Culture , Recombinant Proteins/metabolism
16.
Microb Cell Fact ; 19(1): 164, 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32811496

ABSTRACT

BACKGROUND: Ergothioneine (EGT) has a unique antioxidant ability and diverse beneficial effects on human health. But the content of EGT is very low in its natural producing organisms such as Mycobacterium smegmatis and mushrooms. Therefore, it is necessary to highly efficient heterologous production of EGT in food-grade yeasts such as Saccharomyces cerevisiae. RESULTS: Two EGT biosynthetic genes were cloned from the mushroom Grifola frondosa and successfully heterologously expressed in Saccharomyces cerevisiae EC1118 strain in this study. By optimization of the fermentation conditions of the engineered strain S. cerevisiae EC1118, the 11.80 mg/L of EGT production was obtained. With daily addition of 1% glycerol to the culture medium in the fermentation process, the EGT production of the engineered strain S. cerevisiae EC1118 can reach up to 20.61 mg/L. CONCLUSION: A successful EGT de novo biosynthetic system of S. cerevisiae containing only two genes from mushroom Grifola frondosa was developed in this study. This system provides promising prospects for the large scales production of EGT for human health.


Subject(s)
Agaricales/genetics , Ergothioneine/biosynthesis , Glycerol/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Antioxidants/chemistry , Ergothioneine/chemistry , Fermentation , Gene Expression Regulation, Bacterial , Genes, Fungal , Industrial Microbiology , Microorganisms, Genetically-Modified
17.
Exp Cell Res ; 374(2): 304-314, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30528265

ABSTRACT

E3 ubiquitin ligases, which are key enzymes in the ubiquitin proteasome system, catalyze the ubiquitination of proteins to target them for proteasomal degradation. Emerging evidence suggests that E3 ubiquitin ligases play important roles in the development and progression of lung cancer. In our study, we characterized the gene expression landscape of lung cancer using data obtained from TCGA to explore the changes in E3 ubiquitin ligase containing the regulators of E3 ubiquitin ligase activity. Overall, most gene expression changes occurred in NSCLC tissues compared with adjacent normal ones. In total, 48 E3 ubiquitin ligases containing the regulators were up-regulated in NSCLC tissues compared with their levels in normal tissues. We analyzed the expression of up-regulated E3 ubiquitin ligases containing the regulators in two publicly available transcriptome data sets (GSE13213 and GSE30219). We found that four E3 ubiquitin ligases (UHRF1, BRCA1, TRAIP and HLTF) and one regulator of ubiquitin E3 activity DCUN1D1 that were dramatically up-regulated in cancer were significantly associated with tumor metastasis and patient's poor prognosis both in two transcriptome data sets. Next, clinical analysis indicated that the expression levels of DCUN1D1 correlated with clinical stage and lymph node metastasis in NSCLC patients as determined by quantitative reverse transcription-PCR. Furthermore, functional assays showed that DCUN1D1 promoted NSCLC cell invasion and migration as determined by transwell assay in vitro. Mechanistically, we found that the C-terminal Cullin binding domain leads to oncogenic activity and the UBA domain acts as a negative regulator of DCUN1D1 function in NSCLC. Moreover, DCUN1D1 activated the FAK oncogenic signaling pathway and up-regulated PD-L1. Taken together, our results demonstrate that DCUN1D1 is a metastasis regulator and suggest a new therapeutic option for NSCLC metastasis.


Subject(s)
B7-H1 Antigen/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Focal Adhesion Kinase 1/genetics , Intracellular Signaling Peptides and Proteins/genetics , Lung Neoplasms/genetics , Neoplasm Metastasis/genetics , Signal Transduction/genetics , A549 Cells , Carcinogenesis/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/genetics , Humans , Lung Neoplasms/pathology , Neoplasm Metastasis/pathology , Proteasome Endopeptidase Complex/genetics , Protein Binding/genetics , Transcriptional Activation/genetics , Ubiquitin/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination/genetics , Up-Regulation/genetics
18.
Ecotoxicol Environ Saf ; 183: 109581, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31446172

ABSTRACT

Chlorimuron-ethyl is a sulfonylurea herbicide with a long residual period in the field and is toxic to rotational crops. Klebsiella jilinsis 2N3 is a gram-negative bacterium that can rapidly degrade Chlorimuron-ethyl. In this study, the gene expression changes in strain 2N3 during degradation of Chlorimuron-ethyl was analyzed by RNA-Seq. Results showed that 386 genes were up-regulated and 453 genes were down-regulated. KEGG pathway enrichment analysis revealed the highest enrichment ratio in the pathway of sulfur metabolism. On the basis of the functional annotation and gene expression, we predicted that carboxylesterase, monooxygenase, glycosyltransferase, and cytochrome P450 were involved in the metabolism of Chlorimuron-ethyl biodegradation. Results of qRT-PCR showed that the relative mRNA expression levels of these genes were higher in treatment group than those in control group. The cytochrome P450 encoded by Kj-CysJ and the alkanesulfonate monooxygenase encoded by Kj-SsuD were predicted and further experimentally confirmed by gene knockout as the key enzymes in the biodegradation process. Cultured in basal medium containing Chlorimuron-ethyl (5  mg L-1) in 36 h, the strains of ΔKj-CysJ, ΔKj-SsuD, and WT reached the highest OD600 values of 0.308, 0.873, and 1.085, and the highest degradation rates of Chlorimuron-ethyl of 11.83%, 96.21%, and 95.62%, respectively.


Subject(s)
Herbicides/metabolism , Klebsiella/genetics , Pyrimidines/metabolism , Soil Pollutants/metabolism , Sulfonylurea Compounds/metabolism , Transcriptome , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Gene Expression Regulation, Bacterial , Klebsiella/growth & development , Klebsiella/metabolism , Sulfur/metabolism
19.
Int J Mol Sci ; 20(12)2019 Jun 22.
Article in English | MEDLINE | ID: mdl-31234527

ABSTRACT

Klebsiella pneumoniae 2N3 is a strain of gram-negative bacteria that can degrade chlorimuron-ethyl and grow with chlorimuron-ethyl as the sole nitrogen source. The complete genome of Klebsiella pneumoniae 2N3 was sequenced using third generation high-throughput DNA sequencing technology. The genomic size of strain 2N3 was 5.32 Mb with a GC content of 57.33% and a total of 5156 coding genes and 112 non-coding RNAs predicted. Two hydrolases expressed by open reading frames (ORFs) 0934 and 0492 were predicted and experimentally confirmed by gene knockout to be involved in the degradation of chlorimuron-ethyl. Strains of ΔORF 0934, ΔORF 0492, and wild type (WT) reached their highest growth rates after 8-10 hours in incubation. The degradation rates of chlorimuron-ethyl by both ΔORF 0934 and ΔORF 0492 decreased in comparison to the WT during the first 8 hours in culture by 25.60% and 24.74%, respectively, while strains ΔORF 0934, ΔORF 0492, and the WT reached the highest degradation rates of chlorimuron-ethyl in 36 hours of 74.56%, 90.53%, and 95.06%, respectively. This study provides scientific evidence to support the application of Klebsiella pneumoniae 2N3 in bioremediation to control environmental pollution.


Subject(s)
Genome, Bacterial , Klebsiella pneumoniae/metabolism , Pyrimidines/metabolism , Sulfonylurea Compounds/metabolism , Herbicides , Klebsiella pneumoniae/genetics , Phylogeny , Whole Genome Sequencing
20.
FASEB J ; 31(5): 2104-2113, 2017 05.
Article in English | MEDLINE | ID: mdl-28193719

ABSTRACT

Efr3 is a newly identified plasma membrane protein and plays an important role in the phosphoinositide metabolism on the plasma membrane. However, although it is highly expressed in the brain, the functional significance of Efr3 in the brain is not clear. In the present study, we generated Efr3af/f mice and then crossed them with Nestin-Cre mice to delete Efr3a, one of the Efr3 isoforms, specifically in the brain. We found that brain-specific ablation of Efr3a promoted adult hippocampal neurogenesis by increasing survival and maturation of newborn neurons without affecting their dendritic tree morphology. Moreover, the brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) signaling pathway was significantly enhanced in the hippocampus of Efr3a-deficient mice, as reflected by increased expression of BDNF, TrkB, and the downstream molecules, including phospho-MAPK and phospho-Akt. Furthermore, the number of TUNEL+ cells was decreased in the subgranular zone of dentate gyrus in Efr3a-deficient mice compared with that of control mice. Our data suggest that brain-specific deletion of Efr3a could promote adult hippocampal neurogenesis, presumably by upregulating the expression of BDNF and its receptor, TrkB, and therefore provide new insight into the roles of Efr3 in the brain.-Qian, Q., Liu, Q., Zhou, D., Pan, H., Liu, Z., He, F., Ji, S., Wang, D., Bao, W., Liu, X., Liu, Z., Zhang, H., Zhang, X., Zhang, L., Wang, M., Xu, Y., Huang, F., Luo, B., Sun B. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Dentate Gyrus/metabolism , Hippocampus/metabolism , Membrane Proteins/metabolism , Neurogenesis/physiology , Neurons/metabolism , Signal Transduction , Animals , Mice , Receptor, trkB/genetics , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL