Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
BMC Vet Res ; 20(1): 288, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961481

ABSTRACT

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) mainly causes acute and severe porcine epidemic diarrhea (PED), and is highly fatal in neonatal piglets. No reliable therapeutics against the infection exist, which poses a major global health issue for piglets. Luteolin is a flavonoid with anti-viral activity toward several viruses. RESULTS: We evaluated anti-viral effects of luteolin in PEDV-infected Vero and IPEC-J2 cells, and identified IC50 values of 23.87Ā ĀµM and 68.5Ā ĀµM, respectively. And found PEDV internalization, replication and release were significantly reduced upon luteolin treatment. As luteolin could bind to human ACE2 and SARS-CoV-2 main protease (Mpro) to contribute viral entry, we first identified that luteolin shares the same core binding site on pACE2 with PEDV-S by molecular docking and exhibited positive pACE2 binding with an affinity constant of 71.6Ā ĀµM at dose-dependent increases by surface plasmon resonance (SPR) assay. However, pACE2 was incapable of binding to PEDV-S1. Therefore, luteolin inhibited PEDV internalization independent of PEDV-S binding to pACE2. Moreover, luteolin was firmly embedded in the groove of active pocket of Mpro in a three-dimensional docking model, and fluorescence resonance energy transfer (FRET) assays confirmed that luteolin inhibited PEDV Mpro activity. In addition, we also observed PEDV-induced pro-inflammatory cytokine inhibition and Nrf2-induced HO-1 expression. Finally, a drug resistant mutant was isolated after 10 cell culture passages concomitant with increasing luteolin concentrations, with reduced PEDV susceptibility to luteolin identified at passage 10. CONCLUSIONS: Our results push forward that anti-PEDV mechanisms and resistant-PEDV properties for luteolin, which may be used to combat PED.


Subject(s)
Antiviral Agents , Luteolin , Porcine epidemic diarrhea virus , Luteolin/pharmacology , Porcine epidemic diarrhea virus/drug effects , Animals , Antiviral Agents/pharmacology , Chlorocebus aethiops , Vero Cells , Swine , Molecular Docking Simulation , Virus Internalization/drug effects , Virus Replication/drug effects , Cell Line , Computer Simulation , Swine Diseases/virology , Swine Diseases/drug therapy
2.
Avian Pathol ; 52(6): 438-445, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37746729

ABSTRACT

The widespread occurrence of fowl adenovirus serotype 4 (FAdV-4)-induced hepatitis-hydropericardium syndrome (HHS) has led to significant economic losses for the poultry industry. A sensitive, accurate, and practical FAdV-4 diagnostic approach is urgently required to limit the incidence of the disease. In the present study, a practical method for detecting FAdV-4 was developed using the CRISPR/Cas13a system and recombinase-aided amplification. The approach was based on 37Ā°C isothermal detection with visible results being achieved. The detection limit of the target gene with this approach was only 101Ć¢Ā€Ā…copies/Āµl, making it very sensitive and specific. Clinical samples fared well when tested with the Cas13a detection method. For identifying FAdV-4, this novel detection approach was found to be sensitive, specific, and effective.RESEARCH HIGHLIGHTS First study using the CRISPR/Cas13a-based lateral flow detection assay for FAdV-4 detection.The results can be observed by the naked eye.The developed assay could provide an alternative tool for detection of FAdV-4 with minimal equipment.


Subject(s)
Adenoviridae Infections , Aviadenovirus , Poultry Diseases , Animals , Adenoviridae Infections/diagnosis , Adenoviridae Infections/veterinary , Serogroup , Clustered Regularly Interspaced Short Palindromic Repeats , Chickens , Adenoviridae/genetics , Aviadenovirus/genetics
3.
Vet Res ; 53(1): 30, 2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35436977

ABSTRACT

Avian pathogenic Escherichia coli (APEC) is a pathotype of extraintestinal pathogenic E. coli and one of the most serious infectious diseases of poultry. It not only causes great economic losses to the poultry industry, but also poses a serious threat to public health worldwide. Here, we examined the role of YqeH, a transcriptional regulator located at E. coli type III secretion system 2 (ETT2), in APEC pathogenesis. To investigate the effects of YqeH on APEC phenotype and virulence, we constructed a yqeH deletion mutant (APEC40-ΔyqeH) and a complemented strain (APEC40-CΔyqeH) of APEC40. Compared with the wild type (WT), the motility and biofilm formation of APEC40-ΔyqeH were significantly reduced. The yqeH mutant was highly attenuated in a chick infection model compared with WT, and showed severe defects in its adherence to and invasion of chicken embryo fibroblast DF-1 cells. However, the mechanisms underlying these phenomena were unclear. Therefore, we analyzed the transcriptional effects of the yqeH deletion to clarify the regulatory mechanisms of YqeH, and the role of YqeH in APEC virulence. The deletion of yqeH downregulated the transcript levels of several flagellum-, biofilm-, and virulence-related genes. Our results demonstrate that YqeH is involved in APEC pathogenesis, and the reduced virulence of APEC40-ΔyqeH may be related to its reduced motility and biofilm formation.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Poultry Diseases , Animals , Biofilms , Chick Embryo , Chickens , Escherichia coli/physiology , Escherichia coli Infections/veterinary , Escherichia coli Proteins/genetics , Virulence , Virulence Factors/genetics
4.
BMC Vet Res ; 18(1): 240, 2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35751066

ABSTRACT

BACKGROUND: Pullorum disease caused by Salmonella pullorum is one of the most important infectious diseases in the poultry industry, responsible for causing substantial economic losses globally. On farms, the traditional method to detect S. pullorum infection mainly involves the collection of feces and sera to test for antigens and antibodies, respectively, but the regularity of Salmonella pullorum dissemination in internal organs and shedding patterns and antibody production in infected chickens remains unclear. Herein we aimed to investigate the dissemination of S. pullorum to different organs and bacterial shedding patterns in the faeces as well as serum antibody production post-infection in chickens of different ages. RESULT: In this study, the liver and heart of 2-day-old chickens showed the highest copy numbers of S. pullorum at 6.4 Ɨ 106 and 1.9 Ɨ 106 copies of DNA target sequences/30 mg, respectively. In case of 10-day-old chickens, the percentage of S. pullorum fecal shedding (0%-40%) and antibody production (0%-56.6%) markedly fluctuated during the entire experiment; furthermore, in case of 42-week-old chickens, the percentage of birds showing S. pullorum shedding in the faeces showed a downward trend (from 63.33% to 6.6% in the oral inoculation group and from 43.3% to 10% in the intraperitoneal injection group), while that of birds showing serum antibody production remained at a high level (38.3% and 80% in the oral inoculation and intraperitoneal injection groups, respectively). We also performed cohabitation experiments, showed that 15% 10-day-old and 3.33% 42-week-old chickens were infected via the horizontal transmission in cohabitation with S. pullorum infected chickens, and revealed a high risk of horizontal transmission of S. pullorum. CONCLUSION: This study systematically evaluated the dissemination of S. pullorum in internal organs and bacterial fecal shedding patterns, and antibody production in infected chickens. Collectively, our findings indicate how to effectively screen S. pullorum-negative chickens on livestock farms and should also help in the development of measures to control and eradicate S. pullorum.


Subject(s)
Poultry Diseases , Salmonella Infections, Animal , Animals , Antibody Formation , Chickens/microbiology , Poultry Diseases/microbiology , Salmonella , Salmonella Infections, Animal/microbiology
5.
Microb Pathog ; 160: 105198, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34537273

ABSTRACT

Avian pathogenic Escherichia coli (APEC), a type of extraintestinal pathogenic E. coli, causes avian colibacillosis, a disease of significant economic importance to poultry producers worldwide, which is characterized by systemic infection. However, the pathogenesis of avian pathogenic E. coli strains is not well defined. Here, the role of a flagellar rotor protein encoded by the fliG gene of avian pathogenic E. coli strain AE17 was investigated. To study the role of FliG in the pathogenicity of APEC, fliG mutant and complemented strains were constructed and characterized. The inactivation of fliG had no effect on APEC growth, but significantly reduced bacterial motility. Compared with the wild type, the fliG mutant was highly attenuated in a chick infection model and showed severe defects in its adherence to and invasion of chicken embryo fibroblast DF-1Ā cells. The fliG mutant also showed reduced resistance to serum in chicks. The expression of the inflammatory cytokines interleukin 1Ɵ (IL1Ɵ), IL6, and IL8 was reduced in HD-11 macrophages infected with the fliG mutant strain compared with their expression in the wild-type strain. These results demonstrate that the FliG contributes to the virulence of APEC.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Poultry Diseases , Animals , Chick Embryo , Chickens , Escherichia coli/genetics , Escherichia coli Infections/veterinary , Escherichia coli Proteins/genetics , Virulence , Virulence Factors/genetics
6.
Microb Pathog ; 147: 104378, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32653434

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is responsible for the acute infectious swine disease porcine epidemic diarrhea (PED). PED causes damage to the intestine, including villus atrophy and shedding, leading to serious economic losses to the pig industry worldwide. We carried out an in vitro study to investigate cell apoptosis and the cell cycle in a PEDV-infected host using transcriptomic shotgun sequencing (RNA-Seq) to study gene responses to PEDV infection. Results revealed that the PEDV infection reduced proliferation activity, blocked the cell cycle at S-phase and induced apoptosis in IPEC-J2 cells. The expression of gene levels related to ribosome proteins and oxidative phosphorylation were significantly up-regulated post-PEDV infection. Although the significantly down-regulated on PI3K/Akt signaling pathway post-PEDV infection, the regulator-related genes of mTOR signaling pathway exerted significantly up-regulated or down-regulated in IPEC-J2 cells. These results indicated that ribosome proteins and oxidative phosphorylation process were widely involved in the pathological changes and regulation of host cells caused by PEDV infection, and PI3K/AKT and mTOR signaling pathways played a vital role in antiviral regulation in IPEC-J2 cells. These data might provide new insights into the specific pathogenesis of PEDV infection and pave the way for the development of effective therapeutic strategies.


Subject(s)
Apoptosis , Cell Cycle , Epithelial Cells/virology , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Cell Line , Coronavirus Infections/veterinary , Intestines , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Swine , TOR Serine-Threonine Kinases
7.
Kidney Blood Press Res ; 45(4): 603-611, 2020.
Article in English | MEDLINE | ID: mdl-32698182

ABSTRACT

INTRODUCTION: Liddle syndrome (LS), an autosomal dominant and inherited monogenic hypertension syndrome caused by pathogenic mutations in the epithelial sodium channel (ENaC) genes SCNN1A, SCNN1B, and SCNN1G. OBJECTIVE: This study was designed to identify a novel SCNN1B missense mutation in a Chinese family with a history of stroke, and to confirm that the identified mutation is responsible for LS in this family. METHODS: DNA samples were collected from the proband and 11 additional relatives. Next-generation sequencing was performed in the proband to find candidate variants. In order to exclude genetic polymorphism, the candidate variantin SCNN1B was verified in other family members, 100 hypertensives, and 100 healthy controls by Sanger sequencing. RESULTS: Genetic testing revealeda novel and rare heterozygous variant in SCNN1B in the proband. This variant resulted in a substitution of threonine instead of proline at codon 617, altering the PY motif of Ɵ-ENaC. The identified mutation was only verified in 5 relatives. In silico analyses indicated that this variant was highly pathogenic. In this family, phenotypic heterogeneity was present among 6 LS patients. Tailored medicine with amiloride was effective in controlling hypertension and improving the serum potassium concentration in patients with LS. CONCLUSIONS: We identified a novel SCNN1B mutation (c.1849C>A) in a family affected by LS. Patients with LS, especially those with severe hypertension, should be alert for the occurrence of premature stroke. Timely diagnosis using genetic testing and tailored treatment with amiloride can help LS patients to avoid severe complications.


Subject(s)
Epithelial Sodium Channels/genetics , Hypertension/complications , Liddle Syndrome/complications , Liddle Syndrome/genetics , Mutation, Missense , Stroke/complications , Adolescent , Adult , Asian People/genetics , Child , Female , Genetic Predisposition to Disease , Humans , Hypertension/genetics , Male , Middle Aged , Pedigree , Stroke/genetics , Young Adult
8.
Appl Microbiol Biotechnol ; 104(15): 6749-6765, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32556411

ABSTRACT

The composition of bacteria in the gastrointestinal tract of piglets is easily affected by environmental changes, particularly during the weaning period. Compound strains of Lactobacillus reuteri and Lactobacillus salivarius were supplemented to piglets during pre- and post-weaning to determine their effects in improving the growth performance and ameliorating the diarrhea rate and stress caused by antioxidation in piglets. A larger number of L. reuteri and L. salivarius colonized the distal segment of the ileum and the total numbers of Lactobacillus spp. and Bifidobacteria were higher in the ileal mucous membrane and cecal lumen with probiotics supplementation. The numbers of antioxidants and immune molecules increased, levels of cortisol and endotoxin reduced, and growth hormone and insulin-like growth factor 1 improved in the plasma following compound bacteria (CL) supplementation. Spearman's and KEGG analysis of the bacterial operational taxonomic unit and antioxidative and immune indices and metabolic genes indicated that the body growth modulation by CL supplementation could be attributed to optimization of the intestinal bacterial composition; functional strains of L. delbrueckii, L. salivarius, L. formicilis, L. reuteri, and L. mucosae were positively correlated with body antioxidation and immunity derived by CL supplementation. Strains of L. agilis and L. pontis were diverse and negatively correlated with body antioxidation and immunity. Collectively, these results suggest that supplementation with CL could reduce stress and improve the growth performance of piglets during weaning by optimizing the intestinal bacterial composition. KEY POINTS: Ć¢Ā€Ā¢ The colonization of L. reuteri and L. salivarius in ileal mucous membrane optimize bacterial composition of GIT, mainly some functional strains of Lactobacillus, L. delbrueckii, L. salivarius, L. formicilis, L. reuteri, and L. mucosae. Ć¢Ā€Ā¢ The optimized bacterial composition of piglets in both ileal mucous membrane and cecal content improves body growth hormone level, immunity, and antioxidation, which is helpful to defend the stress. These benefits induce to increased growth performance of animal model piglets during weaning.


Subject(s)
Dietary Supplements , Gastrointestinal Microbiome , Lactobacillus/metabolism , Probiotics/administration & dosage , Stress, Physiological , Animals , Animals, Newborn , Diarrhea/prevention & control , Female , Ileum/microbiology , Lactobacillus/genetics , Swine/growth & development , Weaning
9.
Chin Med Sci J ; 34(4): 233-240, 2019 Nov 12.
Article in English | MEDLINE | ID: mdl-33906708

ABSTRACT

Objective The aim of this study was to evaluate the diagnostic performance of T-SPOT.TB for tuberculous lymphadenitis. Methods Suspected tuberculous lymphadenitis patients between September 2010 and September 2018 who had both peripheral blood T-SPOT.TB test and lymph node biopsy were retrospectively enrolled in this study. The cutoff value of T-SPOT.TB test for peripheral blood was set as 24 spot forming cell (SFC)/10 6 periphreral blood monocyte cell (PBMC) according to the instruction of testing kits. The gold standard for diagnosis of TBL was the combination of microbiology results, histopathology results and patient's response to anti-TB treatment. Diagnostic efficacy of T-SPOT.TB was evaluated, including sensitivity, specificity, accuracy, predictive values, and likelihood ratio. Results Among 91 patients who met the inclusion criteria, we excluded 8 cases with incomplete clinical information and 6 cases who lost to follow-up. According to the gold standard, there were 37 cases of true TBL (9 confirmed TBL and 28 probable TBL), 30 cases of non-TBL, and 10 cases of clinically indeterminate diagnosis who were excluded from the final analyses. The T-SPOT.TB tests yielded 43 cases of positive response and 24 cases of negative response. The sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR) and negative likelihood ratio (NLR) of peripheral blood T-SPOT.TB for diagnosing TBL were 89.2%, 66.7%, 79.1%, 76.7%, 83.3%, 2.68 and 0.16, respectively. The number of SFCs of T-SPOT.TB in TBL patients [432(134-1264)/10 6 PBMCs] was higher than that in non-TBL patients [0 (0-30) /10 6PBMCs] with a significant difference (Z=-5.306, P <0.001).Conclusion T-SPOT.TB is a rapid and simple diagnostic test for TBL with a high sensitivity and negative predictive value.


Subject(s)
Interferon-gamma Release Tests , Tuberculosis, Lymph Node/diagnosis , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Mycobacterium tuberculosis/physiology , T-Lymphocytes/immunology , Tuberculosis, Lymph Node/blood , Young Adult
10.
World J Psychiatry ; 14(1): 36-43, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38327883

ABSTRACT

BACKGROUND: Gender consciousness directly affects the development of gender identity, which is a continuous and lifelong process. Meanwhile, hospitalization is a part of many children's lives and has an impact on their gender development. AIM: To investigate the current situation of gender identity in lower primary school children by conducting a survey of 202 hospitalized children in the lower grades and to provide a theoretical basis and foundation for the cultivation of gender identity and medical treatment of children based on the results. This study aims to inspire clinical medical staff to scientifically and reasonably arrange hospital wards for lower primary school children and pay attention to gender protection during the medical treatment process and to help children shape a unified and clear gender identity, which will enable them to better integrate into society and promote their personality development. METHODS: The gender consciousness scale for elementary and middle school students was used for the survey. RESULTS: Gender identity was already present in lower primary school children. The children's gender roles and gender equality consciousness were strong, exceeding the critical value, but their gender characteristics, gender identity, and gender ideal consciousness were weak. Children aged 6 had the weakest gender identity, and girls had significantly stronger gender identity than boys. CONCLUSION: Gender identity is already present in lower primary school children, providing a basis and inspiration for the cultivation of gender identity and medical treatment of lower primary school children. Clinical medical staff should be aware of and understand these results and should scientifically and reasonably arrange hospital wards for lower primary school children.

11.
Foods ; 13(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38890830

ABSTRACT

Mycobacterium bovis (M. bovis), the microorganism responsible for bovine tuberculosis (bTB), is transferred to people by the ingestion of unpasteurized milk and unprocessed fermented milk products obtained from animals with the infection. The identification of M. bovis in milk samples is of the utmost importance to successfully prevent zoonotic diseases and maintain food safety. This study presents a comprehensive description of a highly efficient molecular test utilizing recombinase-aided amplification (RPA)-clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein (Cas) 13a-lateral flow detection (LFD) for M. bovis detection. In contrast to ELISA, RPA-CRISPR-Cas13a-LFD exhibited greater accuracy and sensitivity in the detection of M. bovis in milk, presenting a detection limit of 2 Ɨ 100 copies/ĀµL within a 2 h time frame. The two tests exhibited a moderate level of agreement, as shown by a kappa value of 0.452 (95%CI: 0.287-0.617, p < 0.001). RPA-CRISPR-Cas13a-LFD holds significant potential as a robust platform for pathogen detection in complex samples, thereby enabling the more dependable regulation of food safety examination, epidemiology research, and medical diagnosis.

12.
Int J Med Inform ; 183: 105323, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38141563

ABSTRACT

BACKGROUND: Various quantitative and quality assessment tools are currently used in nursing to evaluate a patient's physiological, psychological, and socioeconomic status. The results play important roles in evaluating the efficiency of healthcare, improving the treatment plans, and lowing relevant clinical risks. However, the manual process of the assessment imposes a substantial burden and can lead to errors in digitalization. To fill these gaps, we proposed an automatic nursing assessment system based on clinical decision support system (CDSS). The framework underlying the CDSS included experts, evaluation criteria, and voting roles for selecting electronic assessment sheets over paper ones. METHODS: We developed the framework based on an expert voting flow to choose electronic assessment sheets. The CDSS was constructed based on a nursing process workflow model. A multilayer architecture with independent modules was used. The performance of the proposed system was evaluated by comparing the adverse events' incidence and the average time for regular daily assessment before and after the implementation. RESULTS: After implementation of the system, the adverse nursing events' incidence decreased significantly from 0.43Ā % to 0.37Ā % in the first year and further to 0.27Ā % in the second year (p-value: 0.04). Meanwhile, the median time for regular daily assessments further decreased from 63Ā s to 51Ā s. CONCLUSIONS: The automatic assessment system helps to reduce nurses' workload and the incidence of adverse nursing events.


Subject(s)
Decision Support Systems, Clinical , Nursing Process , Humans , Nursing Assessment , Efficiency , Health Facilities
13.
Poult Sci ; 103(10): 104135, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39106695

ABSTRACT

During poultry immunization, antibiotics are typically added to inactivated oil-adjuvant avian influenza (AI) vaccines. Here, we evaluated the effects of adding ceftiofur, a third-generation cephalosporin, to an AI vaccine on vaccine stability and structure and on chick growth, immune efficacy, blood concentrations, biochemical and immunological indices, and gut microbiota. The results demonstrated that neither aqueous ceftiofur sodium nor ceftiofur hydrochloride oil emulsion formed a stable mixture with the vaccine. Adding ceftiofur formulations, particularly ceftiofur hydrochloride, at >4% significantly destabilized the vaccine's water-in-oil structures. Adding ceftiofur also increased vaccine malabsorption at the injection site; specifically, adding ceftiofur hydrochloride reduced H5N8 and H7N9 antibody titers after the first immunization (P < 0.05) and H7N9 antibody titers after the second immunization (P < 0.01). Serum drug concentrations did not differ significantly between the groups with ceftiofur sodium and hydrochloride addition. Ceftiofur addition increased postvaccination chick weight loss; compared with the vaccine alone, ceftiofur sodium-vaccine mixture increased chick weight significantly (P < 0.05). Ceftiofur addition also increased stress indices and reduced antioxidant capacity significantly (P < 0.05 or P < 0.01). Vaccination-related immune stress reduced gut microbiota diversity in chicks; ceftiofur addition reversed this change. AI vaccine immunization significantly reduced the relative abundance of Lactobacillus and Muribaculaceae but significantly increased that of Bacteroides and Eubacterium coprostanoligenes group. Ceftiofur addition restored the gut microbiota structure; in particular, ceftiofur hydrochloride addition significantly increased the abundance of the harmful gut microbes Escherichia-Shigella and Enterococcus, whereas ceftiofur sodium addition significantly reduced it. The changes in gut microbiota led to alterations in metabolic pathways related to membrane transport, amino acids, and carbohydrates. In conclusion, adding ceftiofur to the AI vaccine had positive effects on chick growth and gut microbiota modulation; however, different antibiotic concentrations and formulations may disrupt vaccine structure, possibly affecting vaccine safety and immunization efficacy. Thus, the addition of antibiotics to oil-adjuvant vaccines is associated with a risk of immunization failure and should be applied to poultry with caution.


Subject(s)
Anti-Bacterial Agents , Cephalosporins , Chickens , Influenza Vaccines , Influenza in Birds , Animals , Cephalosporins/administration & dosage , Cephalosporins/pharmacology , Influenza in Birds/prevention & control , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Poultry Diseases/prevention & control , Vaccines, Inactivated/administration & dosage , Gastrointestinal Microbiome/drug effects , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/administration & dosage
14.
Huan Jing Ke Xue ; 44(4): 2315-2324, 2023 Apr 08.
Article in Zh | MEDLINE | ID: mdl-37040980

ABSTRACT

By analyzing the effects of acid rain and nitrogen deposition on the structure and diversity of soil bacterial communities, the response mechanism of Masson pine forests to environmental stress was investigated, providing a theoretical reference basis for resource management and conservation in Tianmu Mountain National Nature Reserve. Four treatments of the simulated acid rain and nitrogen deposition were set up in 2017 to 2021 in Tianmu Mountain National Nature Reserve (pH value of 5.5 and 0 kgĀ·(hm2Ā·a)-1, CK; pH value of 4.5 and 30 kgĀ·(hm2Ā·a)-1, T1; pH value of 3.5 and 60 kgĀ·(hm2Ā·a)-1, T2; pH value of 2.5 and 120 kgĀ·(hm2Ā·a)-1, T3). The differences in soil bacterial community composition and structure among treatments and their influencing factors were analyzed by collecting soils from four treatments, using the Illumina MiSeq PE300 second-generation high-throughput sequencing platform. The results showed that acid rain and nitrogen deposition significantly reduced soil bacterial α-diversity (P<0.05) in a Masson pine forest. The Masson pine forest soils consisted of 36 phylum groups of mycota, with Acidobacteria, Proteobacteria, Actinobacteria, and Chloroflexi as the main bacterial phyla (relative abundance>1%) in the Masson pine forest soils. Flavobacterium, Nitrospira, Haliangium, Candidatus_Koribacter, Bryobacter, Occallatibacter, Acidipla, Singulisphaera, Pajaroellobacter, and Acidothermus, which showed significant changes in relative abundance under the four treatments, could be used as indicator species for changes in soil bacterial communities under acid rain and nitrogen deposition stress. Soil pH and total nitrogen were influential factors in the diversity of soil bacterial communities. As a result, acid rain and nitrogen deposition increased the potential ecological risk, and the loss of microbial diversity will change the ecosystem function as well as reduce the stability of the ecosystem.


Subject(s)
Acid Rain , Nitrogen , Pinus , Soil Microbiology , Soil , Stress, Physiological , Acid Rain/adverse effects , Acidobacteria , Bacteria/isolation & purification , Ecosystem , Forests , Nitrogen/adverse effects , Nitrogen/analysis , Soil/chemistry , Pinus/physiology , Stress, Physiological/physiology , Microbiota/physiology
15.
Front Cell Infect Microbiol ; 13: 1123650, 2023.
Article in English | MEDLINE | ID: mdl-37009514

ABSTRACT

The high mortality rate of weaned piglets infected with porcine epidemic diarrhea virus (PEDV) poses a serious threat to the pig industry worldwide, demanding urgent research efforts related to developing effective antiviral drugs to prevent and treat PEDV infection. Small molecules can possibly prevent the spread of infection by targeting specific vital components of the pathogen's genome. Main protease (Mpro, also named 3CL protease) plays essential roles in PEDV replication and has emerged as a promising target for the inhibition of PEDV. In this study, wogonin exhibited antiviral activity against a PEDV variant isolate, interacting with the PEDV particles and inhibiting the internalization, replication and release of PEDV. The molecular docking model indicated that wogonin was firmly embedded in the groove of the active pocket of Mpro. Furthermore, the interaction between wogonin and Mpro was validated in silico via microscale thermophoresis and surface plasmon resonance analyses. In addition, the results of a fluorescence resonance energy transfer (FRET) assay indicated that wogonin exerted an inhibitory effect on Mpro. These findings provide useful insights into the antiviral activities of wogonin, which could support future research into anti-PEDV drugs.`.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Porcine epidemic diarrhea virus/genetics , Molecular Docking Simulation , Peptide Hydrolases , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary , Coronavirus Infections/genetics
16.
Res Vet Sci ; 164: 105029, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37769515

ABSTRACT

Klebsiella variicola is an emerging pathogen that has become a threat to human and animal health. There is evidence that long noncoding RNAs (lncRNAs) are involved in a host cell's response to microbial infections. However, no study has defined the link between K. variicola pathogenesis and lncRNAs until now. We used RNA sequencing to comprehensively analyze the lncRNAs and mRNAs in the chicken spleen after K. variicola infection. In total, we identified 2896 differentially expressed mRNAs and 578 differentially expressed lncRNAs. To examine the potential functions of these lncRNAs, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment analyses were performed on the target mRNAs of these differently expressed lncRNAs. The results suggested that lncRNAs play essential roles in modulating mRNA expression and triggering downstream immune signaling pathways to regulate the immune response in the chicken spleen. Using previous microRNA sequencing data, we constructed lncRNA-miRNA-mRNA regulatory networks to clarify the regulatory mechanisms in the chicken immune system. Several potential regulatory pairs related to K. variicola infection were found, involving XR_001467769.2, TCONS_00018386, gga-miR-132a-3p, gga-miR-132b-5p, gga-miR-2954, and novel62_mature. In conclusion, our findings make a significant contribution towards understanding the role of lncRNA in chicken spleen cells during K. variicola infection, thereby establishing a solid foundation for future research in this area.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Humans , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Chickens/genetics , Chickens/metabolism , Spleen/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Regulatory Networks , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Profiling/veterinary
17.
Viruses ; 15(8)2023 07 27.
Article in English | MEDLINE | ID: mdl-37631983

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) infection causes severe diarrhea in pigs and can be fatal in newborn piglets. Exosomes are extracellular vesicles secreted by cells that transfer biologically active proteins, lipids, and RNA to neighboring or distant cells. Herein, the morphology, particle size, and secretion of exosomes derived from a control and PEDV-infected group are examined, followed by a proteomic analysis of the exosomes. The results show that the exosomes secreted from the Vero cells had a typical cup-shaped structure. The average particle size of the exosomes from the PEDV-infected group was 112.4 nm, whereas that from the control group was 150.8 nm. The exosome density analysis and characteristic protein determination revealed that the content of exosomes in the PEDV-infected group was significantly higher than that in the control group. The quantitative proteomics assays revealed 544 differentially expressed proteins (DEPs) in the PEDV-infected group's exosomes compared with those in the controls, with 236 upregulated and 308 downregulated proteins. The DEPs were closely associated with cellular regulatory pathways, such as the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway, extracellular matrix-receptor interaction, focal adhesion, and cytoskeletal regulation. These findings provide the basis for further investigation of the pathogenic mechanisms of PEDV and the discovery of novel antiviral targets.


Subject(s)
Exosomes , Porcine epidemic diarrhea virus , Chlorocebus aethiops , Animals , Swine , Vero Cells , Proteomics , Signal Transduction
18.
Pathogens ; 12(3)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36986387

ABSTRACT

Salmonella is one of the most important zoonotic pathogens that can cause both acute and chronic illnesses in poultry flocks, and can also be transmitted to humans from infected poultry. The purpose of this study was to investigate the prevalence, antimicrobial resistance, and molecular characteristics of Salmonella isolated from diseased and clinically healthy chickens in Anhui, China. In total, 108 Salmonella isolates (5.66%) were successfully recovered from chicken samples (n = 1908), including pathological tissue (57/408, 13.97%) and cloacal swabs (51/1500, 3.40%), and S. Enteritidis (43.52%), S. Typhimurium (23.15%), and S. Pullorum (10.19%) were the three most prevalent isolates. Salmonella isolates showed high rates of resistance to penicillin (61.11%), tetracyclines (47.22% to tetracycline and 45.37% to doxycycline), and sulfonamides (48.89%), and all isolates were susceptible to imipenem and polymyxin B. In total, 43.52% isolates were multidrug-resistant and had complex antimicrobial resistance patterns. The majority of isolates harbored cat1 (77.78%), blaTEM (61.11%), and blaCMY-2 (63.89%) genes, and the antimicrobial resistance genes in the isolates were significantly positively correlated with their corresponding resistance phenotype. Salmonella isolates carry high rates of virulence genes, with some of these reaching 100% (invA, mgtC, and stn). Fifty-seven isolates (52.78%) were biofilm-producing. The 108 isolates were classified into 12 sequence types (STs), whereby ST11 (43.51%) was the most prevalent, followed by ST19 (20.37%) and ST92 (13.89%). In conclusion, Salmonella infection in chicken flocks is still serious in Anhui Province, and not only causes disease in chickens but might also pose a threat to public health security.

19.
Microorganisms ; 11(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36838319

ABSTRACT

First identified as a new circovirus in Hunan Province in China in 2019, porcine circovirus (PCV4) is now widely detected in other Chinese provinces and South Korea. In recent years, the virus has threatened pig health and operations in the pig industry. Hence, early PCV4 detection and regular surveillance are required to control the spread of infection and prevent collateral damage to the industry. Due to PCV4 being difficult to isolate in vitro, molecular detection methods, such as conventional PCR and real-time PCR, and serological assays are currently the main methods used for the detection of PCV4 infection. However, they are time-consuming, labor-intensive, and complex and require professional personnel. To facilitate rapid pen-side PCV4 diagnoses, we used clustered regularly interspaced short palindromic repeats (CRISPR) and Cas13a technology to develop a quick testing kit. Five recombinase-aided amplification (RPA) primer sets were designed based on the conserved PCV4-Cap gene nucleotide region, which were used to determine several key lateral flow strip (LFD) characteristics (sensitivity, specificity, and accuracy). The results showed that the RPA-Cas13a-LFD reaction could detect PCV4 within 1.5 h in genomic DNA harboring a minimum of a single copy. Furthermore, the assay showed good specificity and absence of cross-reactivity with PCV2, PCV3, or other porcine viruses. When we tested 15 clinical samples, a high accuracy was also recorded. Therefore, we successfully developed a detection assay that was simple, fast, accurate, and suitable for on-site PCV4 testing.

20.
Int J Biol Macromol ; 250: 125962, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37499712

ABSTRACT

Porcine epidemic diarrhoea (PED) caused by the porcine epidemic diarrhoea virus (PEDV) is the most devastating disease in the global pig industry due to its high mortality rate in piglets. The host factors critical for PEDV replication are poorly understood. Here, we designed a pooled African green monkey genome-scale CRISPR/Cas9 knockout (VeroCKO) library containing 75,608 single guide RNAs targeting 18,993 protein-coding genes. Subsequently, we use the VeroCKO library to identify key host factors facilitating PEDV infection in Vero E6 cells. Several previously unreported genes associated with PEDV infection are highly enriched post-PEDV selection. We discovered that knocking out the tripartite motif 2 (TRIM2) and the solute carrier family 35 member A1 (SLC35A1) inhibited PEDV replication. Virtual screening and molecular docking approaches showed that chem-80,048,685 (M2) s ignificantly inhibited PEDV attachment and late replication by impeding SLC35A1. Furthermore, we found that knocking out SLC35A1 in Vero E6 cells upregulated a disintegrin and metalloprotease protein-17 (ADAM17) by splicing porcine aminopeptidase N (pAPN) and angiotensin-converting enzyme 2 (ACE2) ectodomains to reduce PEDV-infection in a CMP-Sialic Acid (CMP-SA) cell entry-independent manner. These findings provide a new perspective for a better understanding of host-pathogen interactions and new therapeutic targets for PEDV infection.

SELECTION OF CITATIONS
SEARCH DETAIL