Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 25(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38612480

ABSTRACT

The aim of this study was to investigate gene expression alterations associated with overall survival (OS) in glioblastoma (GBM). Using the Nanostring nCounter platform, we identified four genes (COL1A2, IGFBP3, NGFR, and WIF1) that achieved statistical significance when comparing GBM with non-neoplastic brain tissue. The four genes were included in a multivariate Cox Proportional Hazard model, along with age, extent of resection, and O6-methylguanine-DNA methyltransferase (MGMT) promotor methylation, to create a unique glioblastoma prognostic index (GPI). The GPI score inversely correlated with survival: patient with a high GPI had a median OS of 7.5 months (18-month OS = 9.7%) whereas patients with a low GPI had a median OS of 20.1 months (18-month OS = 54.5%; log rank p-value = 0.004). The GPI score was then validated in 188 GBM patients from The Cancer Genome Atlas (TCGA) from a national data base; similarly, patients with a high GPI had a median OS of 10.5 months (18-month OS = 12.4%) versus 16.9 months (18-month OS = 41.5%) for low GPI (log rank p-value = 0.0003). We conclude that this novel mRNA-based prognostic index could be useful in classifying GBM patients into risk groups and refine prognosis estimates to better inform treatment decisions or stratification into clinical trials.


Subject(s)
Glioblastoma , Humans , Glioblastoma/genetics , Genes, Regulator , Databases, Factual , O(6)-Methylguanine-DNA Methyltransferase , Gene Expression
2.
Cytokine ; 166: 156155, 2023 06.
Article in English | MEDLINE | ID: mdl-37088002

ABSTRACT

BACKGROUND: The tumor microenvironment plays a significant role in tumor growth, metastasis and chemoresistance via dysregulated signaling pathways. Toward this, an inflammatory chemokine, interleukin-8 (IL-8), is overexpressed in various cancers and is involved in tumor progression and chemoresistance. However, the mechanistic role of IL-8 in mediating metastasis and chemoresistance in oral squamous cell carcinoma (OSCC) is not known. METHODS AND RESULTS: In the present study, we evaluated the effect of IL-8 in regulating metastasis as well as chemoresistance in OSCC cell lines. For this, IL-8 was blocked exogenously using neutralizing IL-8 monoclonal antibody and IL-8 levels were enhanced by exogenous supply of recombinant human IL-8 (rhIL-8) to OSCC cells. The epithelial-to-mesenchymal transition (EMT) was evaluated using qPCR, migration by scratch/wound healing assay and invasion ability using transwell assay. rIL-8 induced chemoresistance was studied by apoptosis assay and the nuclear localization of NFκB using immunocytochemistry. IL-8 was significantly overexpressed in OSCC patients and cell lines. While exogenous blockade of IL-8 significantly reduced EMT, migration and invasion potential in OSCC cells, IL-8 overexpression upregulated these cellular traits thereby confirming the role of IL-8 in OSCC metastasis. Exogenous blockade of IL-8 also reversed chemoresistance in cisplatin resistant OSCC subline via NFκB signaling. CONCLUSION: IL-8 plays a crucial role in OSCC metastasis and its targeted blockade can help in management of cisplatin resistance.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Humans , Mouth Neoplasms/metabolism , Carcinoma, Squamous Cell/pathology , Interleukin-8/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Cell Line, Tumor , NF-kappa B , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Tumor Microenvironment
3.
J Surg Res ; 270: 169-177, 2022 02.
Article in English | MEDLINE | ID: mdl-34687957

ABSTRACT

BACKGROUND: New tumor biomarkers are needed to improve the management of colon cancer (CC), the second leading cause of cancer-related deaths in the United States. Carcinoembryonic Antigen (CEA), the translated protein of carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) gene, is used as a biomarker for CC. Cartilage Oligomeric Matrix Protein (COMP) is overexpressed in CC compared to normal colon tissues. This study aims to evaluate the expression of COMP by disease stage, consensus molecular subtype (CMS), its impact on disease outcomes, and comparison to CEACAM5. MATERIALS AND METHODS: RNA-seq data from 456 CC The Cancer Genome Atlas samples and 41 matching control samples were analyzed for COMP expression and CEACAM5 expression. We stratified tumor samples by stage (I-IV), subtype (CMS1-CMS4), tumor location, and Kirsten RAt Sarcoma (KRAS) mutant status and three quartiles were established based on COMP expression. Kaplan Meier survival outcomes were evaluated. RESULTS: COMP expression was significantly higher in tumor samples, with elevation of expression occurring in stage I and significantly increasing in stage IV. Increased COMP expression occurs in CMS4 with relatively low expression in CMS3. No significant expression difference was attributed to tumor location and KRAS mutant status. Compared to CEACAM5, COMP was a stronger molecular marker across stages and subtypes. CMS4 was associated with the high COMP expression, and higher levels of COMP were associated with poorer overall survival, disease-specific survival, and tumor progression-free intervals. CMS2 and 3 were associated with low expression and better survival. CONCLUSION: COMP is a potential molecular biomarker for CC and may be superior to CEA as an indicator of CC.


Subject(s)
Colonic Neoplasms , Biomarkers, Tumor/genetics , Carcinoembryonic Antigen , Cartilage Oligomeric Matrix Protein/genetics , Cell Adhesion Molecules , Colonic Neoplasms/pathology , GPI-Linked Proteins/genetics , Humans , Prognosis
4.
Int J Mol Sci ; 22(9)2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33923316

ABSTRACT

While tumoral Smad-mediated transforming growth factor ß (TGFß) signaling drives osteolytic estrogen receptor α-negative (ER-) breast cancer bone metastases (BMETs) in preclinical models, its role in ER+ BMETs, representing the majority of clinical BMETs, has not been documented. Experiments were undertaken to examine Smad-mediated TGFß signaling in human ER+ cells and bone-tropic behavior following intracardiac inoculation of estrogen (E2)-supplemented female nude mice. While all ER+ tumor cells tested (ZR-75-1, T47D, and MCF-7-derived) expressed TGFß receptors II and I, only cells with TGFß-inducible Smad signaling (MCF-7) formed osteolytic BMETs in vivo. Regulated secretion of PTHrP, an osteolytic factor expressed in >90% of clinical BMETs, also tracked with osteolytic potential; TGFß and E2 each induced PTHrP in bone-tropic or BMET-derived MCF-7 cells, with the combination yielding additive effects, while in cells not forming BMETs, PTHrP was not induced. In vivo treatment with 1D11, a pan-TGFß neutralizing antibody, significantly decreased osteolytic ER+ BMETs in association with a decrease in bone-resorbing osteoclasts at the tumor-bone interface. Thus, TGFß may also be a driver of ER+ BMET osteolysis. Moreover, additive pro-osteolytic effects of tumoral E2 and TGFß signaling could at least partially explain the greater propensity for ER+ tumors to form BMETs, which are primarily osteolytic.


Subject(s)
Bone Neoplasms/secondary , Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Osteoclasts/pathology , Osteolysis , Receptors, Estrogen/metabolism , Transforming Growth Factor beta/metabolism , Animals , Apoptosis , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Proliferation , Female , Humans , Mice , Mice, Nude , Osteoclasts/metabolism , Receptors, Estrogen/genetics , Transforming Growth Factor beta/genetics , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
BMC Plant Biol ; 15: 9, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25604693

ABSTRACT

BACKGROUND: Brassica juncea var. Varuna is an economically important oilseed crop of family Brassicaceae which is vulnerable to abiotic stresses at specific stages in its life cycle. Till date no attempts have been made to elucidate genome-wide changes in its transcriptome against high temperature or drought stress. To gain global insights into genes, transcription factors and kinases regulated by these stresses and to explore information on coding transcripts that are associated with traits of agronomic importance, we utilized a combinatorial approach of next generation sequencing and de-novo assembly to discover B. juncea transcriptome associated with high temperature and drought stresses. RESULTS: We constructed and sequenced three transcriptome libraries namely Brassica control (BC), Brassica high temperature stress (BHS) and Brassica drought stress (BDS). More than 180 million purity filtered reads were generated which were processed through quality parameters and high quality reads were assembled de-novo using SOAPdenovo assembler. A total of 77750 unique transcripts were identified out of which 69,245 (89%) were annotated with high confidence. We established a subset of 19110 transcripts, which were differentially regulated by either high temperature and/or drought stress. Furthermore, 886 and 2834 transcripts that code for transcription factors and kinases, respectively, were also identified. Many of these were responsive to high temperature, drought or both stresses. Maximum number of up-regulated transcription factors in high temperature and drought stress belonged to heat shock factors (HSFs) and dehydration responsive element-binding (DREB) families, respectively. We also identified 239 metabolic pathways, which were perturbed during high temperature and drought treatments. Analysis of gene ontologies associated with differentially regulated genes forecasted their involvement in diverse biological processes. CONCLUSIONS: Our study provides first comprehensive discovery of B. juncea transcriptome under high temperature and drought stress conditions. Transcriptome resource generated in this study will enhance our understanding on the molecular mechanisms involved in defining the response of B. juncea against two important abiotic stresses. Furthermore this information would benefit designing of efficient crop improvement strategies for tolerance against conditions of high temperature regimes and water scarcity.


Subject(s)
Crops, Agricultural/economics , Crops, Agricultural/genetics , Droughts , Gene Expression Regulation, Plant , Genes, Plant , Mustard Plant/genetics , Stress, Physiological/genetics , Temperature , Gene Expression Profiling , Gene Ontology , Molecular Sequence Annotation , Plant Proteins/genetics , Plant Proteins/metabolism , Quality Control , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Sequence Analysis, RNA , Signal Transduction/drug effects , Signal Transduction/genetics , Transcriptome
7.
Asian Pac J Cancer Prev ; 25(3): 725-733, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38546054

ABSTRACT

OBJECTIVE: Availability of multimodal treatment strategies, including targeted therapies and immunotherapies, have improved the survival of non-small cell lung carcinoma (NSCLC). However, some patients still progress or respond poorly due to inherent resistance, acquired resistance, or lack of druggable driver mutations. Sphingosine-1-phosphate (S1P) and receptor tyrosine kinase-like orphan receptor (ROR1/2) signaling pathways are activated during lung carcinogenesis. METHODS: In this study, we have evaluated the crosstalk of S1P and ROR1/2 signaling pathways in lung cancer cells. RESULTS: S1P treatment of lung cancer cells decreases ROR1 and ROR2 transcript levels. While treatment with PF-543, a pharmacological SphK1 inhibitor or genetic knockdown of SPHK1 by shRNA, raises ROR1 and ROR2. Furthermore, simultaneous inhibition of SphK1 along with ROR1 reduced the migration of lung cancer cells. CONCLUSION: These findings demonstrate the reciprocal regulation of both pathways, suggesting that both pathways have an inverse relation i.e, in the absence of one pathway, another pathway may take charge of the other pathway. Therefore, simultaneously targeting both pathways could serve as a potential therapeutic target for lung cancer treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Lysophospholipids , Sphingosine/analogs & derivatives , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Signal Transduction , Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism
8.
Noncoding RNA Res ; 9(4): 1333-1341, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39131689

ABSTRACT

The disease burden of Oral Squamous Cell Carcinoma (OSCC) is rising day-by-day and is expected to rise 62 % through 2035. The chewing of tobacco, areca nut, and betel leaf, poor oral hygiene, and chronic infection are common risk factors of OSCC, but genetic and epigenetic factors also contribute equally. MicroRNAs (miRNAs) are comprised of small, non-coding endogenous RNA that regulate a plethora of biological activities by targeting messenger RNA through degradation or inhibition. Single Nucleotide Polymorphisms (SNPs) in miRNA genes can regulate the development and progression of OSCC. The present study aimed to determine the association between SNPs in miRNA genes (miRSNPs) with the risk of OSCC. A case-control study involving 225 histo-pathologically confirmed OSCC cases and 225 healthy controls was conducted, where 25 miRSNPs were analyzed by iPLEX MassArray analysis. A SNP rs12220909 in MIR4293 showed a highly protective effect (CC vs GG, OR = 0.0431, 95%CI = 0.005-0.323, p = 3e-6). Whereas three SNPs, namely, rs4705342 in MIR143 (CC vs TT, OR = 2.25, 95%CI = 2.00-2.53, p = 0.0008), rs531564 in MIR124 (CC vs GG, OR = 24.18, 95%CI = 3.22-181.37, p = 3e-6), and rs3746444 in MIR499 (AA vs GG, OR = 2.01, 95%CI = 1.32-3.05, p = 0.001) were significantly associated with a higher risk of OSCC. Additionally, NanoString-based nCounter miRNA expression profiling revealed that miR-499a (Log2FC = -1.07), and miR-143 (Log2FC = -1.56) were aberrantly expressed in OSCC tissue. Taken together, the above miSNPs may contribute to the high incidence of OSCC in central India. However, further studies with large cohorts and ethnic stratification are required to validate our findings.

9.
Mol Ther Oncol ; 32(1): 200786, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38596288

ABSTRACT

Oncogenic drivers such as KRAS extensively modulate the tumor inflammatory microenvironment (TIME) of colorectal cancer (CRC). The influence of KRAS on modulating immune cell composition remains unclear. The objective of this study was to identify signatures of infiltrative immune cells and distinctive patterns that differ between RAS wild-type (WT) and oncogenic mutant (MT) CRC that explain immune evasion in MT tumors. A total of 7,801 CRC specimens were analyzed using next-generation DNA sequencing, whole-exome sequencing, and/or whole transcriptome sequencing. Deficiency of mismatch repair (dMMR)/microsatellite instability (MSI) and tumor mutation burden (TMB) were also assessed. KRAS mutations were present in 48% of CRC, similarly distributed in patients younger than vs. 50 years and older. In microsatellite stable (MSS) KRAS MT tumors, composition of the TIME included higher neutrophil infiltration and lower infiltration of B cells. MSI-H/dMMR was significantly more prevalent in RAS WT (9.1%) than in KRAS MT (2.9%) CRC. In MSS CRC, TMB-high cases were significantly higher in RAS MT (3.1%) than in RAS WT (2.1%) tumors. KRAS and NRAS mutations are associated with increased neutrophil infiltration, with codon-specific differences. These results demonstrate significant differences in the TIME of RAS mutant CRC that match previous reports of immunoevasive characteristics of such tumors.

10.
Cancer Biomark ; 38(2): 203-214, 2023.
Article in English | MEDLINE | ID: mdl-37545224

ABSTRACT

BACKGROUND: miRNAs play a crucial role in the genesis of cancer, either as tumor suppressor genes or as oncogenes. Single Nucleotide Polymorphisms (SNPs) in the seed region of microRNAs (miRNAs) can dysregulate their levels in the tissues and thereby affect carcinogenesis. The association of SNP in miR-146a (rs2910164) with the risk of oral squamous cell carcinoma (OSCC) has not been understood. OBJECTIVE: In the present study, we have determined the association and functional significance of miR-146a (rs2910164) SNP with susceptibility to OSCC predisposition. METHODS: In the present case-control study, we enrolled 430 subjects from central India (215 OSCC cases and 215 healthy controls). We performed genotyping by Kompetitive Allele Specific PCR (KASP), and their correlation with OSCC susceptibility was analyzed. miRNA expression profiling in tumor tissues and adjacent normal tissues from six OSCC patients was done by a NanoString n-Counter-based assay. Subsequently, gene ontology and pathway analysis were performed with FunRich version 3.13. RESULTS: The CC genotype of rs2910164 miR-146a was significantly associated with the increased risk for OSCC (CC vs GC, OR = 2.62; 95% CI: 1.48-4.66; p value = 0.001). However, the GC genotype was protective with GC vs CC (OR = 0.38, 95%CI =0.21-0.67, p-value = 0.001), and GC vs GG (OR = 0.58, 95%CI = 0.37-0.89, p-value = 0.01). CONCLUSION: Our finding suggests that SNP rs2910164 of miR-146a may be a genetic risk factor for OSCC susceptibility in the Central India population. However, more extensive multicenter studies are required to validate these findings.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , MicroRNAs , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Squamous Cell Carcinoma of Head and Neck/genetics , Mouth Neoplasms/genetics , MicroRNAs/genetics , Genotype , Case-Control Studies
11.
Cancer Med ; 12(11): 12792-12801, 2023 06.
Article in English | MEDLINE | ID: mdl-37081700

ABSTRACT

BACKGROUND: The United States is becoming increasingly diverse, but few molecular studies have assessed the progression of clear cell renal cell carcinoma (ccRCC) in diverse patient populations. This study examined ccRCC molecular variations in non-Hispanic White (NHW) and Hispanic patients and their effect on the association of gene expression with high-grade (Grade 3 or 4) ccRCC and overall mortality. METHODS: A total of 156 patients were included in VHL sequencing and/or TempO-Seq analysis. DESeq2 was used to identify the genes associated with high-grade ccRCC. Logistic regression analysis was performed to assess whether race and ethnicity was associated with high/moderate impact VHL somatic mutations and the ccA/ccB subtype. Cox regression analysis was performed to assess association of molecular subtype and gene expression with overall mortality. RESULTS: NHWs had moderate or high impact mutations in the VHL gene at a higher frequency than Hispanics (40.2% vs. 27.4%), while Hispanics had a higher frequency of the ccA subtype than NHWs (61.9% vs. 45.8%). ccA was more common in patients with BMI≥35 (65.2%) than in those with BMI < 25 (45.0%). There were 11 differentially expressed genes between high- and low-grade tumors. The Haptoglobin (HP) gene was most significantly overexpressed in high- compared to low-grade ccRCC in all samples (p-adj = 1.7 × 10-12 ). When stratified by subtype, the 11 genes were significantly differentially expressed in the ccB subtype, but none of them were significant after adjusting for multiple testing in ccA. Finally, patients with the ccB subtype had a significantly increased risk of overall mortality (HR 4.87; p = 0.01) compared to patients with ccA, and patients with high HP expression and ccB, had a significantly increased risk of mortality compared to those with low HP expression and ccA (HR 6.45, p = 0.04). CONCLUSION: This study reports ccRCC molecular variations in Hispanic patients who were previously underrepresented.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , White , Hispanic or Latino/genetics , Ethnicity
12.
Asian Pac J Cancer Prev ; 24(7): 2353-2360, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37505766

ABSTRACT

Oral squamous cell carcinoma (OSCC) is the most common type of cancer among men in the Indian subcontinent. Cytokines regulate inflammation and angiogenesis in a variety of cancers. Genetic variability in the cytokine genes can potentially influence the predisposition to oral carcinogenesis. The aim of the current study was to investigate the associations of SNPs in cytokine genes with the susceptibility of oral squamous cell carcinoma. In the present study, we have analyzed the allelic frequency of 32 single nucleotide polymorphisms (SNPs) using MassArray-based iPLEX assay in 16 cytokine genes in 166 OSCC patients and 151 healthy subjects from central India. Out of 32 SNPs analyzed, five SNPs were significantly associated with the risk of OSCC. AA and GG genotypes of IL-1ß +3953 were associated with an increased and decreased risk of OSCC, respectively. In several genetic models, GG genotype and G allele in IL-12A 3'UTR G>A were found to be associated with an increased risk of OSCC. Similarly, the GG genotype of IL-12B +1188 T>G was associated with increased susceptibility to OSCC. We conclude that SNPs in the genes coding for IL-1ß, IL-12A and IL-12B are associated with increased genetic susceptibility to OSCC in the central Indian population.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Male , Humans , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck , Polymorphism, Single Nucleotide , Mouth Neoplasms/pathology , Genetic Predisposition to Disease , Genotype , Cytokines/genetics , Gene Frequency , Case-Control Studies
13.
JCI Insight ; 8(13)2023 07 10.
Article in English | MEDLINE | ID: mdl-37219942

ABSTRACT

The incidence of early-onset colorectal cancer (EO-CRC) is rising and is poorly understood. Lifestyle factors and altered genetic background possibly contribute. Here, we performed targeted exon sequencing of archived leukocyte DNA from 158 EO-CRC participants, which identified a missense mutation at p.A98V within the proximal DNA binding domain of Hepatic Nuclear Factor 1 α (HNF1AA98V, rs1800574). The HNF1AA98V exhibited reduced DNA binding. To test function, the HNF1A variant was introduced into the mouse genome by CRISPR/Cas9, and the mice were placed on either a high-fat diet (HFD) or high-sugar diet (HSD). Only 1% of the HNF1A mutant mice developed polyps on normal chow; however, 19% and 3% developed polyps on the HFD and HSD, respectively. RNA-Seq revealed an increase in metabolic, immune, lipid biogenesis genes, and Wnt/ß-catenin signaling components in the HNF1A mutant relative to the WT mice. Mouse polyps and colon cancers from participants carrying the HNF1AA98V variant exhibited reduced CDX2 and elevated ß-catenin proteins. We further demonstrated decreased occupancy of HNF1AA98V at the Cdx2 locus and reduced Cdx2 promoter activity compared with WT HNF1A. Collectively, our study shows that the HNF1AA98V variant plus a HFD promotes the formation of colonic polyps by activating ß-catenin via decreasing Cdx2 expression.


Subject(s)
Colonic Neoplasms , beta Catenin , Animals , Mice , beta Catenin/genetics , beta Catenin/metabolism , Cell Communication , Colonic Neoplasms/metabolism , Diet, High-Fat , Wnt Signaling Pathway/genetics
14.
PLoS One ; 18(8): e0289813, 2023.
Article in English | MEDLINE | ID: mdl-37561696

ABSTRACT

The value of combining hybridization and mutagenesis in sesame was examined to determine if treating hybrid sesame plant material with mutagens generated greater genetic variability in four key productivity traits than either the separate hybridization or mutation of plant material. In a randomized block design with three replications, six F2M2 varieties, three F2varieties, and three parental varieties were assessed at Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India. The plant characteristics height, number of seed capsules per plant, and seed yield per plant had greater variability in the F2M2 generation than their respective controls (F2), however, the number of primary branches per plant varied less than in the control population. The chances for trait selection to be operative were high for all the characteristics examined except the number of primary branches per plant, as indicated by heritability estimates. Increases in the mean and variability of the characteristics examined indicted a greater incidence of beneficial mutations and the breakdown of undesirable linkages with increased recombination. At both phenotypic and genotypic levels strong positive correlations between both primary branch number and capsule number with seed yield suggest that these traits are important for indirect improvement in sesame seed yield. As a result of the association analysis, sesame seed yield and its component traits improved significantly, which may be attributed to the independent polygenic mutations and enlarged recombination of the polygenes controlling the examined characteristics. Compared to the corresponding control treatment or to one cycle of mutagenic treatment, two cycles of mutagenic treatment resulted in increased variability, higher transgressive segregates, PTS mean and average transgression for sesame seed yield. These findings highlight the value of implementing two EMS treatment cycles to generate improved sesame lines. Furthermore, the extra variability created through hybridization may have potential in subsequent breeding research and improved seed yield segregants may be further advanced to develop ever-superior sesame varieties.


Subject(s)
Sesamum , Sesamum/genetics , Plant Breeding , Phenotype , Genotype , Mutagenesis
15.
PLoS Genet ; 5(8): e1000621, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19714218

ABSTRACT

Pollen tubes extend through pistil tissues and are guided to ovules where they release sperm for fertilization. Although pollen tubes can germinate and elongate in a synthetic medium, their trajectory is random and their growth rates are slower compared to growth in pistil tissues. Furthermore, interaction with the pistil renders pollen tubes competent to respond to guidance cues secreted by specialized cells within the ovule. The molecular basis for this potentiation of the pollen tube by the pistil remains uncharacterized. Using microarray analysis in Arabidopsis, we show that pollen tubes that have grown through stigma and style tissues of a pistil have a distinct gene expression profile and express a substantially larger fraction of the Arabidopsis genome than pollen grains or pollen tubes grown in vitro. Genes involved in signal transduction, transcription, and pollen tube growth are overrepresented in the subset of the Arabidopsis genome that is enriched in pistil-interacted pollen tubes, suggesting the possibility of a regulatory network that orchestrates gene expression as pollen tubes migrate through the pistil. Reverse genetic analysis of genes induced during pollen tube growth identified seven that had not previously been implicated in pollen tube growth. Two genes are required for pollen tube navigation through the pistil, and five genes are required for optimal pollen tube elongation in vitro. Our studies form the foundation for functional genomic analysis of the interactions between the pollen tube and the pistil, which is an excellent system for elucidation of novel modes of cell-cell interaction.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Gene Expression Profiling , Pollen Tube/growth & development , Pollen Tube/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Pollen Tube/genetics
16.
Cureus ; 14(3): e23553, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35494957

ABSTRACT

Background Sphingosine-1-phosphate (S1P) is a potent oncogenic lipid. Intracellular levels of S1P are tightly regulated by eight S1P-metabolizing enzymes. S1P synthesis is catalyzed by two sphingosine kinases, i.e., sphingosine kinase 1 (SphK1) and sphingosine kinase 2 (SphK2). Five lipid phosphatases (two S1P phosphatases and lipid phosphate phosphatases (LPPs) 1, 2, and 3) reversibly convert S1P back to sphingosine. Previously, we have determined the mRNA expression profile of eight S1P-metabolizing enzymes in tumor tissues and adjacent normal tissues from oral squamous cell carcinoma (OSCC) patients. Except for SphK1, the role of S1P-metabolizing enzymes in OSCC has been poorly studied. Methods We have determined the protein expression of four S1P-metabolizing enzymes (SphK1, SphK2, sphingosine-1-phosphate phosphatase 1 (SGPP1), and lipid phosphate phosphatase 3 (LPP3)) by immunohistochemistry (IHC) in tumor tissues of 46 OSCC patients. Six subjects with non-dysplastic oral mucosa were also included in the study. The immunoreactivity score (IRS) was calculated for each protein in every subject. Further, we determined the associations of expression of S1P-metabolizing enzymes with clinicopathological features of OSCC patients. Results We demonstrate the low IRS for SphK2 and LPP3 in OSCC tumors. Importantly, expression of SphK2 and LPP3 was downregulated in malignant epithelial cells compared to non-malignant mucosa. Further, LPP3 expression negatively correlated with tumor­node­metastasis (TNM) staging of patients (r = -0.307, p = 0.043). Importantly, expression of LPP3 in tumors was found to be an independent predictor of perinodal extension (b = -0.440, p = 0.009), lymphovascular invasion (b = -0.614, p < 0.001), lymph node ratio (b = 0.336, p = 0.039), and TNM staging (b = -0.364, p = 0.030). Conclusion Taken together, our data show that expression of SphK2 and LPP3 is decreased compared to normal mucosa. Thus, the S1P signaling pathway could represent a potential therapeutic target.

17.
Cells ; 11(21)2022 10 23.
Article in English | MEDLINE | ID: mdl-36359740

ABSTRACT

(1) Background: Cushing's disease (CD) is a serious endocrine disorder caused by an adrenocorticotropic hormone (ACTH)-secreting pituitary neuroendocrine tumor (PitNET) that stimulates the adrenal glands to overproduce cortisol. Chronic exposure to excess cortisol has detrimental effects on health, including increased stroke rates, diabetes, obesity, cognitive impairment, anxiety, depression, and death. The first-line treatment for CD is pituitary surgery. Current surgical remission rates reported in only 56% of patients depending on several criteria. The lack of specificity, poor tolerability, and low efficacy of the subsequent second-line medical therapies make CD a medical therapeutic challenge. One major limitation that hinders the development of specific medical therapies is the lack of relevant human model systems that recapitulate the cellular composition of PitNET microenvironment. (2) Methods: human pituitary tumor tissue was harvested during transsphenoidal surgery from CD patients to generate organoids (hPITOs). (3) Results: hPITOs generated from corticotroph, lactotroph, gonadotroph, and somatotroph tumors exhibited morphological diversity among the organoid lines between individual patients and amongst subtypes. The similarity in cell lineages between the organoid line and the patient's tumor was validated by comparing the neuropathology report to the expression pattern of PitNET specific markers, using spectral flow cytometry and exome sequencing. A high-throughput drug screen demonstrated patient-specific drug responses of hPITOs amongst each tumor subtype. Generation of induced pluripotent stem cells (iPSCs) from a CD patient carrying germline mutation CDH23 exhibited dysregulated cell lineage commitment. (4) Conclusions: The human pituitary neuroendocrine tumor organoids represent a novel approach in how we model complex pathologies in CD patients, which will enable effective personalized medicine for these patients.


Subject(s)
Neuroendocrine Tumors , Pituitary ACTH Hypersecretion , Pituitary Neoplasms , Humans , Pituitary ACTH Hypersecretion/drug therapy , Pituitary ACTH Hypersecretion/surgery , Organoids , Neuroendocrine Tumors/drug therapy , Hydrocortisone , Tumor Microenvironment
18.
Methods Mol Biol ; 2170: 155-183, 2021.
Article in English | MEDLINE | ID: mdl-32797458

ABSTRACT

Northern analysis is a conventional but gold standard method for detection and quantification of gene expression changes. It not only detects the presence of a transcript but also indicates size and relative comparison of transcript abundance on a single membrane. In recent years it has been aptly adapted to validate and study the size and expression of small noncoding RNAs. Here, we describe protocols employed in our laboratory for conventional northern analysis with total RNA/mRNA to study gene expression and validation of small noncoding RNAs using low molecular weight fraction of RNAs. A brief account on the recent advancements for improving the sensitivity and efficiency of northern blot detection is also included in this chapter.


Subject(s)
Blotting, Northern/methods , RNA, Messenger/genetics , RNA, Small Untranslated/genetics
19.
Genes (Basel) ; 12(5)2021 05 16.
Article in English | MEDLINE | ID: mdl-34065672

ABSTRACT

Colorectal cancer (CRC) remains one of the leading causes of cancer-related death worldwide. The high mortality of CRC is related to its ability to metastasize to distant organs. The kallikrein-related peptidase Kallikrein 6 (KLK6) is overexpressed in CRC and contributes to cancer cell invasion and metastasis. The goal of this study was to identify KLK6-associated markers for the CRC prognosis and treatment. Tumor Samples from the CRC patients with significantly elevated KLK6 transcript levels were identified in the RNA-Seq data from Cancer Genome Atlas (TCGA) and their expression profiles were evaluated using Gene Ontology (GO), Phenotype and Reactome enrichment, and protein interaction methods. KLK6-high cases had a distinct spectrum of mutations in titin (TTN), APC, K-RAS, and MUC16 genes. Differentially expressed genes (DEGs) found in the KLK6-overexpressing CRCs were associated with cell signaling, extracellular matrix organization, and cell communication regulatory pathways. The top KLK6-interaction partners were found to be the members of kallikrein family (KLK7, KLK8, KLK10), extracellular matrix associated proteins (keratins, integrins, small proline rich repeat, S100A families) and TGF-ß, FOS, and Ser/Thr protein kinase signaling pathways. Expression of selected KLK6-associated genes was validated in a subset of paired normal and tumor CRC patient-derived organoid cultures. The performed analyses identified KLK6 itself and a set of genes, which are co-expressed with KLK6, as potential clinical biomarkers for the management of the CRC disease.


Subject(s)
Colorectal Neoplasms/genetics , Gene Regulatory Networks , Kallikreins/genetics , Adenomatous Polyposis Coli Protein/genetics , CA-125 Antigen/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Connectin/genetics , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Kallikreins/metabolism , Male , Membrane Proteins/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction , Transcriptome , Tumor Cells, Cultured , Up-Regulation
20.
Cancers (Basel) ; 13(4)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546249

ABSTRACT

Molecular profiling with next generation sequencing (NGS) delivers key information on mutant gene sequences, copy number alterations, gene-fusions, and with immunohistochemistry (IHC), is a valuable tool in clinical decision making for patients entering investigational agent trials. Our objective was to elucidate mutational profiles from primary versus metastatic sites from advanced cancer patients to guide rational therapy. All phase I patients (n = 203) with advanced cancer were profiled by commercially available NGS platforms. The samples were annotated by histology, primary and metastatic site, biopsy site, gene mutations, mutation count/gene, and mutant TP53. A molecular profile of each patient was categorized into common and unique mutations, signaling pathways for each profile and TP53 mutations mapped to 3D-structure of p53 bound to DNA and pre/post therapy molecular response. Of the 171 patients analyzed, 145 had genetic alterations from primary and metastatic sites. The predominant histology was adenocarcinoma followed by squamous cell carcinoma, carcinoma of unknown primary site (CUPS), and melanoma. Of 790 unique mutations, TP53 is the most common followed by APC, KRAS, PIK3CA, ATM, PTEN, NOTCH1, BRCA2, BRAF, KMT2D, LRP1B, and CDKN2A. TP53 was found in most metastatic sites and appears to be a key driver of acquired drug resistance. We highlight examples of acquired mutational profiles pre-/post- targeted therapy in multiple tumor types with a menu of potential targeted agents. Conclusion: The mutational profiling of primary and metastatic lesions in cancer patients provides an opportunity to identify TP53 driver 'pathways' that may predict for drug sensitivity/resistance and guide rational drug combinations in clinical trials.

SELECTION OF CITATIONS
SEARCH DETAIL