Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Proc Natl Acad Sci U S A ; 112(16): E1974-83, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25848029

ABSTRACT

Large-scale activity profiling of enzyme superfamilies provides information about cellular functions as well as the intrinsic binding capabilities of conserved folds. Herein, the functional space of the ubiquitous haloalkanoate dehalogenase superfamily (HADSF) was revealed by screening a customized substrate library against >200 enzymes from representative prokaryotic species, enabling inferred annotation of ∼35% of the HADSF. An extremely high level of substrate ambiguity was revealed, with the majority of HADSF enzymes using more than five substrates. Substrate profiling allowed assignment of function to previously unannotated enzymes with known structure, uncovered potential new pathways, and identified iso-functional orthologs from evolutionarily distant taxonomic groups. Intriguingly, the HADSF subfamily having the least structural elaboration of the Rossmann fold catalytic domain was the most specific, consistent with the concept that domain insertions drive the evolution of new functions and that the broad specificity observed in HADSF may be a relic of this process.


Subject(s)
Multigene Family , Phosphoric Monoester Hydrolases/metabolism , High-Throughput Screening Assays , Kinetics , Reproducibility of Results , Substrate Specificity
2.
Proc Natl Acad Sci U S A ; 110(36): E3381-7, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-23959887

ABSTRACT

Although the universe of protein structures is vast, these innumerable structures can be categorized into a finite number of folds. New functions commonly evolve by elaboration of existing scaffolds, for example, via domain insertions. Thus, understanding structural diversity of a protein fold evolving via domain insertions is a fundamental challenge. The haloalkanoic dehalogenase superfamily serves as an excellent model system wherein a variable cap domain accessorizes the ubiquitous Rossmann-fold core domain. Here, we determine the impact of the cap-domain insertion on the sequence and structure divergence of the core domain. Through quantitative analysis on a unique dataset of 154 core-domain-only and cap-domain-only structures, basic principles of their evolution have been uncovered. The relationship between sequence and structure divergence of the core domain is shown to be monotonic and independent of the corresponding type of domain insert, reflecting the robustness of the Rossmann fold to mutation. However, core domains with the same cap type share greater similarity at the sequence and structure levels, suggesting interplay between the cap and core domains. Notably, results reveal that the variance in structure maps to α-helices flanking the central ß-sheet and not to the domain-domain interface. Collectively, these results hint at intramolecular coevolution where the fold diverges differentially in the context of an accessory domain, a feature that might also apply to other multidomain superfamilies.


Subject(s)
Hydrolases/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Evolution, Molecular , Genetic Variation , Hydrolases/classification , Hydrolases/genetics , Models, Molecular , Mutagenesis, Insertional , Phylogeny , Principal Component Analysis , Protein Folding
3.
J Biol Chem ; 289(44): 30229-30236, 2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25210039

ABSTRACT

Catalytic promiscuity and substrate ambiguity are keys to evolvability, which in turn is pivotal to the successful acquisition of novel biological functions. Action on multiple substrates (substrate ambiguity) can be harnessed for performance of functions in the cell that supersede catalysis of a single metabolite. These functions include proofreading, scavenging of nutrients, removal of antimetabolites, balancing of metabolite pools, and establishing system redundancy. In this review, we present examples of enzymes that perform these cellular roles by leveraging substrate ambiguity and then present the structural features that support both specificity and ambiguity. We focus on the phosphatases of the haloalkanoate dehalogenase superfamily and the thioesterases of the hotdog fold superfamily.


Subject(s)
Enzymes/chemistry , Evolution, Molecular , Animals , Biocatalysis , Catalytic Domain , Enzymes/genetics , Humans , Models, Molecular , Substrate Specificity
4.
Proteins ; 82(9): 1896-906, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24577717

ABSTRACT

In multi-domain proteins, the domains typically run end-to-end, that is, one domain follows the C-terminus of another domain. However, approximately 10% of multi-domain proteins are formed by insertion of one domain sequence into that of another domain. Detecting such insertions within protein sequences is a fundamental challenge in structural biology. The haloacid dehalogenase superfamily (HADSF) serves as a challenging model system wherein a variable cap domain (∼5-200 residues in length) accessorizes the ubiquitous Rossmann-fold core domain, with variations in insertion site and topology corresponding to different classes of cap types. Herein, we describe a comprehensive computational strategy, CapPredictor, for determining large, variable domain insertions in protein sequences. Using a novel sequence-alignment algorithm in conjunction with a structure-guided sequence profile from 154 core-domain-only structures, more than 40,000 HADSF member sequences were assigned cap types. The resulting data set afforded insight into HADSF evolution. Notably, a similar distribution of cap-type classes across different phyla was observed, indicating that all cap types existed in the last universal common ancestor. In addition, comparative analyses of the predicted cap-type and functional assignments showed that different cap types carry out similar chemistries. Thus, while cap domains play a role in substrate recognition and chemical reactivity, cap-type does not strictly define functional class. Through this example, we have shown that CapPredictor is an effective new tool for the study of form and function in protein families where domain insertion occurs.


Subject(s)
Catalytic Domain/genetics , Hydrolases/genetics , Models, Molecular , Algorithms , Amino Acid Sequence , Sequence Alignment , Structure-Activity Relationship
5.
Biochemistry ; 50(41): 8937-49, 2011 Oct 18.
Article in English | MEDLINE | ID: mdl-21894910

ABSTRACT

The explosion of protein sequence information requires that current strategies for function assignment evolve to complement experimental approaches with computationally based function prediction. This necessitates the development of strategies based on the identification of sequence markers in the form of specificity determinants and a more informed definition of orthologues. Herein, we have undertaken the function assignment of the unknown haloalkanoate dehalogenase superfamily member BT2127 (Uniprot accession code Q8A5 V9) from Bacteroides thetaiotaomicron using an integrated bioinformatics-structure-mechanism approach. The substrate specificity profile and steady-state rate constants of BT2127 (with a k(cat)/K(m) value for pyrophosphate of ~1 × 10(5) M(-1) s(-1)), together with the gene context, support the assigned in vivo function as an inorganic pyrophosphatase. The X-ray structural analysis of wild-type BT2127 and several variants generated by site-directed mutagenesis shows that substrate discrimination is based, in part, on active site space restrictions imposed by the cap domain (specifically by residues Tyr76 and Glu47). Structure-guided site-directed mutagenesis coupled with kinetic analysis of the mutant enzymes identified the residues required for catalysis, substrate binding, and domain-domain association. On the basis of this structure-function analysis, the catalytic residues Asp11, Asp13, Thr113, and Lys147 as well the metal binding residues Asp171, Asn172, and Glu47 were used as markers to confirm BT2127 orthologues identified via sequence searches. This bioinformatic analysis demonstrated that the biological range of BT2127 orthologue is restricted to the phylum Bacteroidetes/Chlorobi. The key structural determinants in the divergence of BT2127 and its closest homologue, ß-phosphoglucomutase, control the leaving group size (phosphate vs glucose phosphate) and the position of the Asp acid/base in the open versus closed conformations. HADSF pyrophosphatases represent a third mechanistic and fold type for bacterial pyrophosphatases.


Subject(s)
Bacteroides/enzymology , Hydrolases/chemistry , Pyrophosphatases/chemistry , Biochemistry/methods , Catalytic Domain , Hydrogen-Ion Concentration , Kinetics , Models, Molecular , Mutation , Phosphoglucomutase/chemistry , Protein Conformation , Protein Structure, Quaternary , Recombinant Proteins/chemistry , Substrate Specificity , X-Ray Diffraction
6.
J Endocr Soc ; 5(7): bvab087, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34159287

ABSTRACT

Ossifying fibromas are very rare tumors that are sometimes seen as part of the hyperparathyroidism-jaw tumor syndrome (HPT-JT), which is caused by inactivating mutations of the HRPT2/CDC73 tumor suppressor gene. CDC73 mutations have been identified in a subset of sporadic cases but aberrant expression of the encoded protein, parafibromin, has not been demonstrated in ossifying fibroma. We sought to determine if loss of parafibromin regularly contributes to the development of sporadic, nonsyndromic ossifying fibroma. We examined a series of 9 ossifying fibromas, including ossifying, cemento-ossifying, and juvenile active variants, for parafibromin protein expression by immunohistochemistry and for CDC73 sequence abnormalities by Sanger sequencing and/or targeted AmpliSeq panel sequencing. Four ossifying fibromas showed a complete absence of nuclear parafibromin expression; loss of parafibromin expression was coupled with aberrant cytoplasmic parafibromin expression in 1 case. CDC73 mutations were detected in 2 cases with aberrant parafibromin expression. These results provide novel evidence, at the level of protein expression, that loss of the parathyroid CDC73/parafibromin tumor suppressor may play a role in the pathogenesis of a subset of ossifying fibromas.

7.
iScience ; 24(3): 102212, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33733072

ABSTRACT

Adenoid cystic carcinoma (ACC) is a rare cancer type that originates in the salivary glands. Tumors commonly invade along nerve tracks in the head and neck, making surgery challenging. Follow-up treatments for recurrence or metastasis including chemotherapy and targeted therapies have shown limited efficacy, emphasizing the need for new therapies. Here, we report a Drosophila-based therapeutic approach for a patient with advanced ACC disease. A patient-specific Drosophila transgenic line was developed to model the five major variants associated with the patient's disease. Robotics-based screening identified a three-drug cocktail-vorinostat, pindolol, tofacitinib-that rescued transgene-mediated lethality in the Drosophila patient-specific line. Patient treatment led to a sustained stabilization and a partial metabolic response of 12 months. Subsequent resistance was associated with new genomic amplifications and deletions. Given the lack of options for patients with ACC, our data suggest that this approach may prove useful for identifying novel therapeutic candidates.

8.
Cold Spring Harb Mol Case Stud ; 3(3): a001602, 2017 05.
Article in English | MEDLINE | ID: mdl-28487882

ABSTRACT

Cushing's disease (CD) is caused by pituitary corticotroph adenomas that secrete excess adrenocorticotropic hormone (ACTH). In these tumors, somatic mutations in the gene USP8 have been identified as recurrent and pathogenic and are the sole known molecular driver for CD. Although other somatic mutations were reported in these studies, their contribution to the pathogenesis of CD remains unexplored. No molecular drivers have been established for a large proportion of CD cases and tumor heterogeneity has not yet been investigated using genomics methods. Also, even in USP8-mutant tumors, a possibility may exist of additional contributing mutations, following a paradigm from other neoplasm types where multiple somatic alterations contribute to neoplastic transformation. The current study utilizes whole-exome discovery sequencing on the Illumina platform, followed by targeted amplicon-validation sequencing on the Pacific Biosciences platform, to interrogate the somatic mutation landscape in a corticotroph adenoma resected from a CD patient. In this USP8-mutated tumor, we identified an interesting somatic mutation in the gene RASD1, which is a component of the corticotropin-releasing hormone receptor signaling system. This finding may provide insight into a novel mechanism involving loss of feedback control to the corticotropin-releasing hormone receptor and subsequent deregulation of ACTH production in corticotroph tumors.


Subject(s)
ACTH-Secreting Pituitary Adenoma/genetics , ras Proteins/genetics , Adenoma/genetics , Adrenocorticotropic Hormone/genetics , Adult , Corticotrophs/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Female , Humans , Mutation , Pituitary ACTH Hypersecretion/genetics , Pituitary Neoplasms/genetics , Receptors, Corticotropin-Releasing Hormone/genetics , Sequence Analysis, DNA , Ubiquitin Thiolesterase/genetics
9.
JCI Insight ; 2(6): e92061, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28352668

ABSTRACT

Parathyroid carcinoma (PC) is an extremely rare malignancy lacking effective therapeutic intervention. We generated and analyzed whole-exome sequencing data from 17 patients to identify somatic and germline genetic alterations. A panel of selected genes was sequenced in a 7-tumor expansion cohort. We show that 47% (8 of 17) of the tumors harbor somatic mutations in the CDC73 tumor suppressor, with germline inactivating variants in 4 of the 8 patients. The PI3K/AKT/mTOR pathway was altered in 21% of the 24 cases, revealing a major oncogenic pathway in PC. We observed CCND1 amplification in 29% of the 17 patients, and a previously unreported recurrent mutation in putative kinase ADCK1. We identified the first sporadic PCs with somatic mutations in the Wnt canonical pathway, complementing previously described epigenetic mechanisms mediating Wnt activation. This is the largest genomic sequencing study of PC, and represents major progress toward a full molecular characterization of this rare malignancy to inform improved and individualized treatments.


Subject(s)
Gene Expression Profiling , Mutation , Parathyroid Neoplasms/genetics , Cohort Studies , Cyclin D1/metabolism , Humans , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/genetics , Wnt Signaling Pathway
10.
Genome Med ; 8(1): 62, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27245685

ABSTRACT

BACKGROUND: Personalized therapy provides the best outcome of cancer care and its implementation in the clinic has been greatly facilitated by recent convergence of enormous progress in basic cancer research, rapid advancement of new tumor profiling technologies, and an expanding compendium of targeted cancer therapeutics. METHODS: We developed a personalized cancer therapy (PCT) program in a clinical setting, using an integrative genomics approach to fully characterize the complexity of each tumor. We carried out whole exome sequencing (WES) and single-nucleotide polymorphism (SNP) microarray genotyping on DNA from tumor and patient-matched normal specimens, as well as RNA sequencing (RNA-Seq) on available frozen specimens, to identify somatic (tumor-specific) mutations, copy number alterations (CNAs), gene expression changes, gene fusions, and also germline variants. To provide high sensitivity in known cancer mutation hotspots, Ion AmpliSeq Cancer Hotspot Panel v2 (CHPv2) was also employed. We integrated the resulting data with cancer knowledge bases and developed a specific workflow for each cancer type to improve interpretation of genomic data. RESULTS: We returned genomics findings to 46 patients and their physicians describing somatic alterations and predicting drug response, toxicity, and prognosis. Mean 17.3 cancer-relevant somatic mutations per patient were identified, 13.3-fold, 6.9-fold, and 4.7-fold more than could have been detected using CHPv2, Oncomine Cancer Panel (OCP), and FoundationOne, respectively. Our approach delineated the underlying genetic drivers at the pathway level and provided meaningful predictions of therapeutic efficacy and toxicity. Actionable alterations were found in 91 % of patients (mean 4.9 per patient, including somatic mutations, copy number alterations, gene expression alterations, and germline variants), a 7.5-fold, 2.0-fold, and 1.9-fold increase over what could have been uncovered by CHPv2, OCP, and FoundationOne, respectively. The findings altered the course of treatment in four cases. CONCLUSIONS: These results show that a comprehensive, integrative genomic approach as outlined above significantly enhanced genomics-based PCT strategies.


Subject(s)
Genetic Variation , Genomics/methods , Neoplasms/drug therapy , Neoplasms/genetics , Precision Medicine/methods , Adolescent , Adult , Aged , Child , DNA Copy Number Variations , Exome , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Middle Aged , Neoplasms/pathology , Polymorphism, Single Nucleotide , Prognosis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL