Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Pathogens ; 12(6)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37375537

ABSTRACT

Angiostrongyliasis (Rat Lungworm disease) is an emerging parasitic disease caused by the ingestion of gastropods infected with the neurotropic nematode Angiostrongylus cantonensis. The reduction of crop infestation with infected slug carriers may vary widely by protection method. We explored the application of barriers with valve mechanisms, whereby selective directional forces caused a greater number of slugs to exit than enter the protected plot, leading to decreased slug population densities at a steady state. Using field data, we constructed predictive models to estimate slug population densities at a steady state in protected plots with (1) no valve effect, (2) a valve effect, (3) no valve effect with a single breach of the barrier, (4) a valve effect with a single breach of the barrier, (5) a valve effect with a constant breach of the barrier, and (6) a repelling effect. For all scenarios, plots protected using a barrier with a valve effect had consistently lower slug densities at a steady state. Our findings support the use of barriers with valve mechanisms under different conditions, and potentially in combination with other interventions to reduce the contamination of crops by slug carriers of A. cantonensis. Improving barriers extends beyond disease mitigation to economic and cultural impacts on the local farmer and consumer communities.

2.
Parasit Vectors ; 7: 394, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25160464

ABSTRACT

BACKGROUND: Several investigators have reported genetic differences between northern and southern populations of Ixodes scapularis in North America, as well as differences in patterns of disease transmission. Ecological and behavioral correlates of these genetic differences, which might have implications for disease transmission, have not been reported. We compared survival of northern with that of southern genotypes under both northern and southern environmental conditions in laboratory trials. METHODS: Subadult I. scapularis from laboratory colonies that originated from adults collected from deer from several sites in the northeastern, north central, and southern U.S. were exposed to controlled conditions in environmental chambers. Northern and southern genotypes were exposed to light:dark and temperature conditions of northern and southern sites with controlled relative humidities, and mortality through time was recorded. RESULTS: Ticks from different geographical locations differed in survival patterns, with larvae from Wisconsin surviving longer than larvae from Massachusetts, South Carolina or Georgia, when held under the same conditions. In another experiment, larvae from Florida survived longer than larvae from Michigan. Therefore, survival patterns of regional genotypes did not follow a simple north-south gradient. The most consistent result was that larvae from all locations generally survived longer under northern conditions than under southern conditions. CONCLUSIONS: Our results suggest that conditions in southern North America are less hospitable than in the north to populations of I. scapularis. Southern conditions might have resulted in ecological or behavioral adaptations that contribute to the relative rarity of I. scapularis borne diseases, such as Lyme borreliosis, in the southern compared to the northern United States.


Subject(s)
Adaptation, Physiological/genetics , Climate , Genotype , Ixodes/genetics , Ixodes/physiology , Animals , Genetic Fitness , Genetic Variation , Larva , Nymph , Temperature , United States
SELECTION OF CITATIONS
SEARCH DETAIL