Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioinformatics ; 38(5): 1252-1260, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34864847

ABSTRACT

MOTIVATION: Intrinsically disordered regions (IDRs) are widely distributed in proteins. Accurate prediction of IDRs is critical for the protein structure and function analysis. The IDRs are divided into long disordered regions (LDRs) and short disordered regions (SDRs) according to their lengths. Previous studies have shown that LDRs and SDRs have different proprieties. However, the existing computational methods fail to extract different features for LDRs and SDRs separately. As a result, they achieve unstable performance on datasets with different ratios of LDRs and SDRs. RESULTS: In this study, a two-layer predictor was proposed called DeepIDP-2L. In the first layer, two kinds of attention-based models are used to extract different features for LDRs and SDRs, respectively. The hierarchical attention network is used to capture the distribution pattern features of LDRs, and convolutional attention network is used to capture the local correlation features of SDRs. The second layer of DeepIDP-2L maps the feature extracted in the first layer into a new feature space. Convolutional network and bidirectional long short term memory are used to capture the local and long-range information for predicting both SDRs and LDRs. Experimental results show that DeepIDP-2L can achieve more stable performance than other exiting predictors on independent test sets with different ratios of SDRs and LDRs. AVAILABILITY AND IMPLEMENTATION: For the convenience of most experimental scientists, a user-friendly and publicly accessible web-server for the new predictor has been established at http://bliulab.net/DeepIDP-2L/. It is anticipated that DeepIDP-2L will become a very useful tool for identification of intrinsically disordered regions. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Intrinsically Disordered Proteins , Proteins , Proteins/chemistry , Protein Domains , Intrinsically Disordered Proteins/chemistry , Computational Biology/methods
2.
Nucleic Acids Res ; 49(22): e129, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34581805

ABSTRACT

In order to uncover the meanings of 'book of life', 155 different biological language models (BLMs) for DNA, RNA and protein sequence analysis are discussed in this study, which are able to extract the linguistic properties of 'book of life'. We also extend the BLMs into a system called BioSeq-BLM for automatically representing and analyzing the sequence data. Experimental results show that the predictors generated by BioSeq-BLM achieve comparable or even obviously better performance than the exiting state-of-the-art predictors published in literatures, indicating that BioSeq-BLM will provide new approaches for biological sequence analysis based on natural language processing technologies, and contribute to the development of this very important field. In order to help the readers to use BioSeq-BLM for their own experiments, the corresponding web server and stand-alone package are established and released, which can be freely accessed at http://bliulab.net/BioSeq-BLM/.


Subject(s)
Sequence Analysis, DNA/methods , Sequence Analysis, Protein/methods , Sequence Analysis, RNA/methods , Software , DNA-Binding Proteins/chemistry , Deoxyribonuclease I , Intrinsically Disordered Proteins/chemistry , MicroRNAs/chemistry , Models, Statistical , Natural Language Processing , Nucleic Acid Conformation , RNA Precursors/chemistry , RNA-Binding Proteins/chemistry
3.
Bioinformatics ; 36(21): 5177-5186, 2021 01 29.
Article in English | MEDLINE | ID: mdl-32702119

ABSTRACT

MOTIVATION: Related to many important biological functions, intrinsically disordered regions (IDRs) are widely distributed in proteins. Accurate prediction of IDRs is critical for the protein structure and function analysis. However, the existing computational methods construct the predictive models solely in the sequence space, failing to convert the sequence space into the 'semantic space' to reflect the structure characteristics of proteins. Furthermore, although the length-dependent predictors showed promising results, new fusion strategies should be explored to improve their predictive performance and the generalization. RESULTS: In this study, we applied the Sequence to Sequence Learning (Seq2Seq) derived from natural language processing (NLP) to map protein sequences to 'semantic space' to reflect the structure patterns with the help of predicted residue-residue contacts (CCMs) and other sequence-based features. Furthermore, the Attention mechanism was used to capture the global associations between all residue pairs in the proteins. Three length-dependent predictors were constructed: IDP-Seq2Seq-L for long disordered region prediction, IDP-Seq2Seq-S for short disordered region prediction and IDP-Seq2Seq-G for both long and short disordered region predictions. Finally, these three predictors were fused into one predictor called IDP-Seq2Seq to improve the discriminative power and generalization. Experimental results on four independent test datasets and the CASP test dataset showed that IDP-Seq2Seq is insensitive with the ratios of long and short disordered regions and outperforms other competing methods. AVAILABILITY AND IMPLEMENTATION: For the convenience of most experimental scientists, a user-friendly and publicly accessible web-server for the powerful new predictor has been established at http://bliulab.net/IDP-Seq2Seq/. It is anticipated that IDP-Seq2Seq will become a very useful tool for identification of IDRs. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Intrinsically Disordered Proteins , Amino Acid Sequence , Computational Biology , Intrinsically Disordered Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL