Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Psychiatry ; 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37433967

ABSTRACT

Lithium is regarded as the first-line treatment for bipolar disorder (BD), a severe and disabling mental health disorder that affects about 1% of the population worldwide. Nevertheless, lithium is not consistently effective, with only 30% of patients showing a favorable response to treatment. To provide personalized treatment options for bipolar patients, it is essential to identify prediction biomarkers such as polygenic scores. In this study, we developed a polygenic score for lithium treatment response (Li+PGS) in patients with BD. To gain further insights into lithium's possible molecular mechanism of action, we performed a genome-wide gene-based analysis. Using polygenic score modeling, via methods incorporating Bayesian regression and continuous shrinkage priors, Li+PGS was developed in the International Consortium of Lithium Genetics cohort (ConLi+Gen: N = 2367) and replicated in the combined PsyCourse (N = 89) and BipoLife (N = 102) studies. The associations of Li+PGS and lithium treatment response - defined in a continuous ALDA scale and a categorical outcome (good response vs. poor response) were tested using regression models, each adjusted for the covariates: age, sex, and the first four genetic principal components. Statistical significance was determined at P < 0.05. Li+PGS was positively associated with lithium treatment response in the ConLi+Gen cohort, in both the categorical (P = 9.8 × 10-12, R2 = 1.9%) and continuous (P = 6.4 × 10-9, R2 = 2.6%) outcomes. Compared to bipolar patients in the 1st decile of the risk distribution, individuals in the 10th decile had 3.47-fold (95%CI: 2.22-5.47) higher odds of responding favorably to lithium. The results were replicated in the independent cohorts for the categorical treatment outcome (P = 3.9 × 10-4, R2 = 0.9%), but not for the continuous outcome (P = 0.13). Gene-based analyses revealed 36 candidate genes that are enriched in biological pathways controlled by glutamate and acetylcholine. Li+PGS may be useful in the development of pharmacogenomic testing strategies by enabling a classification of bipolar patients according to their response to treatment.

2.
Mol Psychiatry ; 27(12): 5135-5143, 2022 12.
Article in English | MEDLINE | ID: mdl-36131045

ABSTRACT

Polygenic risk prediction remains an important aim of genetic association studies. Currently, the predictive power of schizophrenia polygenic risk scores (PRSs) is not large enough to allow highly accurate discrimination between cases and controls and thus is not adequate for clinical integration. Since PRSs are rarely used to reveal biological functions or to validate candidate pathways, to fill this gap, we investigated whether their predictive ability could be improved by building genome-wide (GW-PRSs) and pathway-specific PRSs, using distance- or expression quantitative trait loci (eQTLs)- based mapping between genetic variants and genes. We focused on five pathways (glutamate, oxidative stress, GABA/interneurons, neuroimmune/neuroinflammation and myelin) which belong to a critical hub of schizophrenia pathophysiology, centred on redox dysregulation/oxidative stress. Analyses were first performed in the Lausanne Treatment and Early Intervention in Psychosis Program (TIPP) study (n = 340, cases/controls: 208/132), a sample of first-episode of psychosis patients and matched controls, and then validated in an independent study, the epidemiological and longitudinal intervention program of First-Episode Psychosis in Cantabria (PAFIP) (n = 352, 224/128). Our results highlighted two main findings. First, GW-PRSs for schizophrenia were significantly associated with early psychosis status. Second, oxidative stress was the only significantly associated pathway that showed an enrichment in both the TIPP (p = 0.03) and PAFIP samples (p = 0.002), and exclusively when gene-variant linking was done using eQTLs. The results suggest that the predictive accuracy of polygenic risk scores could be improved with the inclusion of information from functional annotations, and through a focus on specific pathways, emphasizing the need to build and study functionally informed risk scores.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Psychotic Disorders/genetics , Schizophrenia/genetics , Risk Factors , Multifactorial Inheritance , Oxidative Stress , Genome-Wide Association Study , Genetic Predisposition to Disease
3.
J Neural Transm (Vienna) ; 130(3): 195-205, 2023 03.
Article in English | MEDLINE | ID: mdl-36370183

ABSTRACT

Since more than 3 decades, schizophrenia (SZ) has been regarded as a neurodevelopmental disorder. The neurodevelopmental hypothesis proposes that SZ is associated with genetic and environmental risk factors, which influence connectivity in neuronal circuits during vulnerable developmental periods. We carried out a non-systematic review of genetic/environmental factors that increase SZ risk in light of its neurodevelopmental hypothesis. We also reviewed the potential impact of SZ-related environmental and genetic risk factors on grey and white matter pathology and brain function based on magnetic resonance imaging and post-mortem studies. Finally, we reviewed studies that have used patient-derived neuronal models to gain knowledge of the role of genetic and environmental factors in early developmental stages. Taken together, these studies indicate that a variety of environmental factors may interact with genetic risk factors during the pre- or postnatal period and/or during adolescence to induce symptoms of SZ in early adulthood. These risk factors induce disturbances of macro- and microconnectivity in brain regions involving the prefrontal, temporal and parietal cortices and the hippocampus. On the molecular and cellular level, a disturbed synaptic plasticity, loss of oligodendrocytes and impaired myelination have been shown in brain regions of SZ patients. These cellular/histological phenotypes are related to environmental risk factors such as obstetric complications, maternal infections and childhood trauma and genetic risk factors identified in recent genome-wide association studies. SZ-related genetic risk may contribute to active processes interfering with synaptic plasticity in the adult brain. Advances in stem cell technologies are providing promising mechanistic insights into how SZ risk factors impact the developing brain. Further research is needed to understand the timing of the different complex biological processes taking place as a result of the interplay between genetic and environmental factors.


Subject(s)
Schizophrenia , White Matter , Humans , Schizophrenia/pathology , Genome-Wide Association Study , Brain/pathology , Magnetic Resonance Imaging/methods , White Matter/pathology
4.
Eur Arch Psychiatry Clin Neurosci ; 273(6): 1279-1293, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36302978

ABSTRACT

Over the last few years, extracellular vesicles (EVs) have received increasing attention as potential non-invasive diagnostic and therapeutic biomarkers for various diseases. The interest in EVs is related to their structure and content, as well as to their changing cargo in response to different stimuli. One of the potential areas of use of EVs as biomarkers is the central nervous system (CNS), in particular the brain, because EVs can cross the blood-brain barrier, exist also in peripheral tissues and have a diverse cargo. Thus, they may represent "liquid biopsies" of the CNS that can reflect brain pathophysiology without the need for invasive surgical procedures. Overall, few studies to date have examined EVs in neuropsychiatric disorders, and the present evidence appears to lack reproducibility. This situation might be due to a variety of technical obstacles related to working with EVs, such as the use of different isolation strategies, which results in non-uniform vesicular and molecular outputs. Multi-omics approaches and improvements in the standardization of isolation procedures will allow highly pure EV fractions to be obtained in which the molecular cargo, particularly microRNAs and proteins, can be identified and accurately quantified. Eventually, these advances will enable researchers to decipher disease-relevant molecular signatures of the brain-derived EVs involved in synaptic plasticity, neuronal development, neuro-immune communication, and other related pathways. This narrative review summarizes the findings of studies on EVs in major psychiatric disorders, particularly in the field of biomarkers, and discusses the respective therapeutic potential of EVs.


Subject(s)
Extracellular Vesicles , Mental Disorders , Humans , Reproducibility of Results , Extracellular Vesicles/metabolism , Brain , Biomarkers/metabolism , Mental Disorders/diagnosis , Mental Disorders/therapy , Mental Disorders/metabolism
5.
Eur Arch Psychiatry Clin Neurosci ; 273(8): 1665-1675, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37301774

ABSTRACT

Schizophrenia (SZ) is a complex disorder with a highly polygenic inheritance. It can be conceived as the extreme expression of a continuum of traits that are present in the general population often broadly referred to as schizotypy. However, it is still poorly understood how these traits overlap genetically with the disorder. We investigated whether polygenic risk for SZ is associated with these disorder-related phenotypes (schizotypy, psychotic-like experiences, and subclinical psychopathology) in a sample of 253 non-clinically identified participants. Polygenic risk scores (PRSs) were constructed based on the latest SZ genome-wide association study using the PRS-CS method. Their association with self-report and interview measures of SZ-related traits was tested. No association with either schizotypy or psychotic-like experiences was found. However, we identified a significant association with the Motor Change subscale of the Comprehensive Assessment of At-Risk Mental States (CAARMS) interview. Our results indicate that the genetic overlap of SZ with schizotypy and psychotic-like experiences is less robust than previously hypothesized. The relationship between high PRS for SZ and motor abnormalities could reflect neurodevelopmental processes associated with psychosis proneness and SZ.


Subject(s)
Psychotic Disorders , Schizophrenia , Humans , Schizophrenia/genetics , Genome-Wide Association Study , Genetic Predisposition to Disease/genetics , Psychotic Disorders/genetics , Multifactorial Inheritance/genetics
6.
Brain Behav Immun ; 103: 37-49, 2022 07.
Article in English | MEDLINE | ID: mdl-35381347

ABSTRACT

Despite being a major cause of disability worldwide, the pathophysiology of schizophrenia and molecular basis of treatment response heterogeneity continue to be unresolved. Recent evidence suggests that multiple aspects of pathophysiology, including genetic risk factors, converge on key cell signaling pathways and that exploration of peripheral blood cells might represent a practical window into cell signaling alterations in the disease state. We employed multiplexed phospho-specific flow cytometry to examine cell signaling epitope expression in peripheral blood mononuclear cell (PBMC) subtypes in drug-naïve schizophrenia patients (n = 49) relative to controls (n = 61) and relate these changes to serum immune response proteins, schizophrenia polygenic risk scores and clinical effects of treatment, including drug response and side effects, over the longitudinal course of antipsychotic treatment. This revealed both previously characterized (Akt1) and novel cell signaling epitopes (IRF-7 (pS477/pS479), CrkL (pY207), Stat3 (pS727), Stat3 (pY705) and Stat5 (pY694)) across PBMC subtypes which were associated with schizophrenia at disease onset, and correlated with type I interferon-related serum molecules CD40 and CXCL11. Alterations in Akt1 and IRF-7 (pS477/pS479) were additionally associated with polygenic risk of schizophrenia. Finally, changes in Akt1, IRF-7 (pS477/pS479) and Stat3 (pS727) predicted development of metabolic and cardiovascular side effects following antipsychotic treatment, while IRF-7 (pS477/pS479) and Stat3 (pS727) predicted early improvements in general psychopathology scores measured using the Brief Psychiatric Rating Scale (BPRS). These findings suggest that peripheral blood cells can provide an accessible surrogate model for intracellular signaling alterations in schizophrenia and have the potential to stratify subgroups of patients with different clinical outcomes or a greater risk of developing metabolic and cardiovascular side effects following antipsychotic therapy.


Subject(s)
Antipsychotic Agents , Schizophrenia , Antipsychotic Agents/pharmacology , Humans , Leukocytes, Mononuclear/metabolism , Lymphocytes/metabolism , Schizophrenia/metabolism , Signal Transduction
7.
Mol Psychiatry ; 26(6): 2457-2470, 2021 06.
Article in English | MEDLINE | ID: mdl-32203155

ABSTRACT

Lithium is a first-line medication for bipolar disorder (BD), but only one in three patients respond optimally to the drug. Since evidence shows a strong clinical and genetic overlap between depression and bipolar disorder, we investigated whether a polygenic susceptibility to major depression is associated with response to lithium treatment in patients with BD. Weighted polygenic scores (PGSs) were computed for major depression (MD) at different GWAS p value thresholds using genetic data obtained from 2586 bipolar patients who received lithium treatment and took part in the Consortium on Lithium Genetics (ConLi+Gen) study. Summary statistics from genome-wide association studies in MD (135,458 cases and 344,901 controls) from the Psychiatric Genomics Consortium (PGC) were used for PGS weighting. Response to lithium treatment was defined by continuous scores and categorical outcome (responders versus non-responders) using measurements on the Alda scale. Associations between PGSs of MD and lithium treatment response were assessed using a linear and binary logistic regression modeling for the continuous and categorical outcomes, respectively. The analysis was performed for the entire cohort, and for European and Asian sub-samples. The PGSs for MD were significantly associated with lithium treatment response in multi-ethnic, European or Asian populations, at various p value thresholds. Bipolar patients with a low polygenic load for MD were more likely to respond well to lithium, compared to those patients with high polygenic load [lowest vs highest PGS quartiles, multi-ethnic sample: OR = 1.54 (95% CI: 1.18-2.01) and European sample: OR = 1.75 (95% CI: 1.30-2.36)]. While our analysis in the Asian sample found equivalent effect size in the same direction: OR = 1.71 (95% CI: 0.61-4.90), this was not statistically significant. Using PGS decile comparison, we found a similar trend of association between a high genetic loading for MD and lower response to lithium. Our findings underscore the genetic contribution to lithium response in BD and support the emerging concept of a lithium-responsive biotype in BD.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Depression , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Genome-Wide Association Study , Humans , Lithium/therapeutic use
8.
J Psychiatry Neurosci ; 47(6): E393-E408, 2022.
Article in English | MEDLINE | ID: mdl-36414327

ABSTRACT

BACKGROUND: To study whether there is genetic overlap underlying the risk for schizophrenia spectrum disorders (SSDs) and low intelligence quotient (IQ), we reviewed and summarized the evidence on genetic variants associated with both traits. METHODS: We performed this review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and preregistered it in PROSPERO. We searched the Medline databases via PubMed, PsycInfo, Web of Science and Scopus. We included studies in adults with a diagnosis of SSD that explored genetic variants (single nucleotide polymorphisms [SNPs], copy number variants [CNVs], genomic insertions or genomic deletions), estimated IQ and studied the relationship between genetic variability and both traits (SSD and IQ). We synthesized the results and assessed risk of bias using the Quality of Genetic Association Studies (Q-Genie) tool. RESULTS: Fifty-five studies met the inclusion criteria (45 case-control, 9 cross-sectional, 1 cohort), of which 55% reported significant associations for genetic variants involved in IQ and SSD. The SNPs more frequently explored through candidate gene studies were in COMT, DTNBP1, BDNF and TCF4. Through genome-wide association studies, 2 SNPs in CHD7 and GATAD2A were associated with IQ in patients with SSD. The studies on CNVs suggested significant associations between structural variants and low IQ in patients with SSD. LIMITATIONS: Overall, primary studies used heterogeneous IQ measurement tools and had small samples. Grey literature was not screened. CONCLUSION: Genetic overlap between SSD and IQ supports the neurodevelopmental hypothesis of schizophrenia. Most of the risk polymorphisms identified were in genes relevant to brain development, neural proliferation and differentiation, and synaptic plasticity.


Subject(s)
Schizophrenia , Adult , Humans , Schizophrenia/genetics , Genome-Wide Association Study , Cross-Sectional Studies , Polymorphism, Single Nucleotide/genetics , Intelligence/genetics
9.
Eur Arch Psychiatry Clin Neurosci ; 272(7): 1229-1239, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35796825

ABSTRACT

The CACNA1C and the ZNF804A genes are among the most relevant schizophrenia GWAS findings. Recent evidence shows that the interaction of these genes with the schizophrenia diagnosis modulates brain functional response to a verbal fluency task. To better understand how these genes might influence the risk for schizophrenia, we aimed to study the interplay between CACNA1C and ZNF804A on working memory brain functional correlates. The analyses included functional and behavioural N-back task data (obtained from an fMRI protocol) and CACNA1C-rs1006737 and ZNF804A-rs1344706 genotypes for 78 healthy subjects and 78 patients with schizophrenia (matched for age, sex and premorbid IQ). We tested the effects of the epistasis between these genes as well as of the three-way interaction (CACNA1C × ZNAF804A × diagnosis) on working memory-associated activity (N-back: 2-back vs 1-back). We detected a significant CACNA1C × ZNAF804A interaction on working memory functional response in regions comprising the ventral caudate medially and within the left hemisphere, the superior and inferior orbitofrontal gyrus, the superior temporal pole and the ventral-anterior insula. The individuals with the GWAS-identified risk genotypes (CACNA1C-AA/AG and ZNF804A-AA) displayed a reduced working memory modulation response. This genotypic combination was also associated with opposite brain activity patterns between patients and controls. While further research will help to comprehend the neurobiological mechanisms of this interaction, our data highlight the role of the epistasis between CACNA1C and ZNF804A in the functional mechanisms underlying the pathophysiology of schizophrenia.


Subject(s)
Schizophrenia , Calcium Channels, L-Type/genetics , Functional Neuroimaging , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Genotype , Humans , Kruppel-Like Transcription Factors/genetics , Polymorphism, Single Nucleotide/genetics , Schizophrenia/diagnostic imaging , Schizophrenia/genetics
10.
Br J Psychiatry ; 219(6): 659-669, 2021 12.
Article in English | MEDLINE | ID: mdl-35048876

ABSTRACT

BACKGROUND: Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools. AIMS: To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics. METHOD: Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts. RESULTS: Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (ß = -0.34 years, s.e. = 0.08), major depression (ß = -0.34 years, s.e. = 0.08), schizophrenia (ß = -0.39 years, s.e. = 0.08), and educational attainment (ß = -0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO. CONCLUSIONS: AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.


Subject(s)
Autism Spectrum Disorder , Bipolar Disorder , Depressive Disorder, Major , Age of Onset , Bipolar Disorder/diagnosis , Bipolar Disorder/epidemiology , Bipolar Disorder/genetics , Depressive Disorder, Major/genetics , Genome-Wide Association Study , Humans , Multifactorial Inheritance
11.
Brain Behav Immun ; 91: 673-682, 2021 01.
Article in English | MEDLINE | ID: mdl-32898636

ABSTRACT

Recent evidence suggests that comorbidities between neuropsychiatric conditions and metabolic syndrome may precede and even exacerbate long-term side-effects of psychiatric medication, such as a higher risk of type 2 diabetes and cardiovascular disease, which result in increased mortality. In the present study we compare the expression of key metabolic proteins, including the insulin receptor (CD220), glucose transporter 1 (GLUT1) and fatty acid translocase (CD36), on peripheral blood mononuclear cell subtypes from patients across the neuropsychiatric spectrum, including schizophrenia, bipolar disorder, major depression and autism spectrum conditions (n = 25/condition), relative to typical controls (n = 100). This revealed alterations in the expression of these proteins that were specific to schizophrenia. Further characterization of metabolic alterations in an extended cohort of first-onset antipsychotic drug-naïve schizophrenia patients (n = 58) and controls (n = 63) revealed that the relationship between insulin receptor expression in monocytes and physiological insulin sensitivity was disrupted in schizophrenia and that altered expression of the insulin receptor was associated with whole genome polygenic risk scores for schizophrenia. Finally, longitudinal follow-up of the schizophrenia patients over the course of antipsychotic drug treatment revealed that peripheral metabolic markers predicted changes in psychopathology and the principal side effect of weight gain at clinically relevant time points. These findings suggest that peripheral blood cells can provide an accessible surrogate model for metabolic alterations in schizophrenia and have the potential to stratify subgroups of patients with different clinical outcomes or a greater risk of developing metabolic complications following antipsychotic therapy.


Subject(s)
Antipsychotic Agents , Diabetes Mellitus, Type 2 , Metabolic Syndrome , Schizophrenia , Antipsychotic Agents/adverse effects , Humans , Leukocytes, Mononuclear , Schizophrenia/drug therapy
12.
Am J Med Genet B Neuropsychiatr Genet ; 186(2): 77-89, 2021 03.
Article in English | MEDLINE | ID: mdl-33590662

ABSTRACT

HeiDE is a longitudinal population-based study that started in the 1990s and, at baseline, assessed an array of health-related personality questionnaires in 5133 individuals. Five latent personality dimensions (The Heidelberg Five) were identified and interpreted as Emotional Lability (ELAB), Lack of Behavioral Control (LBCN), Type A Behavior (TYAB), Locus of Control over Disease (LOCC), and Psychoticism (PSYC). At follow-up, 3268 HeiDE participants (post-QC) were genotyped on single nucleotide polymorphism (SNP) arrays. To further characterize The Heidelberg Five, we analyzed genomic underpinnings, their relations to the genetic basis of the Big Five trait Neuroticism, and longitudinal associations with psychiatric symptoms at follow-up. SNP-based heritability was significant for ELAB (34%) and LBCN (29%). A genome-wide association study for each personality dimension was conducted; only the phenotype PSYC yielded a genome-wide significant finding (p < 5 × 10-8 , top SNP rs138223660). Gene-based analyses identified significant findings for ELAB, TYAB, and PSYC. Polygenic risk scores for Neuroticism were only associated with ELAB. Each of The Heidelberg Five was related to depressive symptoms at follow-up. ELAB, LBCN, and PSYC were also associated with lifetime anxiety symptoms. These results highlight the clinical importance of health-related personality traits and identify LBCN as a heritable "executive function" personality trait.


Subject(s)
Anxiety Disorders/epidemiology , Genetic Markers , Mood Disorders/epidemiology , Neuroticism , Personality Disorders/epidemiology , Polymorphism, Single Nucleotide , Psychopathology , Adult , Aged , Anxiety Disorders/genetics , Anxiety Disorders/pathology , Female , Genome-Wide Association Study , Genotype , Germany , Humans , Longitudinal Studies , Male , Middle Aged , Mood Disorders/genetics , Mood Disorders/pathology , Personality Disorders/genetics , Personality Disorders/pathology , Phenotype , Time Factors
13.
Eur Arch Psychiatry Clin Neurosci ; 270(4): 425-431, 2020 Jun.
Article in English | MEDLINE | ID: mdl-30523404

ABSTRACT

Cognitive deficits are increasingly recognized as a core dimension rather than a consequence of schizophrenia (SCZ). The previous evidence supports the hypothesis of shared genetic factors between SCZ and cognitive ability. The objective of this study was to test whether and to what extent the variation of disease-relevant neurocognitive function in a sample of SCZ patients from the previous clinical interventional studies can be explained by SCZ polygenic risk scores (PRSs) or by hypothesis-driven and biomedical PRSs. The previous studies have described associations of the SNAP25 gene with cognition in SCZ. Likewise, the enrichment of several calcium signaling-related gene sets has been reported by genome-wide association studies (GWAS) in SCZ. Hypothesis-driven PRSs were calculated on the basis of the SNAP-25 interactome and also for genes regulated by phorbol myristate acetate (PMA), an activator of the signal transduction of protein kinase C (PKC) enzymes. In a cohort of 127 SCZ patients who had completed a comprehensive neurocognitive test battery as part of the previous antipsychotic intervention studies, we investigated the association between neurocognitive dimensions and PRSs. The PRS for SCZ and SNAP-25-associated genes could not explain the variance of neurocognition in this cohort. At a p value threshold of 0.05, the PRS for PMA was able to explain 2% of the variance in executive function (p = 0.05, uncorrected). The correlation between the PRS for PMA-regulated genes and cognition can give hints for further patient-derived cellular assays. In conclusion, incorporating biological information into PRSs and other en masse genetic analyses may help to close the gap between genetic vulnerability and the biological processes underlying neuropsychiatric diseases such as SCZ.


Subject(s)
Calcium Signaling/genetics , Cognitive Dysfunction , Executive Function/physiology , Schizophrenia , Adult , Cognitive Dysfunction/etiology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/physiopathology , Cohort Studies , Female , Humans , Male , Multifactorial Inheritance , Schizophrenia/complications , Schizophrenia/genetics , Schizophrenia/physiopathology , Synaptosomal-Associated Protein 25/genetics
14.
Bipolar Disord ; 21(1): 68-75, 2019 02.
Article in English | MEDLINE | ID: mdl-29956436

ABSTRACT

OBJECTIVES: Bipolar disorder (BD) with early disease onset is associated with an unfavorable clinical outcome and constitutes a clinically and biologically homogenous subgroup within the heterogeneous BD spectrum. Previous studies have found an accumulation of early age at onset (AAO) in BD families and have therefore hypothesized that there is a larger genetic contribution to the early-onset cases than to late onset BD. To investigate the genetic background of this subphenotype, we evaluated whether an increased polygenic burden of BD- and schizophrenia (SCZ)-associated risk variants is associated with an earlier AAO in BD patients. METHODS: A total of 1995 BD type 1 patients from the Consortium of Lithium Genetics (ConLiGen), PsyCourse and Bonn-Mannheim samples were genotyped and their BD and SCZ polygenic risk scores (PRSs) were calculated using the summary statistics of the Psychiatric Genomics Consortium as a training data set. AAO was either separated into onset groups of clinical interest (childhood and adolescence [≤18 years] vs adulthood [>18 years]) or considered as a continuous measure. The associations between BD- and SCZ-PRSs and AAO were evaluated with regression models. RESULTS: BD- and SCZ-PRSs were not significantly associated with age at disease onset. Results remained the same when analyses were stratified by site of recruitment. CONCLUSIONS: The current study is the largest conducted so far to investigate the association between the cumulative BD and SCZ polygenic risk and AAO in BD patients. The reported negative results suggest that such a polygenic influence, if there is any, is not large, and highlight the importance of conducting further, larger scale studies to obtain more information on the genetic architecture of this clinically relevant phenotype.


Subject(s)
Bipolar Disorder/genetics , Schizophrenia/genetics , Adolescent , Adult , Age Factors , Child , Female , Humans , Male , Middle Aged , Multifactorial Inheritance , Phenotype
16.
Am J Med Genet B Neuropsychiatr Genet ; 180(2): 89-102, 2019 03.
Article in English | MEDLINE | ID: mdl-30070057

ABSTRACT

In current diagnostic systems, schizophrenia and bipolar disorder are still conceptualized as distinct categorical entities. Recently, both clinical and genomic evidence have challenged this Kraepelinian dichotomy. There are only few longitudinal studies addressing potential overlaps between these conditions. Here, we present design and first results of the PsyCourse study (N = 891 individuals at baseline), an ongoing transdiagnostic study of the affective-to-psychotic continuum that combines longitudinal deep phenotyping and dimensional assessment of psychopathology with an extensive collection of biomaterial. To provide an initial characterization of the PsyCourse study sample, we compare two broad diagnostic groups defined by the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) classification system, that is, predominantly affective (n = 367 individuals) versus predominantly psychotic disorders (n = 524 individuals). Depressive, manic, and psychotic symptoms as well as global functioning over time were contrasted using linear mixed models. Furthermore, we explored the effects of polygenic risk scores for schizophrenia on diagnostic group membership and addressed their effects on nonparticipation in follow-up visits. While phenotypic results confirmed expected differences in current psychotic symptoms and global functioning, both manic and depressive symptoms did not vary between both groups after correction for multiple testing. Polygenic risk scores for schizophrenia significantly explained part of the variability of diagnostic group. The PsyCourse study presents a unique resource to research the complex relationships of psychopathology and biology in severe mental disorders not confined to traditional diagnostic boundaries and is open for collaborations.


Subject(s)
Mental Disorders/diagnosis , Mental Disorders/psychology , Psychotic Disorders/diagnosis , Adult , Aged , Bipolar Disorder/diagnosis , Bipolar Disorder/psychology , Diagnostic and Statistical Manual of Mental Disorders , Female , Humans , Longitudinal Studies , Male , Middle Aged , Phenotype , Psychopathology/methods , Psychotic Disorders/psychology , Research Design , Schizophrenia/diagnosis , Schizophrenic Psychology
17.
Pharmacopsychiatry ; 51(5): 206-211, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29579760

ABSTRACT

INTRODUCTION: Lithium remains the best-established long-term treatment for bipolar disorder because of its efficacy in maintaining periods of remission and reducing the risk of suicide. Not all patients successfully respond to lithium treatment, and the individual response, including the occurrence of side effects, is highly variable and not easy to predict. The genetic basis of lithium response is supported by the fact that the response clusters in families. Likewise, recent high-throughput genomic analyses have shed light on its genetic architecture. METHODS: This nonsystematic review summarizes the main results obtained in genetic association studies using lithium response as target trait. RESULTS: These studies suggest that several genetic loci might modulate the way a patient responds to lithium maintenance treatment. Further studies to fully characterize the genetic architecture of lithium response are warranted. DISCUSSION: The identification of genetic factors associated with lithium response will be important for (1) better understanding of lithium's mode of action and (2) development of a predictive model for optimization of long-term treatment of bipolar disorder.


Subject(s)
Antimanic Agents/therapeutic use , Bipolar Disorder/drug therapy , Bipolar Disorder/genetics , Lithium Compounds/therapeutic use , Pharmacogenetics , Humans
20.
Mol Med ; 21: 26-37, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25730773

ABSTRACT

In a first genome-wide association study (GWAS) approach to anti-Borrelia seropositivity, we identified two significant single nucleotide polymorphisms (SNPs) (rs17850869, P = 4.17E-09; rs41289586, P = 7.18E-08). Both markers, located on chromosomes 16 and 3, respectively, are within or close to genes previously connected to spinocerebellar ataxia. The risk SNP rs41289586 represents a missense variant (R263H) of anoctamin 10 (ANO10), a member of a protein family encoding Cl(-) channels and phospholipid scramblases. ANO10 augments volume-regulated Cl(-) currents (IHypo) in Xenopus oocytes, HEK293 cells, lymphocytes and macrophages and controls volume regulation by enhancing regulatory volume decrease (RVD). ANO10 supports migration of macrophages and phagocytosis of spirochetes. The R263H variant is inhibitory on IHypo, RVD and intracellular Ca(2+) signals, which may delay spirochete clearance, thereby sensitizing adaptive immunity. Our data demonstrate for the first time that ANO10 has a central role in innate immune defense against Borrelia infection.


Subject(s)
Borrelia Infections/genetics , Borrelia Infections/immunology , Borrelia/immunology , Genetic Variation , Macrophages/metabolism , Membrane Proteins/genetics , Open Reading Frames , Animals , Anoctamins , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Borrelia Infections/epidemiology , Borrelia Infections/microbiology , Case-Control Studies , Cell Line , Cell Size , Gene Expression , Genome-Wide Association Study , HEK293 Cells , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Macrophages/pathology , Mental Disorders/genetics , Mental Disorders/microbiology , Oocytes , Phenotype , Polymorphism, Single Nucleotide , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL