Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Pharm ; 20(12): 5954-5980, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37962352

ABSTRACT

Bioactive glasses (BGs) are widely used in orthopedic and dental applications for their ability to stimulate endogenous bone formation and regeneration. BG applications more recently broadened to include soft tissue conditions, based on their ability to stimulate angiogenesis, soft tissue regeneration, and wound healing. Sol-gel synthesis has helped facilitate this expansion, allowing formulators to tailor the morphological characteristics of the BG matrix. The effectiveness of BGs in skin wound healing is viewed as a gateway for their use as both a therapeutic and drug delivery platform in other soft tissue applications, notably gastrointestinal (GI) applications, which form the focus of this review. Recent changes in international guidelines for GI conditions shifted clinical objectives from symptom management to mucosal wound healing. The additional scrutiny of proton pump inhibitor (PPI) safety, increasing burden of disease, and financial costs associated with gastroesophageal reflux disease (GERD), peptic ulcer disease (PUD), and inflammatory bowel disease (IBD) open new clinical possibilities for BG. This narrative literature review intersects materials engineering, formulation science, and clinical practice, setting it apart from prior literature. Broadly, current evidence for BG applications in GI conditions is sparse and under-developed, which this review directly addresses. It explores and synthesizes evidence that supports the potential use of sol-gel-derived BG for the efficacious treatment of soft tissue applications, with specific reference to GI conditions. An overview with comparative analysis of current BG synthesis techniques and associated challenges is presented, and influences of composition, biologically active ions, and morphological characteristics in soft tissue applications are explored. To contextualize this, sol-gel-derived BGs are proposed as a dual, tailorable therapeutic and drug delivery platform for upper and lower GI conditions. Future directions for this largely untapped area of translational research are also proposed, based on extant literature.


Subject(s)
Osteogenesis , Wound Healing , Glass , Biocompatible Materials
2.
Mol Pharm ; 19(11): 4055-4066, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36149013

ABSTRACT

Clozapine is the most effective antipsychotic for treatment-resistant schizophrenia. However, it causes many adverse drug reactions (ADRs), which lead to poor treatment outcomes. Nose-to-brain (N2B) drug delivery offers a promising approach to reduce peripheral ADRs by minimizing systemic drug exposure. The aim of the present study was to develop and characterize clozapine-loaded nanoemulsion sol-gel (CLZ-NESG) for intranasal administration using high energy sonication method. A range of oils, surfactants, and cosurfactants were screened with the highest clozapine solubility selected for the development of nanoemulsion. Pseudoternary phase diagrams were constructed using a low-energy (spontaneous) method to identify the microemulsion regions (i.e., where mixtures were transparent). The final formulation, CLZ-NESG (pH 5.5 ± 0.2), comprising 1% w/w clozapine, 1% w/w oleic acid, 10% w/w polysorbate 80/propylene glycol (3:1), and 20% w/w poloxamer 407 (P407) solution, had an average globule size of ≤30 nm with PDI 0.2 and zeta potential of -39.7 ± 1.5 mV. The in vitro cumulative drug release of clozapine from the nanoemulsion gel at 34 °C (temperature of nasal cavity) after 72 h was 38.9 ± 4.6% compared to 84.2 ± 3.9% with the control solution. The permeation study using sheep nasal mucosa as diffusion barriers confirmed a sustained release of clozapine with 56.2 ± 2.3% cumulative drug permeated after 8 h. Additionally, the histopathological examination found no severe nasal ciliotoxicity on the mucosal tissues. The thermodynamic stability studies showed that the gel strength and viscosity of CLZ-NESG decreased after temperature cycling but was still seen to be in "gel" form at nasal temperature. However, the accelerated storage stability study showed a decrease in drug concentration after 3 months, which can be expected at elevated stress conditions. The formulation developed in this study showed desirable physicochemical properties for intranasal administration, highlighting the potential value of a nanoemulsion gel for improving drug bioavailability of clozapine for N2B delivery.


Subject(s)
Clozapine , Nanoparticles , Animals , Sheep , Administration, Intranasal , Clozapine/pharmacology , Emulsions/chemistry , Chemistry, Pharmaceutical , Particle Size , Gels , Nasal Mucosa , Nanoparticles/chemistry
3.
Saudi Pharm J ; 28(12): 1834-1841, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33424272

ABSTRACT

In recent decades, marine microorganisms have become known for their ability to produce a wide variety of secondary bioactive metabolites. Several compounds have been isolated from marine microorganisms for the development of novel bioactives for the food and pharmaceutical industries. In this study, a number of microalgae were evaluated for their antimicrobial activity against gram-positive and gram-negative bacteria, including food and plant pathogens, using various extraction techniques and antimicrobial assays. Disc diffusion and spot-on-lawn assays were conducted to confirm the antimicrobial activity. To measure the potency of the extracts, minimum inhibition concentrations (MIultCs) were measured. Three microalgae, namely Isochrysis galbana, Scenedesmus sp. NT8c, and Chlorella sp. FN1, showed strong inhibitory activity preferentially against gram-positive bacteria. These microalgal species were then selected for further purification and analysis, leading to compound identification. By using a mixture of different chromatography techniques gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) and ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS), we were able to separate and identify the dominant compounds that are responsible for the inhibitory activity. Additionally, nuclear magnetic resonance (NMR) was used to confirm the presence of these compounds. The dominant compounds that were identified and purified in the extracts are linoleic acid, oleic acid, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). These compounds are the potential candidates that inhibit the growth of gram-positive bacteria. This indicates the potential use of microalgae and their antimicrobial compounds as biocontrol agents against food and plant pathogens.

4.
Saudi Pharm J ; 27(7): 914-919, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31997897

ABSTRACT

To demonstrate safety of a developed intranasal dexamethasone-infused in situ gelling formulation, quantification of a validated clinical biomarker indicative of cytotoxic potential using a human sinonasal explant model was first confirmed. Systematic cytotoxicity studies using the lactate dehydrogenase (LDH) detection assay revealed no elevation from baseline, in LDH levels, with tissue integrity of explanted human nasal mucosa also maintained; this was further corroborated using tissue histopathological examination. Next, with safety confirmed ex vivo, freshly excised human nasal tissue was utilised to quantify dexamethasone release from the lead sol-gel systems; this being achieved through development and validation of a HPLC-UV analytical method, which reliably quantified controlled therapeutic release and deposition into mucosal tissue. Collectively, these findings indicate promise in the safety of each excipient within the concentrations employed in the functional sol-gel system, complemented by successful and reliable drug release and deposition into human nasal mucosal tissue. These findings pave the way for application of the dexamethasone-based sol-gel system to the extended delivery of corticosteroids to nasal mucosa in the management of localised inflammatory conditions of an acute and chronic nature, such as chronic rhinosinusitis, which can be expected to benefit from controlled and extended drug delivery characteristics imparted by appropriately engineered in situ gelling systems.

5.
Skin Pharmacol Physiol ; 31(1): 1-9, 2018.
Article in English | MEDLINE | ID: mdl-29131088

ABSTRACT

The use of sunscreen products is widely promoted by schools, government agencies, and health-related organizations to minimize sunburn and skin damage. In this study, we developed stable solid lipid nanoparticles (SLNs) containing the chemical UV filter octyl methoxycinnamate (OMC). In parallel, we produced similar stable SLNs in which 20% of the OMC content was replaced by the botanical urucum oil. When these SLNs were applied to the skin of human volunteers, no changes in fluorescence lifetimes or redox ratios of the endogenous skin fluorophores were seen, suggesting that the formulations did not induce toxic responses in the skin. Ex vivo (skin diffusion) tests showed no significant penetration. In vitro studies showed that when 20% of the OMC was replaced by urucum oil, there was no reduction in skin protection factor (SPF), suggesting that a decrease in the amount of chemical filter may be a viable alternative for an effective sunscreen, in combination with an antioxidant-rich vegetable oil, such as urucum. There is a strong trend towards increasing safety of sun protection products through reduction in the use of chemical UV filters. This work supports this approach by producing formulations with lower concentrations of OMC, while maintaining the SPF. Further investigations of SPF in vivo are needed to assess the suitability of these formulations for human use.


Subject(s)
Lipids/chemistry , Nanoparticles/chemistry , Plant Oils/chemistry , Sunscreening Agents/chemistry , Chemistry, Pharmaceutical/methods , Cinnamates/administration & dosage , Cinnamates/chemistry , Humans , Permeability/drug effects , Plant Oils/administration & dosage , Skin/drug effects , Skin Absorption/drug effects , Sunscreening Agents/administration & dosage , Ultraviolet Rays/adverse effects
6.
AAPS PharmSciTech ; 18(6): 2346-2357, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28124212

ABSTRACT

The aim of the present study was to evaluate the ability of the peptide dendrimers to facilitate transdermal delivery of antioxidants, silibinin, and epigallocatechin-3-gallate (EGCG). Drug-peptide dendrimer complexes were prepared and evaluated for their ability to permeate across the skin. The data revealed the ready formation of complexes between drug and peptide dendrimer in a molar ratio of 1:1. In vitro permeation studies using excised rat skin and drug-peptide dendrimer complexes showed highest values for cumulative drug permeation at the end of 12 h (Q12), with corresponding permeability coefficient (Kp) and enhancement ratio values also determined at this time point. With silibinin, 3.96-, 1.81-, and 1.06-fold increase in skin permeation was observed from silibinin-peptide dendrimer complex, simultaneous application of silibinin + peptide dendrimer, and pretreatment of skin with peptide dendrimer, respectively, in comparison with passive diffusion. With EGCG, 9.82-, 2.04-, and 1.72-fold increase in skin permeation was observed from EGCG-peptide dendrimer complex, simultaneous application of EGCG + peptide dendrimer, and pretreatment of skin with peptide dendrimer, respectively, in comparison with passive diffusion. The present study demonstrates the application of peptide dendrimers in effectively delivering antioxidants such as EGCG and silibinin into the skin, thus offering the potential to provide antioxidant effects when delivered via appropriately formulated topical preparations.


Subject(s)
Antioxidants/administration & dosage , Catechin/analogs & derivatives , Dendrimers/chemistry , Silymarin/administration & dosage , Skin Absorption , Administration, Cutaneous , Animals , Catechin/administration & dosage , Catechin/chemistry , Catechin/pharmacokinetics , Male , Peptides/chemistry , Permeability , Rats , Rats, Wistar , Silybin , Silymarin/chemistry , Silymarin/pharmacokinetics
7.
Pharm Res ; 31(11): 3150-60, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24848340

ABSTRACT

PURPOSE: Safe, targeted delivery of therapeutics remains a focus of drug/gene delivery, the aim being to achieve optimal efficacy while minimising off-target delivery. Dendrimers have a vast array of potential applications and have great potential as gene and drug delivery tools. We previously reported the development of peptide dendrimers that effectively complexed DNA and that have distinct advantages over conventional spherical dendrimers. Here, to expand the application of peptide-based low generation dendrimers we tested their capacity to be transformed into linkers for antibody-based targeting of diverse payloads. METHODS: Peptide-based low-generation asymmetric dendrimers were generated and conjugated to partially-reduced antibodies specific for B cell surface antigens or an irrelevant antigen. Preservation of antigen binding by the antibodies and targeting of the conjugated dendrimers carrying a small molecule (biotin) or plasmid DNA payloads was tested. RESULTS: Peptide-based low generation dendrimers were efficiently and site-specifically conjugated to antibodies with retention of antigen-binding capacity. Altering the branching termini of dendrimers facilitated delivery of diverse payloads in vitro and in vivo. CONCLUSIONS: We propose that safe, non-toxic peptide dendrimers, which are readily synthesised and modifiable for a variety of applications, form the basis of a new family of biocompatible "linkers" with substantial potential for targeted delivery applications.


Subject(s)
Antibodies/administration & dosage , Antibodies/chemistry , B-Lymphocytes/drug effects , Dendrimers/administration & dosage , Dendrimers/chemistry , Peptides/administration & dosage , Peptides/chemistry , DNA/chemistry , Drug Delivery Systems/methods , Plasmids/chemistry
8.
Magn Reson Chem ; 52(4): 178-82, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24464591

ABSTRACT

Spectroscopic tools such as NMR can be applied to the quantitative analysis of active pharmaceutical ingredients with relative ease and accuracy. Here, we demonstrate the quantification of clindamycin phosphate (CLP) in a conventional tablet formulation, performed using potassium hydrogen phthalate (KHP) as the internal standard and deuterium oxide (D2O) as the NMR solvent. The methyl protons signal of CLP at 0.72 ppm (triplet) relative to the signal of KHP at 7.37-7.40 ppm (multiplet) was used for quantification purposes using (1)H NMR. This method was shown to be specific and linear (r = 0.9997) within the CLP concentration range from 7.2 to 23.1 mg per 0.5 ml of D2O. The maximum relative standard deviation (RSD) of accuracy and precision was calculated at 0.39% and 0.64%, respectively. The limits of detection (LOD) and quantification were 0.04 and 0.11 mg/ml, respectively. The method was highly stable with a calculated RSD of 0.03%. The robustness of the method was demonstrated by changing four different parameters, and the difference among each parameter was ≤ 0.78%. The findings of this work were in good agreement with previously reported conventional HPLC-based approaches, highlighting its applicability in the determination of other active pharmaceutical ingredients in conventional formulations for quality control purposes.


Subject(s)
Clindamycin/analogs & derivatives , Chemistry, Pharmaceutical , Clindamycin/analysis , Magnetic Resonance Spectroscopy , Tablets/chemistry
9.
Phytother Res ; 28(12): 1887-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24849382

ABSTRACT

Liquorice is a commonly prescribed herb in traditional Chinese medicine with the primary constituent, glycyrrhetinic acid (GA) responsible for the toxic effects arising from its chronic consumption. Hepatic transformation and biliary excretion of GA are significant and well-documented pharmacokinetic pathways in humans, while glucuronide conjugates are the major identified metabolites. Here we report the role of bile in GA bioconversion in rats; this being achieved following intravenous administration of GA to Sprague-Dawley rats at a dose of 2 mg/kg with bile fluid analyzed for 3 h post-injection using HPLC. The maximum concentration of glucuronides was detected about 30 min post-administration, while the cumulative biliary excretion of glucuronides after 3 h was found to be 63.6 ± 6.4%. Our findings indicate a relatively high rate of biliary excretion for GA via the formation of glucuronide conjugates, and as a result of these findings, glucuronidation can be firmly regarded as a primary detoxification pathway for GA in rats.


Subject(s)
Bile/chemistry , Glucuronides/chemistry , Glycyrrhetinic Acid/pharmacokinetics , Hepatobiliary Elimination , Animals , Chromatography, High Pressure Liquid , Liver/metabolism , Male , Rats , Rats, Sprague-Dawley
10.
Int J Pharm ; 655: 124054, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38548071

ABSTRACT

Direct, reliable, controlled, and sustained drug delivery to female reproductive tract (FRT) remains elusive, with conventional dosage forms falling way short of the mark, leading to premature leakage, erratic drug delivery, and loss of compliance. Historically, the intravaginal route remains underserved by the pharmaceutical sector. To comprehensively address this, we turned our focus to phase-transforming sol-gels, using poloxamers, a thermosensitive polymer and, doxycycline (as hyclate salt, DOXH) as our model agent given its potential use in sexually transmitted infections (STIs). We further enhanced mucoadhesiveness through screening of differing viscosity grade hydroxypropyl methyl celluloses (HPMCs). The optimised sol-gels remained gelled at body temperature (<37 °C) and were prepared in buffer aligned to vaginal cavity pH and osmolality. Lead formulations were progressed based on their ability to retain key rheological properties, and acidic pH in the presence of simulated vaginal fluid (SVF). From a shelf-life perspective, DOXH stability, gelation temperature (Tsol-gel), and pH to three months (2-8 °C) was attained. In summary, the meticulously engineered, phase-transforming sol-gels provided sustained mucoretention despite dilution by vaginal fluid, paving the way for localised antimicrobial drug delivery at concentrations that potentially far exceed the minimum inhibitory concentration (MIC) for target STI-causing bacteria of the FRT.


Subject(s)
Anti-Infective Agents , Drug Delivery Systems , Female , Humans , Temperature , Poloxamer/chemistry , Gels/chemistry , Viscosity , Administration, Intravaginal
11.
Biomed Chromatogr ; 27(6): 685-7, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23319165

ABSTRACT

Toad parotoid gland secretion or toad venom has in recent years been increasingly shown to possess potentially beneficial pharmacological effects; this speculation has drawn much interest centred on elucidating the chemical basis of its multimodal effects. For this purpose, we explored the use of a rapid and accurate analysis method for systemic investigation of the parotoid gland chemistry, when extracted from Australian cane toads. Full-scan data of cane toad venom extract was acquired using high-performance liquid chromatography coupled with a hybrid quadrupole-time of flight mass spectrometry system (HPLC/MS-Q-TOF), with multiple ionization sources (ESI and APCI) in positive and negative mixed modes. By measuring the exact mass differences between the theoretical and measured mass of each assumed compound, we confirmed the presence of 12 key constituents. The present results demonstrate that the use of HPLC/MS-Q-TOF with multiple ionization sources delivers exemplary selectivity and sensitivity, allowing for the rapid and accurate identification of constituents within cane toad venom. This paves the way for this technique to be used in future routine screening of components within the genus Bufo and for key analytes too, then reliably assessed for any purported beneficial (clinic) properties.


Subject(s)
Amphibian Venoms/chemistry , Bufo marinus , Chromatography, High Pressure Liquid/methods , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Australia , Bufanolides/chemistry , Bufanolides/isolation & purification , Introduced Species , Parotid Gland/metabolism
12.
Front Pharmacol ; 14: 1150313, 2023.
Article in English | MEDLINE | ID: mdl-36937883

ABSTRACT

Kappa opioid receptors have exceptional potential as an analgesic target, seemingly devoid of many problematic Mu receptor side-effects. Kappa-selective, small molecule pharmaceutical agents have been developed, but centrally mediated side-effects limit clinical translation. We modify endogenous dynorphin peptides to improve drug-likeness and develop safer KOP receptor agonists for clinical use. Using rational, iterative design, we developed a series of potent, selective, and metabolically stable peptides from dynorphin 1-7. Peptides were assessed for in vitro cAMP-modulation against three opioid receptors, metabolic stability, KOP receptor selectivity, desensitisation and pERK-signalling capability. Lead peptides were evaluated for in vivo efficacy in a rat model of inflammatory nociception. A library of peptides was synthesised and assessed for pharmacological and metabolic stability. Promising peptide candidates showed low nanomolar KOP receptor selectivity in cAMP assay, and improved plasma and trypsin stability. Selected peptides showed bias towards cAMP signalling over pERK activity, also demonstrating reduced desensitisation. In vivo, two peptides showed significant opioid-like antinociception comparable to morphine and U50844H. These highly potent and metabolically stable peptides are promising opioid analgesic leads for clinical translation. Since they are somewhat biased peptide Kappa agonists they may lack many significant side-effects, such as tolerance, addiction, sedation, and euphoria/dysphoria, common to opioid analgesics.

13.
J Control Release ; 363: 452-463, 2023 11.
Article in English | MEDLINE | ID: mdl-37769816

ABSTRACT

Intranasal delivery is the most preferred route of drug administration for treatment of a range of nasal conditions including chronic rhinosinusitis (CRS), caused by an infection and inflammation of the nasal mucosa. However, localised delivery of lipophilic drugs for persistent nasal inflammation is a challenge especially with traditional topical nasal sprays. In this study, a composite thermoresponsive hydrogel is developed and tuned to obtain desired rheological and physiochemical properties suitable for intranasal administration of lipophilic drugs. The composite is comprised of drug-loaded porous silicon (pSi) particles embedded in a poloxamer 407 (P407) hydrogel matrix. Mometasone Furoate (MF), a lipophilic corticosteroid (log P of 4.11), is used as the drug, which is loaded onto pSi particles at a loading capacity of 28 wt%. The MF-loaded pSi particles (MF@pSi) are incorporated into the P407-based thermoresponsive hydrogel (HG) matrix to form the composite hydrogel (MF@pSi-HG) with a final drug content ranging between 0.1 wt% to 0.5 wt%. Rheomechanical studies indicate that the MF@pSi component exerts a minimal impact on gelation temperature or strength of the hydrogel host. The in-vitro release of the MF payload from MF@pSi-HG shows a pronounced increase in the amount of drug released over 8 h (4.5 to 21-fold) in comparison to controls consisting of pure MF incorporated in hydrogel (MF@HG), indicating an improvement in kinetic solubility of MF upon loading into pSi. Ex-vivo toxicity studies conducted on human nasal mucosal tissue show no adverse effect from exposure to either pure HG or the MF@pSi-HG formulation, even at the highest drug content of 0.5 wt%. Experiments on human nasal mucosal tissue show the MF@pSi-HG formulation deposits a quantity of MF into the tissues within 8 h that is >19 times greater than the MF@HG control (194 ± 7 µg of MF/g of tissue vs. <10 µg of MF/g of tissue, respectively).


Subject(s)
Hydrogels , Silicon , Humans , Administration, Intranasal , Hydrogels/chemistry , Porosity , Mometasone Furoate , Inflammation/drug therapy
14.
Theranostics ; 13(11): 3582-3638, 2023.
Article in English | MEDLINE | ID: mdl-37441595

ABSTRACT

Ultrasound has long been identified as a promising, non-invasive modality for improving ocular drug delivery across a range of indications. Yet, with 20 years of learnings behind us, clinical translation remains limited. To help address this, and in accordance with PRISMA guidelines, the various mechanisms of ultrasound-mediated ocular drug delivery have been appraised, ranging from first principles to emergent applications spanning both ex vivo and in vivo models. The heterogeneity of study methods precluded meta-analysis, however an extensive characterisation of the included studies allowed for semi-quantitative and qualitative assessments. Methods: In this review, we reflected on study quality of reporting, and risk of bias (RoB) using the latest Animal Research: Reporting of In Vivo Experiments (ARRIVE 2.0) guidelines, alongside the Systematic Review Centre for Laboratory animal Experimentation (SYRCLE) RoB tools. Literature studies from 2002 to 2022 were initially characterised according to methods of ultrasound application, ultrasound parameters applied, animal models employed, as well as safety and efficacy assessments. This exercise contributed to developing a comprehensive understanding of the current state of play within ultrasound-mediated ocular drug delivery. The results were then synthesised and processed into a guide to aid future study design, with the goal of improving the reliability of data, and to support efficient and timely translation to the clinic. Results: Key attributes identified as hindering translation included: poor reporting quality and high RoB, skewed use of animals unrepresentative of the human eye, and the over reliance of reductionist safety assessments. Ex vivo modelling studies were often unable to have comprehensive safety assessments performed on them, which are imperative to determining treatment safety, and represent a pre-requisite for clinical translation. Conclusion: With the use of our synthesised guide, and a thorough understanding of the underlying physicochemical interactions between ultrasound and ocular biology provided herein, this review offers a firm foundation on which future studies should ideally be built, such that ultrasound-mediated ocular drug delivery can be translated from concept to the coalface where it can provide immense clinical benefit.


Subject(s)
Drug Delivery Systems , Eye , Animals , Humans , Reproducibility of Results , Ultrasonography
15.
Life Sci ; 334: 122226, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37918627

ABSTRACT

AIMS: Development and characterization of LAM and DTG loaded liposomes conjugated anti-CD4 antibody and peptide dendrimer (PD2) to improve the therapeutic efficacy and to achieve targeted treatment for HIV infection. MAIN METHODS: A 2-level full factorial design was used to optimize the preparation of dual drug loaded liposomes. Optimized dual drug loaded ligand conjugated liposomes were assessed for their cytotoxicity and cell internalization on TZM-bl cells. Anti-HIV efficiency of the dual drug loaded liposomes were screened for their inhibitory potential in TZM-bl cells and the activities were confirmed using Peripheral Blood Mononuclear Cells (PBMCs). KEY FINDINGS: The particle size of the optimized dual drug-loaded liposomes was 133.7 ± 4.04 nm, and the spherical morphology of the liposomes was confirmed by TEM analysis. The entrapment efficiency was 34 ± 4.9 % and 54 ± 1.8 % for LAM and DTG, respectively, and a slower in vitro release of LAM and DTG was observed when entrapped into liposomes. The cytotoxicity of the dual drug loaded liposomes was similar to the cytotoxicity of free drug solutions. Conjugation of anti-CD4 antibody and PD2 did not significantly influence the cytotoxicity but it enhanced the uptake of liposomes into the cells. Conjugated dual drug loaded liposomes exhibited better HIV inhibition with lower IC50 values (0.0003 ± 0.0002 µg/mL) compared to their free drug solutions (0.002 ± 0.001 µg/mL). The liposomal formulations have shown similar activities in both screening and confirmatory cell-based assays. SIGNIFICANCE: The results demonstrated the cell targeting ability of dual drug loaded liposomes conjugated with anti-CD4 antibody and peptide dendrimer. Conjugated liposomes also improved anti-HIV efficiency of LAM and DTG.


Subject(s)
Dendrimers , HIV Infections , Humans , Liposomes/chemistry , HIV Infections/drug therapy , Drug Compounding , Leukocytes, Mononuclear , Peptides
17.
Skin Res Technol ; 18(1): 101-7, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21507071

ABSTRACT

PURPOSE: The objective of the present study was to assess the effect of sonophoresis on the permeation rate of peptide dendrimers through human skin. METHODS: Peptide dendrimers containing arginine and histidine as terminal amino acids and having varying positive charges (arginine group: R4, R8 and R16 dendrimers, having 4(+) , 8(+) and 16(+) charges, respectively; histidine group: H4, H8 and H16 dendrimers, having 4(+) , 8(+) and 16(+) charges, respectively) were synthesized by Fmoc solid-phase peptide synthesis. The in vitro skin permeation studies were conducted using vertical-type diffusion cells and ultrasound was applied using a probe sonicator to the donor solution. The effects of varying concentrations of dendrimer with differing pH of the donor solution on the permeation rate were studied. RESULTS: All the dendrimers exhibited significantly (P<0.05) higher permeation rates with the application of ultrasound in comparison with passive diffusion studies (without ultrasound). High concentrations of H4 and R4 dendrimers were found in the receptor media compared with other dendrimers at all the concentrations tested, indicating appreciable permeation of low-molecular-weight dendrimers across the skin, assisted by sonophoresis. The opposite was true when assessing dendrimer 'retention' in skin, where it was shown to improve upon increasing dendrimer generation/molecular weight. Negligible loss of all the dendrimers (<2%) during skin permeation studies indicates that neither skin nor ultrasound adversely affects the stability of dendrimers. CONCLUSION: The present study reveals the successful application of sonophoresis in enhancing the permeation of peptide dendrimers across human skin.


Subject(s)
Electrophoresis/methods , Peptides/pharmacokinetics , Skin Absorption/physiology , Skin Absorption/radiation effects , Sonication , Absorption , Dendrimers , High-Energy Shock Waves , Humans , In Vitro Techniques , Radiation Dosage
18.
Phys Med Biol ; 67(1)2022 01 17.
Article in English | MEDLINE | ID: mdl-34952530

ABSTRACT

Acoustofluidicly manipulated microbubbles (MBs) and echogenic liposomes (ELIPs) have been suggested as drug delivery systems for the 'on demand' release of drug in target tissue. This requires a clear understanding of their behaviour during ultrasonication and after ultrasonication stops. The main focus of this study is to investigate the behaviour of MBs and ELIPs clusters after ultrasonication stops and the underlaying cause of cluster diffusion considering electrostatic repulsion, steric repulsion and Brownian motion. It also examines the capability of existing models used to predict MBs' attraction velocity due to secondary radiation force, on predicting ELIPs' attraction velocity. Tunable resistive pulse sensing (TRPS) and phase analysis light scattering (PALS) techniques were used to measure zeta potentials of the agents and the size distributions were measured using TRPS. The zeta potentials were found to be -2.43 mV and -0.62 mV for Definity™ MBs, and -3.62 mV and -2.35 mV for ELIPs using TRPS and PALS, respectively. Both agents were shown to have significant cluster formation at pressures as low as 6 kPa. Clusters of both agents were shown to diffuse as sonication stops at a rate that approximately equals the sum of the diffusion coefficients of the agents forming them. The de-clustering behaviours are due to Brownian motion as no sign of electrostatic repulsion was observed and particles movements were observed to be faster for smaller diameters. These findings are important to design and optimise effective drug delivery systems using acoustofluidically manipulated MBs and ELIPs.


Subject(s)
Liposomes , Microbubbles , Cluster Analysis , Drug Delivery Systems/methods , Physics
19.
Gels ; 8(2)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35200479

ABSTRACT

Approaches for effective and sustained drug delivery to the female reproductive tract (FRT) for treating a range of gynaecological conditions remain limited. The development of versatile delivery platforms, such as soluble gels (sol-gels) coupled with applicators/devices, holds considerable therapeutic potential for gynaecological conditions. Sol-gel systems, which undergo solution-to-gel transition, triggered by physiological conditions such as changes in temperature, pH, or ion composition, offer advantages of both solution- and gel-based drug formulations. Furthermore, they have potential to be used as a suitable drug delivery vehicle for other novel drug formulations, including micro- and nano-particulate systems, enabling the delivery of drug molecules of diverse physicochemical character. We provide an anatomical and physiological perspective of the significant challenges and opportunities in attaining optimal drug delivery to the upper and lower FRT. Discussion then focuses on attributes of sol-gels that can vastly improve the treatment of gynaecological conditions. The review concludes by showcasing recent advances in vaginal formulation design, and proposes novel formulation strategies enabling the infusion of a wide range of therapeutics into sol-gels, paving the way for patient-friendly treatment regimens for acute and chronic FRT-related conditions such as bacterial/viral infection control (e.g., STDs), contraception, hormone replacement therapy (HRT), infertility, and cancer.

20.
Gels ; 8(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35049572

ABSTRACT

(1) Background: Clozapine is the most effective antipsychotic. It is, however, associated with many adverse drug reactions. Nose-to-brain (N2B) delivery offers a promising approach. This study aims to develop clozapine-encapsulated thermosensitive sol-gels for N2B delivery. (2) Methods: Poloxamer 407 and hydroxypropyl methylcellulose were mixed and hydrated with water. Glycerin and carbopol solutions were added to the mixture and stirred overnight at 2-8 °C. Clozapine 0.1% w/w was stirred with polysorbate 20 (PS20) or polysorbate 80 (PS80) at RT (25 °C) before being added to the polymer solution. The final formulation was made to 10 g with water, stirred overnight at 2-8 °C and then adjusted to pH 5.5. (3) Results: Formulations F3 (3% PS20) and F4 (3% PS80) were selected for further evaluation, as their gelation temperatures were near 28 °C. The hydrodynamic particle diameter of clozapine was 18.7 ± 0.2 nm in F3 and 20.0 ± 0.4 nm in F4. The results show a crystallinity change in clozapine to amorphous. Drug release studies showed a 59.1 ± 3.0% (F3) and 53.1 ± 2.7% (F4) clozapine release after 72 h. Clozapine permeated after 8 h was 20.8 ± 3.0% (F3) and 17.8 ± 3.1% (F4). The drug deposition was higher with F4 (144.8 ± 1.4 µg/g) than F3 (110.7 ± 2.7 µg/g). Both sol-gels showed no phase separation after 3 months. (4) Conclusions: Binary PS80-P407 mixed micelles were more thermodynamically stable and rigid due to the higher synergism of both surfactants. However, binary mixed PS20-P407 micelles showed better drug permeation across the nasal mucosa tissue and may be a preferable carrier system for the intranasal administration of clozapine.

SELECTION OF CITATIONS
SEARCH DETAIL