Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Nature ; 618(7963): 87-93, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37259003

ABSTRACT

Technologically critical rare-earth elements are notoriously difficult to separate, owing to their subtle differences in ionic radius and coordination number1-3. The natural lanthanide-binding protein lanmodulin (LanM)4,5 is a sustainable alternative to conventional solvent-extraction-based separation6. Here we characterize a new LanM, from Hansschlegelia quercus (Hans-LanM), with an oligomeric state sensitive to rare-earth ionic radius, the lanthanum(III)-induced dimer being >100-fold tighter than the dysprosium(III)-induced dimer. X-ray crystal structures illustrate how picometre-scale differences in radius between lanthanum(III) and dysprosium(III) are propagated to Hans-LanM's quaternary structure through a carboxylate shift that rearranges a second-sphere hydrogen-bonding network. Comparison to the prototypal LanM from Methylorubrum extorquens reveals distinct metal coordination strategies, rationalizing Hans-LanM's greater selectivity within the rare-earth elements. Finally, structure-guided mutagenesis of a key residue at the Hans-LanM dimer interface modulates dimerization in solution and enables single-stage, column-based separation of a neodymium(III)/dysprosium(III) mixture to >98% individual element purities. This work showcases the natural diversity of selective lanthanide recognition motifs, and it reveals rare-earth-sensitive dimerization as a biological principle by which to tune the performance of biomolecule-based separation processes.


Subject(s)
Bacterial Proteins , Lanthanoid Series Elements , Lanthanum , Protein Multimerization , Dysprosium/chemistry , Dysprosium/isolation & purification , Ions/chemistry , Lanthanoid Series Elements/chemistry , Lanthanoid Series Elements/isolation & purification , Lanthanum/chemistry , Neodymium/chemistry , Neodymium/isolation & purification , Methylocystaceae , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Crystallography, X-Ray , Protein Structure, Quaternary
2.
Nucleic Acids Res ; 51(13): 7094-7108, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37260076

ABSTRACT

The development of synthetic biological circuits that maintain functionality over application-relevant time scales remains a significant challenge. Here, we employed synthetic overlapping sequences in which one gene is encoded or 'entangled' entirely within an alternative reading frame of another gene. In this design, the toxin-encoding relE was entangled within ilvA, which encodes threonine deaminase, an enzyme essential for isoleucine biosynthesis. A functional entanglement construct was obtained upon modification of the ribosome-binding site of the internal relE gene. Using this optimized design, we found that the selection pressure to maintain functional IlvA stabilized the production of burdensome RelE for >130 generations, which compares favorably with the most stable kill-switch circuits developed to date. This stabilizing effect was achieved through a complete alteration of the allowable landscape of mutations such that mutations inactivating the entangled genes were disfavored. Instead, the majority of lineages accumulated mutations within the regulatory region of ilvA. By reducing baseline relE expression, these more 'benign' mutations lowered circuit burden, which suppressed the accumulation of relE-inactivating mutations, thereby prolonging kill-switch function. Overall, this work demonstrates the utility of sequence entanglement paired with an adaptive laboratory evolution campaign to increase the evolutionary stability of burdensome synthetic circuits.


Subject(s)
Genes, Overlapping , Genetic Engineering , Binding Sites , Escherichia coli/genetics , Mutation , Ribosomes/genetics , Pseudomonas/genetics , Genetic Engineering/methods
3.
Environ Sci Technol ; 58(1): 570-579, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38150661

ABSTRACT

Chemical methods for the extraction and refinement of technologically critical rare earth elements (REEs) are energy-intensive, hazardous, and environmentally destructive. Current biobased extraction systems rely on extremophilic organisms and generate many of the same detrimental effects as chemical methodologies. The mesophilic methylotrophic bacterium Methylobacterium extorquens AM1 was previously shown to grow using electronic waste by naturally acquiring REEs to power methanol metabolism. Here we show that growth using electronic waste as a sole REE source is scalable up to 10 L with consistent metal yields without the use of harsh acids or high temperatures. The addition of organic acids increases REE leaching in a nonspecific manner. REE-specific bioleaching can be engineered through the overproduction of REE-binding ligands (called lanthanophores) and pyrroloquinoline quinone. REE bioaccumulation increases with the leachate concentration and is highly specific. REEs are stored intracellularly in polyphosphate granules, and genetic engineering to eliminate exopolyphosphatase activity increases metal accumulation, confirming the link between phosphate metabolism and biological REE use. Finally, we report the innate ability of M. extorquens to grow using other complex REE sources, including pulverized smartphones, demonstrating the flexibility and potential for use as a recovery platform for these critical metals.


Subject(s)
Electronic Waste , Metals, Rare Earth , Metals , Ligands
4.
Nano Lett ; 21(3): 1352-1359, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33508203

ABSTRACT

Microbes are critical drivers of all ecosystems and many biogeochemical processes, yet little is known about how the three-dimensional (3D) organization of these dynamic organisms contributes to their overall function. To probe how biofilm structure affects microbial activity, we developed a technique for patterning microbes in 3D geometries using projection stereolithography to bioprint microbes within hydrogel architectures. Bacteria were printed and monitored for biomass accumulation, demonstrating postprint viability of cells using this technique. We verified our ability to integrate biological and geometric complexity by fabricating a printed biofilm with two E. coli strains expressing different fluorescence. Finally, we examined the target application of microbial absorption of metal ions to investigate geometric effects on both the metal sequestration efficiency and the uranium sensing capability of patterned engineered Caulobacter crescentus strains. This work represents the first demonstration of the stereolithographic printing of microbials and presents opportunities for future work of engineered biofilms and other complex 3D structured cultures.


Subject(s)
Bioprinting , Biofilms , Ecosystem , Escherichia coli/genetics , Printing, Three-Dimensional
5.
Mol Microbiol ; 111(3): 678-699, 2019 03.
Article in English | MEDLINE | ID: mdl-30536755

ABSTRACT

The UzcRS two-component system in Caulobacter crescentus mediates widespread transcriptional activation in response to the metals U, Zn and Cu. Unexpectedly, a screen for mutations that affected the activity of the UzcR-regulated urcA promoter (PurcA ) revealed four previously uncharacterized proteins whose inactivation led to metal-independent induction of PurcA . Using molecular genetics and functional genomics, we find that these auxiliary regulators control PurcA expression by modulating the activity of UzcRS through distinct mechanisms. An ABC transporter with a periplasmic metallo-aminopeptidase domain forms a sensory complex with UzcRS, antagonizing metal dependent stimulation by virtue of its ATPase and peptidase domains. Two MarR-like transcription factors synergistically regulate UzcRS activity by repressing the expression of the membrane proteins UzcY and UzcZ, which stimulate UzcRS activity and enhance its sensitivity to a more environmentally relevant U/Zn/Cu concentration range. Additionally, the membrane protein UzcX, whose expression is positively regulated by UzcR, provides a mechanism of feedback inhibition within the UzcRS circuit. Collectively, these data suggest that UzcRS functions as the core-signaling unit within a multicomponent signal transduction pathway that includes a diverse set of auxiliary regulators, providing further insight into the complexity of signaling networks.


Subject(s)
Bacterial Proteins/metabolism , Caulobacter crescentus/drug effects , Caulobacter crescentus/genetics , Gene Expression Regulation, Bacterial , Metals, Heavy/metabolism , Signal Transduction , Transcription Factors/metabolism , Biological Transport, Active , Membrane Transport Proteins/metabolism , Transcription, Genetic
6.
Inorg Chem ; 59(17): 11855-11867, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32686425

ABSTRACT

Lanmodulin (LanM) is a recently discovered protein that undergoes a large conformational change in response to rare-earth elements (REEs). Here, we use multiple physicochemical methods to demonstrate that LanM is the most selective macromolecule for REEs characterized to date and even outperforms many synthetic chelators. Moreover, LanM exhibits metal-binding properties and structural stability unseen in most other metalloproteins. LanM retains REE binding down to pH ≈ 2.5, and LanM-REE complexes withstand high temperature (up to 95 °C), repeated acid treatments, and up to molar amounts of competing non-REE metal ions (including Mg, Ca, Zn, and Cu), allowing the protein's use in harsh chemical processes. LanM's unrivaled properties were applied to metal extraction from two distinct REE-containing industrial feedstocks covering a broad range of REE and non-REE concentrations, namely, precombustion coal and electronic waste leachates. After only a single all-aqueous step, quantitative and selective recovery of the REEs from all non-REEs initially present (Li, Na, Mg, Ca, Sr, Al, Si, Mn, Fe, Co, Ni, Cu, Zn, and U) was achieved, demonstrating the universal selectivity of LanM for REEs against non-REEs and its potential application even for industrial low-grade sources, which are currently underutilized. Our work indicates that biosourced macromolecules such as LanM may offer a new paradigm for extractive metallurgy and other applications involving f-elements.

7.
Environ Sci Technol ; 53(13): 7714-7723, 2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31198021

ABSTRACT

The increasing demand for rare earth elements (REEs) in the modern economy motivates the development of novel strategies for cost-effective REE recovery from nontraditional feedstocks. We previously engineered E. coli to express lanthanide binding tags on the cell surface, which increased the REE biosorption capacity and selectivity. Here we examined how REE adsorption by the engineered E. coli is affected by various geochemical factors relevant to geothermal fluids, including total dissolved solids (TDS), temperature, pH, and the presence of specific competing metals. REE biosorption is robust to TDS, with high REE recovery efficiency and selectivity observed with TDS as high as 165,000 ppm. Among several metals tested, U, Al, and Pb were found to be the most competitive, causing >25% reduction in REE biosorption when present at concentrations ∼3- to 11-fold higher than the REEs. Optimal REE biosorption occurred between pH 5-6, and sorption capacity was reduced by ∼65% at pH 2. REE recovery efficiency and selectivity increased as a function of temperature up to ∼70 °C due to the thermodynamic properties of metal complexation on the bacterial surface. Together, these data define the optimal and boundary conditions for biosorption and demonstrate its potential utility for selective REE recovery from geofluids.


Subject(s)
Lanthanoid Series Elements , Metals, Rare Earth , Adsorption , Bacteria , Escherichia coli
8.
Environ Sci Technol ; 53(23): 13888-13897, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31702144

ABSTRACT

Rare earth elements (REEs) are indispensable components of many green technologies and of increasing demand globally. However, refining REEs from raw materials using current technologies is energy intensive and enviromentally damaging. Here, we describe the development of a novel biosorption-based flow-through process for selective REE recovery from electronic wastes. An Escherichia coli strain previously engineered to display lanthanide-binding tags on the cell surface was encapsulated within a permeable polyethylene glycol diacrylate (PEGDA) hydrogel at high cell density using an emulsion process. This microbe bead adsorbent contained a homogenous distribution of cells whose surface functional groups remained accessible and effective for selective REE adsorption. The microbe beads were packed into fixed-bed columns, and breakthrough experiments demonstrated effective Nd extraction at a flow velocity of up to 3 m/h at pH 4-6. The microbe bead columns were stable for reuse, retaining 85% of the adsorption capacity after nine consecutive adsorption/desorption cycles. A bench-scale breakthrough curve with a NdFeB magnet leachate revealed a two-bed volume increase in breakthrough points for REEs compared to non-REE impurities and 97% REE purity of the adsorbed fraction upon breakthrough. These results demonstrate that the microbe beads are capable of repeatedly separating REEs from non-REE metals in a column system, paving the way for a biomass-based REE recovery system.


Subject(s)
Electronic Waste , Lanthanoid Series Elements , Metals, Rare Earth , Adsorption , Magnets
9.
Mol Microbiol ; 104(1): 46-64, 2017 04.
Article in English | MEDLINE | ID: mdl-28035693

ABSTRACT

Despite the well-known toxicity of uranium (U) to bacteria, little is known about how cells sense and respond to U. The recent finding of a U-specific stress response in Caulobacter crescentus has provided a foundation for studying the mechanisms of U- perception in bacteria. To gain insight into this process, we used a forward genetic screen to identify the regulatory components governing expression of the urcA promoter (PurcA ) that is strongly induced by U. This approach unearthed a previously uncharacterized two-component system, named UzcRS, which is responsible for U-dependent activation of PurcA . UzcRS is also highly responsive to zinc and copper, revealing a broader specificity than previously thought. Using ChIP-seq, we found that UzcR binds extensively throughout the genome in a metal-dependent manner and recognizes a noncanonical DNA-binding site. Coupling the genome-wide occupancy data with RNA-seq analysis revealed that UzcR is a global regulator of transcription, predominately activating genes encoding proteins that are localized to the cell envelope; these include metallopeptidases, multidrug-resistant efflux (MDR) pumps, TonB-dependent receptors and many proteins of unknown function. Collectively, our data suggest that UzcRS couples the perception of U, Zn and Cu with a novel extracytoplasmic stress response.


Subject(s)
Caulobacter crescentus/genetics , Caulobacter crescentus/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Copper/metabolism , DNA-Binding Proteins/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Bacterial/genetics , High-Throughput Nucleotide Sequencing/methods , Promoter Regions, Genetic/genetics , Regulatory Elements, Transcriptional/genetics , Regulatory Sequences, Nucleic Acid/genetics , Stress, Physiological , Transcription, Genetic/genetics , Uranium/metabolism , Zinc/metabolism
10.
Environ Sci Technol ; 51(22): 13471-13480, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-28944666

ABSTRACT

The use of biomass for adsorption of rare earth elements (REEs) has been the subject of many recent investigations. However, REE adsorption by bioengineered systems has been scarcely documented, and rarely tested with complex natural feedstocks. Herein, we engineered E. coli cells for enhanced cell surface-mediated extraction of REEs by functionalizing the OmpA protein with 16 copies of a lanthanide binding tag (LBT). Through biosorption experiments conducted with leachates from metal-mine tailings and rare earth deposits, we show that functionalization of the cell surface with LBT yielded several notable advantages over the nonengineered control. First, the efficiency of REE adsorption from all leachates was enhanced as indicated by a 2-10-fold increase in distribution coefficients for individual REEs. Second, the relative affinity of the cell surface for REEs was increased over all non-REEs except Cu. Third, LBT-display systematically enhanced the affinity of the cell surface for REEs as a function of decreasing atomic radius, providing a means to separate high value heavy REEs from more common light REEs. Together, our results demonstrate that REE biosorption of high efficiency and selectivity from low-grade feedstocks can be achieved by engineering the native bacterial surface.


Subject(s)
Escherichia coli , Metals, Rare Earth , Adsorption , Bacteria , Lanthanoid Series Elements
11.
Appl Environ Microbiol ; 82(23): 6961-6972, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27663028

ABSTRACT

Surface layers, or S-layers, are two-dimensional protein arrays that form the outermost layer of many bacteria and archaea. They serve several functions, including physical protection of the cell from environmental threats. The high abundance of S-layer proteins necessitates a highly efficient export mechanism to transport the S-layer protein from the cytoplasm to the cell exterior. Caulobacter crescentus is unique in that it has two homologous, seemingly redundant outer membrane proteins, RsaFa and RsaFb, which together with other components form a type I protein translocation pathway for S-layer export. These proteins have homology to Escherichia coli TolC, the outer membrane channel of multidrug efflux pumps. Here we provide evidence that, unlike TolC, RsaFa and RsaFb are not involved in either the maintenance of membrane stability or the active export of antimicrobial compounds. Rather, RsaFa and RsaFb are required to prevent intracellular accumulation and aggregation of the S-layer protein RsaA; deletion of RsaFa and RsaFb led to a general growth defect and lowered cellular fitness. Using Western blotting, transmission electron microscopy, and transcriptome sequencing (RNA-seq), we show that loss of both RsaFa and RsaFb led to accumulation of insoluble RsaA in the cytoplasm, which in turn caused upregulation of a number of genes involved in protein misfolding and degradation pathways. These findings provide new insight into the requirement for RsaFa and RsaFb in cellular fitness and tolerance to antimicrobial agents and further our understanding of the S-layer export mechanism on both the transcriptional and translational levels in C. crescentusIMPORTANCE Decreased growth rate and reduced cell fitness are common side effects of protein production in overexpression systems. Inclusion bodies typically form inside the cell, largely due to a lack of sufficient export machinery to transport the overexpressed proteins to the extracellular environment. This phenomenon can conceivably also occur in natural systems. As one example of a system evolved to prevent intracellular protein accumulation, our study demonstrates that Caulobacter crescentus has two homologous outer membrane transporter proteins that are involved in S-layer export. This is an interesting case study that demonstrates how bacteria can evolve redundancy to ensure adequate protein export functionality and maintain high cellular fitness. Moreover, we provide evidence that these two outer membrane proteins, although being the closest C. crescentus homologs to TolC in E. coli, do not process TolC functionality in C. crescentus.

12.
Environ Sci Technol ; 50(5): 2735-42, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26836847

ABSTRACT

With the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb(3+) could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb(3+) by citrate. No reduction in Tb(3+) adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.


Subject(s)
Caulobacter crescentus/metabolism , Lanthanoid Series Elements/metabolism , Metals, Rare Earth/metabolism , Adsorption , Caulobacter crescentus/genetics , Citric Acid/chemistry , Genetic Engineering/methods , Metals, Rare Earth/isolation & purification , Mining/methods , Terbium/metabolism
13.
Methods ; 86: 80-8, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26032817

ABSTRACT

Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is a powerful method that identifies protein-DNA binding sites in vivo. Recent studies have illustrated the value of ChIP-seq in studying transcription factor binding in various bacterial species under a variety of growth conditions. These results show that in addition to identifying binding sites, correlation of ChIP-seq data with expression data can reveal important information about bacterial regulons and regulatory networks. In this chapter, we provide an overview of the current state of knowledge about ChIP-seq methodology in bacteria, from sample preparation to raw data analysis. We also describe visualization and various bioinformatic analyses of processed ChIP-seq data.


Subject(s)
DNA-Binding Proteins/genetics , High-Throughput Nucleotide Sequencing/methods , Molecular Biology/methods , Regulon/genetics , Bacteria/genetics , Binding Sites , Computational Biology/methods , DNA-Binding Proteins/chemistry , Oligonucleotide Array Sequence Analysis/methods , Sequence Analysis, DNA/methods
14.
PLoS Genet ; 9(10): e1003839, 2013.
Article in English | MEDLINE | ID: mdl-24146625

ABSTRACT

Despite the importance of maintaining redox homeostasis for cellular viability, how cells control redox balance globally is poorly understood. Here we provide new mechanistic insight into how the balance between reduced and oxidized electron carriers is regulated at the level of gene expression by mapping the regulon of the response regulator ArcA from Escherichia coli, which responds to the quinone/quinol redox couple via its membrane-bound sensor kinase, ArcB. Our genome-wide analysis reveals that ArcA reprograms metabolism under anaerobic conditions such that carbon oxidation pathways that recycle redox carriers via respiration are transcriptionally repressed by ArcA. We propose that this strategy favors use of catabolic pathways that recycle redox carriers via fermentation akin to lactate production in mammalian cells. Unexpectedly, bioinformatic analysis of the sequences bound by ArcA in ChIP-seq revealed that most ArcA binding sites contain additional direct repeat elements beyond the two required for binding an ArcA dimer. DNase I footprinting assays suggest that non-canonical arrangements of cis-regulatory modules dictate both the length and concentration-sensitive occupancy of DNA sites. We propose that this plasticity in ArcA binding site architecture provides both an efficient means of encoding binding sites for ArcA, σ(70)-RNAP and perhaps other transcription factors within the same narrow sequence space and an effective mechanism for global control of carbon metabolism to maintain redox homeostasis.


Subject(s)
Bacterial Outer Membrane Proteins/genetics , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Membrane Proteins/genetics , Oxidation-Reduction , Protein Kinases/genetics , Repressor Proteins/genetics , Transcription, Genetic , Bacterial Outer Membrane Proteins/metabolism , Benzoquinones/metabolism , Binding Sites , Carbon/metabolism , DNA Footprinting , DNA-Directed RNA Polymerases/genetics , Deoxyribonuclease I/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Hydroquinones/metabolism , Membrane Proteins/metabolism , Protein Kinases/metabolism , Regulon , Repressor Proteins/metabolism
15.
J Bacteriol ; 197(19): 3160-72, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26195598

ABSTRACT

UNLABELLED: The ubiquitous aquatic bacterium Caulobacter crescentus is highly resistant to uranium (U) and facilitates U biomineralization and thus holds promise as an agent of U bioremediation. To gain an understanding of how C. crescentus tolerates U, we employed transposon (Tn) mutagenesis paired with deep sequencing (Tn-seq) in a global screen for genomic elements required for U resistance. Of the 3,879 annotated genes in the C. crescentus genome, 37 were found to be specifically associated with fitness under U stress, 15 of which were subsequently tested through mutational analysis. Systematic deletion analysis revealed that mutants lacking outer membrane transporters (rsaFa and rsaFb), a stress-responsive transcription factor (cztR), or a ppGpp synthetase/hydrolase (spoT) exhibited a significantly lower survival rate under U stress. RsaFa and RsaFb, which are homologues of TolC in Escherichia coli, have previously been shown to mediate S-layer export. Transcriptional analysis revealed upregulation of rsaFa and rsaFb by 4- and 10-fold, respectively, in the presence of U. We additionally show that rsaFa mutants accumulated higher levels of U than the wild type, with no significant increase in oxidative stress levels. Our results suggest a function for RsaFa and RsaFb in U efflux and/or maintenance of membrane integrity during U stress. In addition, we present data implicating CztR and SpoT in resistance to U stress. Together, our findings reveal novel gene targets that are key to understanding the molecular mechanisms of U resistance in C. crescentus. IMPORTANCE: Caulobacter crescentus is an aerobic bacterium that is highly resistant to uranium (U) and has great potential to be used in U bioremediation, but its mechanisms of U resistance are poorly understood. We conducted a Tn-seq screen to identify genes specifically required for U resistance in C. crescentus. The genes that we identified have previously remained elusive using other omics approaches and thus provide significant insight into the mechanisms of U resistance by C. crescentus. In particular, we show that outer membrane transporters RsaFa and RsaFb, previously known as part of the S-layer export machinery, may confer U resistance by U efflux and/or by maintaining membrane integrity during U stress.


Subject(s)
Caulobacter crescentus/metabolism , DNA Transposable Elements/genetics , Stress, Physiological/drug effects , Uranium/toxicity , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Caulobacter crescentus/genetics , DNA, Bacterial/genetics , Gene Expression Regulation, Bacterial/physiology , Genome, Bacterial , Mutagenesis , Transcriptome
16.
Appl Environ Microbiol ; 80(18): 5680-8, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25002429

ABSTRACT

The oxidized form of uranium [U(VI)] predominates in oxic environments and poses a major threat to ecosystems. Due to its ability to mineralize U(VI), the oligotroph Caulobacter crescentus is an attractive candidate for U(VI) bioremediation. However, the physiological basis for U(VI) tolerance is unclear. Here we demonstrated that U(VI) caused a temporary growth arrest in C. crescentus and three other bacterial species, although the duration of growth arrest was significantly shorter for C. crescentus. During the majority of the growth arrest period, cell morphology was unaltered and DNA replication initiation was inhibited. However, during the transition from growth arrest to exponential phase, cells with shorter stalks were observed, suggesting a decoupling between stalk development and the cell cycle. Upon recovery from growth arrest, C. crescentus proliferated with a growth rate comparable to that of a control without U(VI), although a fraction of these cells appeared filamentous with multiple replication start sites. Normal cell morphology was restored by the end of exponential phase. Cells did not accumulate U(VI) resistance mutations during the prolonged growth arrest, but rather, a reduction in U(VI) toxicity occurred concomitantly with an increase in medium pH. Together, these data suggest that C. crescentus recovers from U(VI)-induced growth arrest by reducing U(VI) toxicity through pH modulation. Our finding represents a unique U(VI) detoxification strategy and provides insight into how microbes cope with U(VI) under nongrowing conditions, a metabolic state that is prevalent in natural environments.


Subject(s)
Caulobacter crescentus/drug effects , Caulobacter crescentus/growth & development , Culture Media/chemistry , Uranium/toxicity , Caulobacter crescentus/cytology , Hydrogen-Ion Concentration
17.
Microbiol Resour Announc ; 11(2): e0108921, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35112906

ABSTRACT

We report the complete genome sequence of Acidithiobacillus ferriphilus GT2, an acidophile isolated from gold mill tailings. The circular genome of GT2 contains 2,489 predicted protein-coding units and a single plasmid. Functional analysis indicates the metabolic potential to oxidize iron and reduced sulfur compounds and to fix N2 and CO2.

18.
ACS Synth Biol ; 11(11): 3785-3796, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36346907

ABSTRACT

Kill switches provide a biocontainment strategy in which unwanted growth of an engineered microorganism is prevented by expression of a toxin gene. A major challenge in kill switch engineering is balancing evolutionary stability with robust cell killing activity in application relevant host strains. Understanding host-specific containment dynamics and modes of failure helps to develop potent yet stable kill switches. To guide the design of robust kill switches in the agriculturally relevant strain Pseudomonas fluorescens SBW25, we present a comparison of lethality, stability, and genetic escape of eight different toxic effectors in the presence of their cognate inactivators (i.e., toxin-antitoxin modules, polymorphic exotoxin-immunity systems, restriction endonuclease-methyltransferase pair). We find that cell killing capacity and evolutionary stability are inversely correlated and dependent on the level of protection provided by the inactivator gene. Decreasing the proteolytic stability of the inactivator protein can increase cell killing capacity, but at the cost of long-term circuit stability. By comparing toxins within the same genetic context, we determine that modes of genetic escape increase with circuit complexity and are driven by toxin activity, the protective capacity of the inactivator, and the presence of mutation-prone sequences within the circuit. Collectively, the results of our study reveal that circuit complexity, toxin choice, inactivator stability, and DNA sequence design are powerful drivers of kill switch stability and valuable targets for optimization of biocontainment systems.


Subject(s)
Antitoxins , Pseudomonas fluorescens , Pseudomonas fluorescens/genetics , Antitoxins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
19.
ACS Cent Sci ; 7(11): 1798-1808, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34841054

ABSTRACT

The extraction and subsequent separation of individual rare earth elements (REEs) from REE-bearing feedstocks represent a challenging yet essential task for the growth and sustainability of renewable energy technologies. As an important step toward overcoming the technical and environmental limitations of current REE processing methods, we demonstrate a biobased, all-aqueous REE extraction and separation scheme using the REE-selective lanmodulin protein. Lanmodulin was conjugated onto porous support materials using thiol-maleimide chemistry to enable tandem REE purification and separation under flow-through conditions. Immobilized lanmodulin maintains the attractive properties of the soluble protein, including remarkable REE selectivity, the ability to bind REEs at low pH, and high stability over numerous low-pH adsorption/desorption cycles. We further demonstrate the ability of immobilized lanmodulin to achieve high-purity separation of the clean-energy-critical REE pair Nd/Dy and to transform a low-grade leachate (0.043 mol % REEs) into separate heavy and light REE fractions (88 mol % purity of total REEs) in a single column run while using ∼90% of the column capacity. This ability to achieve, for the first time, tandem extraction and grouped separation of REEs from very complex aqueous feedstock solutions without requiring organic solvents establishes this lanmodulin-based approach as an important advance for sustainable hydrometallurgy.

20.
ACS Synth Biol ; 8(4): 807-817, 2019 04 19.
Article in English | MEDLINE | ID: mdl-30897331

ABSTRACT

The ability to detect uranium (U) through environmental monitoring is of critical importance for informing water resource protection and nonproliferation efforts. While technologies exist for environmental U detection, wide-area environmental monitoring, i.e. sampling coverage over large areas not known to possess U contamination, remains a challenging prospect that necessitates the development of novel detection approaches. Herein, we describe the development of a whole-cell U sensor by integrating two functionally independent, native U-responsive two-component signaling systems (TCS), UzcRS and UrpRS, within an AND gate circuit in the bacterium Caulobacter crescentus. Through leverage of the distinct but imperfect selectivity profiles of both TCS, this combinatorial approach enabled greater selectivity relative to a prior biosensor developed with UzcRS alone; no cross-reactivity was observed with most common environmental metals (e.g, Fe, As, Cu, Ca, Mg, Cd, Cr, Al) or the U decay-chain product Th, and the selectivity against Zn and Pb was significantly improved. In addition, integration of the UzcRS signal amplifier protein UzcY within the AND gate circuit further enhanced overall sensitivity and selectivity for U. The functionality of the sensor in an environmental context was confirmed by detection of U concentrations as low as 1 µM in groundwater samples. The results highlight the value of a combinatorial approach for constructing whole-cell sensors for the selective detection of analytes for which there are no known evolved regulators.


Subject(s)
Bacterial Proteins/metabolism , Caulobacter crescentus/metabolism , Uranium/metabolism , Biosensing Techniques/methods , Environmental Monitoring/methods , Gene Expression Regulation, Bacterial/physiology , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL