Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Synchrotron Radiat ; 25(Pt 2): 552-559, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29488936

ABSTRACT

The X-ray PIV (particle image velocimetry) technique has been used as a non-invasive measurement modality to investigate the haemodynamic features of blood flow. However, the extraction of two-dimensional velocity field data from the three-dimensional volumetric information contained in X-ray images is technically unclear. In this study, a new two-dimensional velocity field extraction technique is proposed to overcome technological limitations. To resolve the problem of finding a correction coefficient, the velocity field information obtained by X-ray PIV and micro-PIV techniques for disturbed flow in a concentric stenosis with 50% severity was quantitatively compared. Micro-PIV experiments were conducted for single-plane and summation images, which provide similar positional information of particles as X-ray images. The correction coefficient was obtained by establishing the relationship between velocity data obtained from summation images (VS) and centre-plane images (VC). The velocity differences between VS and VC along the vertical and horizontal directions were quantitatively analysed as a function of the geometric angle of the test model for applying the present two-dimensional velocity field extraction technique to a conduit of arbitrary geometry. Finally, the two-dimensional velocity field information at arbitrary positions could be successfully extracted from X-ray images by using the correction coefficient and several velocity parameters derived from VS.

2.
Micromachines (Basel) ; 15(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38258219

ABSTRACT

This study emphasizes the potential risk posed by microplastics, particularly in tap water. Numerous studies have reported the removal of microplastics, but the limitations in addressing this issue remain challenging. To tackle this problem, a new method is introduced using tandem flexible structures (FSs) for microplastic removal. The present study focused on understanding the hydrodynamic characteristics between FSs to utilize microplastic removal. This comprehension of fluid flow and FSs offers valuable insights for improving the efficiency of microplastic removal methods. Therefore, the optimal conditions for removing microplastics were experimentally investigated inside the FSs gap region. Based on the gap distance and height, the flow structures between FSs were investigated. A small secondary vortex structure that could trap particles from upstream was continuously maintained behind the upstream FSs under certain geometric conditions. It is shown that this vortex structure has an effective way of confining the particles from upstream. The persistency of a small secondary vortex was also evaluated. This study may be helpful to researchers working on microplastic removal and FSs with a tandem arrangement.

3.
Micromachines (Basel) ; 14(12)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38138403

ABSTRACT

Water electrolysis using a proton exchange membrane (PEM) holds substantial promise to produce green hydrogen with zero carbon discharge. Although various techniques are available to produce hydrogen gas, the water electrolysis process tends to be more cost-effective with greater advantages for energy storage devices. However, one of the challenges associated with PEM water electrolysis is the accumulation of gas bubbles, which can impair cell performance and result in lower hydrogen output. Achieving an in-depth knowledge of bubble dynamics during electrolysis is essential for optimal cell performance. This review paper discusses bubble behaviors, measuring techniques, and other aspects of bubble dynamics in PEM water electrolysis. It also examines bubble behavior under different operating conditions, as well as the system geometry. The current review paper will further improve the understanding of bubble dynamics in PEM water electrolysis, facilitating more competent, inexpensive, and feasible green hydrogen production.

4.
Ann Biomed Eng ; 46(12): 2012-2022, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30051245

ABSTRACT

Recently, the multi-needle drug injection has been adopted to overcome the shortcomes of conventional single-needle injection, enhancing the efficiency of drug delivery. However, the effect of needle array on the efficacy of drug delivery has not been fully elucidated. In this study, the interactions of drug analogous solution injected from a pair of needles were analyzed to examine the design criteria of effective multi-needle devices for drug delivery. Temporal and spatial variations of relative contents of the solution in the tissues were compared according to the distance between two adjacent needles (DN). As the DN increases from 5 to 20 D, where D is the needle diameter, the solution from each needle encounters 3.5 times faster, and 4.22 times more solution was accumulated. At the same time, the effective spreading area was continuously increased from 54.2 to 177.8 mm2 and RCS gradient decreases from 0.087 to 0.037, due to the overlapping effect of the spreading solution from neighboring needles. Finally, based on the experimental results, an optimal design criterion of needle array for effective drug delivery was proposed. The present results would be helpful in the design of multi-needle injection devices and eventually offer advantage to patients with effective drug delivery.


Subject(s)
Drug Delivery Systems/instrumentation , Needles , Animals , Contrast Media/administration & dosage , Equipment Design , Injections, Subcutaneous , Iohexol/administration & dosage , Iohexol/analogs & derivatives , Skin/diagnostic imaging , Swine
5.
Sci Rep ; 7(1): 9613, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28852051

ABSTRACT

Subcutaneous injection of drug solution is widely used for continuous and low dose drug treatment. Although the drug injections have been administered for a long time, challenges in the design of injection devices are still needed to minimize the variability, pain, or skin disorder by repeated drug injections. To avoid these adverse effects, systematic study on the effects of injection conditions should be conducted to improve the predictability of drug effect. Here, the effects of injection conditions on the drug permeation in tissues were investigated using X-ray imaging technique which provides real-time images of drug permeation with high spatial resolution. The shape and concentration distribution of the injected drug solution in the porcine subcutaneous and muscle tissues are visualized. Dynamic movements of the wetting front (WF) and temporal variations of water contents in the two tissues are quantitatively analyzed. Based on the quantitative analysis of the experimental data, the permeability of drug solution through the tissues are estimated according to permeation direction, injection speed, and tissue. The present results would be helpful for improving the performance of drug injection devices and for predicting the drug efficacy in tissues using biomedical simulation.


Subject(s)
Drug Delivery Systems , Injections, Subcutaneous , Algorithms , Drug Delivery Systems/instrumentation , Drug Delivery Systems/methods , Humans , Injections, Subcutaneous/instrumentation , Injections, Subcutaneous/methods , Models, Theoretical , Organ Specificity , Permeability , Skin/metabolism
6.
Sci Rep ; 6: 19194, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26777719

ABSTRACT

X-ray PIV measurement is a noninvasive approach to measure opaque blood flows. However, it is not easy to measure real pulsatile blood flows in the blood vessels located at deep position of the body, because the surrounding tissues significantly attenuate the contrast of X-ray images. This study investigated the effect of surrounding tissues on X-ray beam attenuation by measuring the velocity fields of blood flows in deep vessels of a live rat. The decrease in image contrast was minimized by employing biocompatible CO2 microbubbles as tracer particles. The maximum measurable velocity of blood flows in the abdominal aorta of a rat model was found through comparative examination between the PIV measurement accuracy and the level of image contrast according to the input flow rate. Furthermore, the feasibility of using X-ray PIV to accurately measure in vivo blood flows was demonstrated by determining the velocity field of blood flows in the inferior vena cava of a rat. This study may serve as a reference in conducting in vivo X-ray PIV measurements of pulsatile blood flows in animal disease models and investigating hemodynamic characteristics and circulatory vascular diseases.


Subject(s)
Blood Vessels/diagnostic imaging , Hemodynamics/physiology , Rheology/methods , Vena Cava, Inferior/diagnostic imaging , Animals , Blood Flow Velocity , Blood Vessels/physiology , Contrast Media/administration & dosage , Humans , Microbubbles , Rats , Vena Cava, Inferior/physiology , X-Rays
7.
Sci Rep ; 6: 37985, 2016 11 28.
Article in English | MEDLINE | ID: mdl-27892505

ABSTRACT

Measurements of the hemodynamic information of blood flows, especially wall shear stress (WSS), in animal models with circulatory vascular diseases (CVDs) are important to understand the pathological mechanism of CVDs. In this study, X-ray particle image velocimetry (PIV) with high spatial resolution was applied to obtain velocity field information in stenosed blood vessels with high WSS. 3D clips fabricated with a 3D printer were applied to the abdominal aorta of a rat cadaver to induce artificial stenosis in the real blood vessel of an animal model. The velocity and WSS information of blood flows in the stenosed vessel were obtained and compared at various stenosis severities. In vivo measurement was also conducted by fastening a stenotic clip on a live rat model through surgical intervention to reduce the flow rate to match the limited temporal resolution of the present X-ray PIV system. Further improvement of the temporal resolution of the system might be able to provide in vivo measurements of hemodynamic information from animal disease models under physiological conditions. The present results would be helpful for understanding the relation between hemodynamic characteristics and the pathological mechanism in animal CVD models.


Subject(s)
Constriction, Pathologic/diagnostic imaging , Rheology/methods , Animals , Aorta, Abdominal/pathology , Blood Flow Velocity/physiology , Constriction, Pathologic/blood , Disease Models, Animal , Male , Printing, Three-Dimensional , Rats, Sprague-Dawley , Rheology/instrumentation , Stress, Mechanical , Surgical Instruments , X-Rays
8.
Proc Inst Mech Eng H ; 229(2): 175-83, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25767153

ABSTRACT

Various clinical observations reported that swirling blood flow is a normal physiological flow pattern in various vasculatures. The swirling flow has beneficial effects on blood circulation through the blood vessels. It enhances oxygen transfer and reduces low-density lipoprotein concentration in the blood vessel by enhancing cross-plane mixing of the blood. However, the fluid-dynamic roles of the swirling flow are not yet fully understood. In this study, inhibition of material deposition at the post-stenosis region by the swirling flow was observed. To reveal the underlying fluid-dynamic characteristics, pathline flow visualization and time-resolved particle image velocimetry measurements were conducted. Results showed that the swirling inlet flow increased the development of vortices at near wall region of the post-stenosis, which can suppress further development of stenosis by enhancing transport and mixing of the blood flow. The fluid-dynamic characteristics obtained in this study would be useful for improving hemodynamic characteristics of vascular grafts and stents in which the stenosis frequently occurred. Moreover, the time-resolved particle image velocimetry measurement technique and vortex identification method employed in this study would be useful for investigating the fluid-dynamic effects of the swirling flow on various vascular environments.


Subject(s)
Hemodynamics/physiology , Models, Cardiovascular , Pulsatile Flow/physiology , Algorithms , Constriction, Pathologic/physiopathology , Humans , Vascular Diseases/physiopathology
9.
Sci Rep ; 5: 8840, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25744850

ABSTRACT

Synchrotron X-ray imaging technique has been used to investigate biofluid flows in a non-destructive manner. This study aims to investigate the feasibility of the X-ray PIV technique with CO2 microbubbles as flow tracer for measurement of pulsatile blood flows under in vivo conditions. The traceability of CO2 microbubbles in a pulsatile flow was demonstrated through in vitro experiment. A rat extracorporeal bypass loop was used by connecting a tube between the abdominal aorta and jugular vein of a rat to obtain hemodynamic information of actual pulsatile blood flows without changing the hemorheological properties. The decrease in image contrast of the surrounding tissue was also investigated for in vivo applications of the proposed technique. This technique could be used to accurately measure whole velocity field information of real pulsatile blood flows and has strong potential for hemodynamic diagnosis of cardiovascular diseases.


Subject(s)
Blood Flow Velocity , Carbon Dioxide , Hemodynamics , Microbubbles , Radiography/methods , Animals , Optical Imaging/methods , Rats , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL