Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Small ; : e2309634, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845070

ABSTRACT

A novel green-absorbing organic molecule featuring dual intramolecular chalcogen bonds is synthesized and characterized. This molecule incorporates two such bonds: one between a tellurium atom and the oxygen atom of a carbonyl moiety, and the other between the tellurium atom and the adjacent nitrogen atom within a pyridine moiety. The molecule, featuring dual intramolecular chalcogen bonds exhibits a narrow absorption spectrum and elevated absorption coefficients, closely aligned with a resonance parameter of approximately 0.5. This behavior is due to its cyanine-like characteristics and favorable electrical properties, which are a direct result of its rigid, planar molecular structure. Therefore, this organic molecule forming dual intramolecular chalcogen bonds achieves superior optoelectronic performance in green-selective photodetectors, boasting an external quantum efficiency of over 65% and a full-width at half maximum of less than 95 nm while maintaining the performance after 1000 h of heating aging at 85 °C. Such organic photodetectors are poised to enhance stacked organic photodetector-on-silicon hybrid image sensors, paving the way for the next-generation of high-resolution and high-sensitivity image sensors.

2.
Opt Express ; 31(20): 32727-32736, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37859068

ABSTRACT

This study presents a novel physical layer security technique that aims to increase the security level by reducing decryption attempts and improving the resistance to security attacks. To achieve this goal, the proposed approach generates signals that resemble Gaussian noise in both the time and frequency domains. This method utilizes a wavelength-shuffled optical orthogonal frequency division multiplexing (OFDM) scheme, which is combined with the standard blue-excited phosphorus lighting approach. Experimental validation of the proposed system demonstrates a secure data rate of 880 Mb/s in the aggregate, followed by a real-time demonstration showing its practicality. Furthermore, the proposed system generates high-quality white light (with a color rendering index of 83 and correlated color temperature of 5040 K), which makes it suitable for practical illumination applications.

3.
Nanotechnology ; 34(1)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36222531

ABSTRACT

Electronic devices composed of semiconducting two-dimensional (2D) materials and ultrathin 2D metallic electrode materials, accompanying synergistic interactions and extraordinary properties, are becoming highly promising for future flexible and transparent electronic and optoelectronic device applications. Unlike devices with bulk metal electrode and 2D channel materials, devices with ultrathin 2D electrode and 2D channel are susceptible to chemical reactions in both channel and electrode surface due to the high surface to volume ratio of the 2D structures. However, so far, the effect of doping was primary concerned on the channel component, and there is lack of understanding in terms of how to modulate electrical properties of devices by engineering electrical properties of both the metallic electrode and the semiconducting channel. Here, we propose the novel, one-pot doping of the field-effect transistor (FET) based on 2D molybdenum disulfide (MoS2) channel and ultrathin copper sulfide (CuS) electrodes under mild iodine gas environment at room temperature, which simultaneously modulates electrical properties of the 2D MoS2channel and 2D CuS electrode in a facile and cost-effective way. After one-pot iodine doping, effective p-type doping of the channel and electrode was observed, which was shown through decreased off current level, improvedIon/Ioffratio and subthreshold swing value. Our results open up possibility for effectively and conveniently modulating electrical properties of FETs made of various 2D semiconductors and ultrathin contact materials without causing any detrimental damage.

4.
Opt Express ; 27(18): 25410-25419, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31510413

ABSTRACT

In this work, organic photodiodes (OPDs) based on two newly synthesized p-type dipolar small molecules are reported for application to green-light-selective OPDs. In order to reduce the blue-color absorption induced by the use of C60 as the n-type material in a bulk heterojunction (BHJ), the electron donor:electron acceptor composition ratio is tuned in the BHJ. With this light manipulation approach, the blue-wavelength external quantum efficiency (EQE) is minimized to 18% after reducing the C60 concentration in the center part of the BHJ. The two p-type molecules get a cyanine-like character with intense and sharp absorption in the green color by adjusting the strength of their donating and accepting parts and by choosing a selenophene unit as a π-linker. When combined to C60, the green-wavelength EQE reaches 70% in a complete device composed of two transparent electrodes. Finally, the optical simulation shows the good color-balance performance of hybrid full-color image sensor without an additional filter by using the developed green OPD as the top-layer in stacked device architecture.

5.
Nat Commun ; 15(1): 5058, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871682

ABSTRACT

In this study, high-performance organic photodetectors are presented which utilize a pristine chlorinated subphthalocyanine photoactive layer. Optical and optoelectronic analyses indicate that the device photocurrent is primarily generated through direct charge generation within the chlorinated subphthalocyanine layer, rather than exciton separation at layer interfaces. Molecular modelling suggests that this direct charge generation is facilitated by chlorinated subphthalocyanine high octupole moment (-80 DÅ2), which generates a 200 meV shift in molecular energetics. Increasing the thickness of chlorinated subphthalocyanine leads to faster response time, correlated with a decrease in trap density. Notably, photodetectors with a 50 nm thick chlorinated subphthalocyanine photoactive layer exhibit detectivities approaching 1013 Jones, with a dark current below 10-7 A cm-2 up to -5 V. Based on these findings, we conclude that high octupole moment molecular semiconductors are promising materials for high-performance organic photodetectors employing single-component photoactive layer.

6.
Adv Mater ; 35(49): e2306655, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37670609

ABSTRACT

A bulk-heterojunction (BHJ) blend is commonly used as the photoactive layer in organic photodetectors (OPDs) to utilize the donor (D)/acceptor (A) interfacial energetic offset for exciton dissociation. However, this strategy often complicates optimization procedures, raising serious concerns over device processability, reproducibility, and stability. Herein, highly efficient OPDs fabricated with single-component organic semiconductors are demonstrated via solution-processing. The non-fullerene acceptors (NFAs) with strong intrinsic D/A character are used as the photoactive layer, where the emissive intermolecular charge transfer excitonic (CTE) states are formed within <1 ps, and efficient photocurrent generation is achieved via strong quenching of these CTE states by reverse bias. Y6 and IT-4F-based OPDs show excellent OPD performances, low dark current density (≈10-9 A cm-2 ), high responsivity (≥0.15 A W-1 ), high specific detectivity (>1012 Jones), and fast photo-response time (<10 µs), comparable to the state-of-the-art BHJ OPDs. Together with strong CTE state quenching by electric field, these excellent OPD performances are also attributed to the high quadrupole moments of NFA molecules, which can lead to large interfacial energetic offset for efficient CTE dissociation. This work opens a new way to realize efficient OPDs using single-component systems via solution-processing and provides important molecular design rules.

7.
Nat Commun ; 13(1): 3745, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35768429

ABSTRACT

Organic photodetectors (OPDs) exhibit superior spectral responses but slower photoresponse times compared to inorganic counterparts. Herein, we study the light-intensity-dependent OPD photoresponse time with two small-molecule donors (planar MPTA or twisted NP-SA) co-evaporated with C60 acceptors. MPTA:C60 exhibits the fastest response time at high-light intensities (>0.5 mW/cm2), attributed to its planar structure favoring strong intermolecular interactions. However, this blend exhibits the slowest response at low-light intensities, which is correlated with biphasic photocurrent transients indicative of the presence of a low density of deep trap states. Optical, structural, and energetical analyses indicate that MPTA molecular packing is strongly disrupted by C60, resulting in a larger (370 meV) HOMO level shift. This results in greater energetic inhomogeneity including possible MPTA-C60 adduct formation, leading to deep trap states which limit the low-light photoresponse time. This work provides important insights into the small molecule design rules critical for low charge-trapping and high-speed OPD applications.

8.
Adv Sci (Weinh) ; 9(32): e2203715, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36192160

ABSTRACT

The present work describes the development of an organic photodiode (OPD) receiver for high-speed optical wireless communication. To determine the optimal communication design, two different types of photoelectric conversion layers, bulk heterojunction (BHJ) and planar heterojunction (PHJ), are compared. The BHJ-OPD device has a -3 dB bandwidth of 0.65 MHz (at zero bias) and a maximum of 1.4 MHz (at -4 V bias). A 150 Mbps single-channel visible light communication (VLC) data rate using this device by combining preequalization and machine learning (ML)-based digital signal processing (DSP) is demonstrated. To the best of the authors' knowledge, this is the highest data rate ever achieved on an OPD-based VLC system by a factor of 40 over the previous fastest reported. Additionally, the proposed OPD receiver achieves orders of magnitude higher spectral efficiency than the previously reported organic photovoltaic (OPV)-based receivers.

9.
ACS Appl Mater Interfaces ; 14(3): 4360-4370, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-34890196

ABSTRACT

A novel series of donor (D)-π-acceptor (A) merocyanine molecules harnessed with intramolecular chalcogen bonding (ChaB) is designed, synthesized, and characterized. ChaB comprises periodic chalcogen atoms, S, Se, and Te, and a neighboring oxygen atom of a carbonyl moiety. Compared to the D-π-A merocyanine dye with nontraditional intramolecular hydrogen bonding, the novel molecules with an intramolecular ChaB exhibit remarkably smaller absorption spectral widths and higher absorption coefficients attributed to their cyanine-like characteristics approaching the resonance parameter (c2) ∼0.5; furthermore, they exhibit better thermal stabilities and electrical charge-carrier transport properties in films. These novel D-π-A merocyanines harnessed with intramolecular ChaB networks are successfully utilized in high-performance color-selective organic photon-to-current conversion optoelectronic devices with excellent thermal stabilities. This study reports that the unique intramolecular ChaB plays an essential role in locking the molecular conformation of merocyanine molecules and enhancing the optical, thermal, and optoelectronic properties of high-performance and high-efficiency organic photon-to-current conversion devices.

10.
ACS Nano ; 15(1): 1217-1228, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33332092

ABSTRACT

A bulk-heterojunction (BHJ) structure of organic semiconductor blend is widely used in photon-to-electron converting devices such as organic photodetectors (OPD) and photovoltaics (OPV). However, the impact of the molecular structure on the interfacial electronic states and optoelectronic properties of the constituent organic semiconductors is still unclear, limiting further development of these devices for commercialization. Herein, the critical role of donor molecular structure on OPD performance is identified in highly intermixed BHJ blends containing a small-molecule donor and C60 acceptor. Blending introduces a twisted structure in the donor molecule and a strong coupling between donor and acceptor molecules. This results in ultrafast exciton separation (<1 ps), producing bound (binding energy ∼135 meV), localized (∼0.9 nm), and highly emissive interfacial charge transfer (CT) states. These interfacial CT states undergo efficient dissociation under an applied electric field, leading to highly efficient OPDs in reverse bias but poor OPVs. Further structural twisting and molecular-scale aggregation of the donor molecules occur in blends upon thermal annealing just above the transition temperature of 150 °C at which donor molecules start to reorganize themselves without any apparent macroscopic phase-segregation. These subtle structural changes lead to significant improvements in charge transport and OPD performance, yielding ultralow dark currents (∼10-10 A cm-2), 2-fold faster charge extraction (in µs), and nearly an order of magnitude increase in effective carrier mobility. Our results provide molecular insights into high-performance OPDs by identifying the role of subtle molecular structural changes on device performance and highlight key differences in the design of BHJ blends for OPD and OPV devices.

11.
J Microbiol Biotechnol ; 20(10): 1450-6, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21030832

ABSTRACT

Accurate and rapid diagnosis of Pandemic Influenza A/H1N1 2009 virus (H1N1 2009) infection is important for the prevention and control of influenza epidemics and the timely initiation of antiviral treatment. This study was conducted to evaluate the performance of several diagnostic tools for the detection of H1N1 2009. Flocked nasopharyngeal swabs were collected from 254 outpatients of suspected H1N1 2009 during October 2009. This study analyzed the performances of RealTime ready Inf A/H1N1 Detection Set (Roche), Influenza A (H1N1) Real-Time Detection Kit (Bionote), Seeplex Influenza A/B OneStep Typing set (Seeplex reverse transcriptase PCR [RT-PCR]), BinaxNow Influenza A & B test kit (Binax rapid antigen test [RAT]) and SD BIOLINE Influenza Ag kit (SD RAT). Roche and Bionote real-time RT-PCR showed identical results for the H1N1 2009 hemagglutinin gene. Compared with real-time RT-PCR, the sensitivities and specificities were 83.7% and 100% for Seeplex RT-PCR, 64.5% and 94.7% for Binax RAT, and 69.5% and 100% for SD RAT. The sensitivities of Seeplex RT-PCR, Binax RAT and SD RAT in patients aged over 21 years were 73.7%, 47.4% and 57.9%, respectively. The sensitivities of Seeplex RT-PCR, Binax RAT and SD RAT on the day of initial symptoms were mostly lower (68.8%, 56.3% and 31.3%, respectively). In conclusion, multiplex RT-PCR and RAT for the detection of H1N1 2009 were significantly less sensitive than real-time RT-PCR. Also, a negative RAT may require more sensitive confirmatory assays, because it cannot be ruled out from influenza infection.


Subject(s)
Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/virology , Polymerase Chain Reaction/methods , Adolescent , Adult , Aged , Animals , Antigens, Viral/genetics , Cell Line , Child , Child, Preschool , DNA Primers/genetics , Dogs , Female , Humans , Infant , Influenza A Virus, H1N1 Subtype/classification , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/diagnosis , Male , Middle Aged , Reagent Kits, Diagnostic , Viral Proteins/genetics , Young Adult
12.
ACS Appl Mater Interfaces ; 12(46): 51688-51698, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33164496

ABSTRACT

Stacked structures employing wavelength-selective organic photodiodes (OPDs) have been studied as promising alternatives to the conventional Si-based image sensors because of their color constancy. Herein, novel donor (D)-π-acceptor (A) molecules are designed, synthesized, and characterized as green-light-selective absorbers for application in organic-on-Si hybrid complementary metal-oxide-semiconductor (CMOS) color image sensors. The p-type molecules, combined with two fused-type heterocyclic donors and an electron-accepting unit, exhibit cyanine-like properties that are characterized by intense and sharp absorption. This molecular design leads to improved absorption properties, thermal stability, and higher photoelectric conversion compared to those of a molecular design based on a nonfused ring. A maximum external quantum efficiency of 66% (λmax = 550 nm) and high specific detectivity (D*) of 8 × 1013 cm Hz1/2/W are achieved in an OPD consisting of a bulk heterojunction blend with two transparent electrodes on both sides. Finally, the green-light-detection capability of the narrow-band green-selective OPD is demonstrated by the optical simulation of an organic-on-Si hybrid, stacked-type, full-color photodetector comprising the green-light-selective OPD and a bottom Si photodiode with only blue and red color filters. Based on this molecular design, further optimization of the OPDs can allow the development of various optoelectronic sensors including 3D-stacked image sensors with enhanced sensitivities to replace the conventional Si-based CMOS image sensors.

14.
Sci Rep ; 10(1): 219, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31937814

ABSTRACT

As organic photodetectors with less than 1 µm pixel size are in demand, a new way of enhancing the sensitivity of the photodetectors is required to compensate for its degradation due to the reduction in pixel size. Here, we used Ag nanoparticles coated with SiOxNy as a light-absorbing layer to realize the scale-down of the pixel size without the loss of sensitivity. The surface plasmon resonance appeared at the interface between Ag nanoparticles and SiOxNy. The plasmon resonance endowed the organic photodetector with boosted photon absorption and external quantum efficiency. As the Ag nanoparticles with SiOxNy are easily deposited on ITO/SiO2, it can be adapted into various organic color image sensors. The plasmon-supported organic photodetector is a promising solution for realizing color image sensors with high resolution below 1 µm.

15.
Oncology ; 76(1): 1-9, 2009.
Article in English | MEDLINE | ID: mdl-19018149

ABSTRACT

PURPOSE: Holmium-166 ((166)Ho) is a neutron-activated radioactive isotope whose effectiveness in hepatocellular carcinoma (HCC) was first reported in a preclinical study in 1991. Chitosan is a polymer of 2-deoxy-2-amino-D-glucose that readily forms a chelate with heavy metals and converts from a solution under acidic conditions into a gel under neutral or basic conditions. We performed a prospective trial of a transarterial administration of a radiopharmaceutical (166)Ho-chitosan complex in patients with single, large HCC. PATIENTS AND METHODS: The study involved 54 patients who had single HCC (>or=3 cm) without a vascular shunt and were either inoperable or refused surgery. The (166)Ho-chitosan complex was administered at a dose of 20 mCi per cm of tumor diameter (capping at 200 mCi) via the artery that directly fed the tumor. RESULTS: The median tumor size was 5.3 cm (range: 3-13 cm). The response rate was 78% (42/54), and 31 patients had a complete response for a median duration of 27 months. The incidence of grade 3 or 4 leukopenia was 18.6%, anemia 7.4%, thrombocytopenia 27.8%, AST/ALT elevation 26%/24%, and total bilirubin elevation 5.6%. There were two treatment-related deaths (3.7%). Subset analysis revealed a substantial difference between the two groups categorized by tumor size (3-5 vs. >5 cm) with respect to response rate (p = 0.004) and overall survival (p = 0.02). CONCLUSION: We found that transarterial administration of the (166)Ho-chitosan complex was highly effective in the treatment of HCC with acceptable toxicities, especially for patients with tumors of 3-5 cm.


Subject(s)
Carcinoma, Hepatocellular/radiotherapy , Chitosan/therapeutic use , Holmium/therapeutic use , Radioisotopes/therapeutic use , Adult , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/toxicity , Carcinoma, Hepatocellular/mortality , Chitosan/administration & dosage , Chitosan/toxicity , Dose-Response Relationship, Drug , Drug Administration Routes , Holmium/administration & dosage , Holmium/toxicity , Humans , Liver Function Tests , Models, Theoretical , Patient Selection , Radioisotopes/toxicity , Radiotherapy Dosage , Survival Rate , Young Adult
16.
Sci Rep ; 9(1): 1745, 2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30741952

ABSTRACT

Controlling defect states in a buffer layer for organic photo devices is one of the vital factors which have great influence on the device performance. Defect states in silicon oxynitride (SiOxNy) buffer layer for organic photo devices can be controlled by introducing appropriate dopant materials. We performed ab initio simulations to identify the effect on doping SiOxNy with carbon (C), boron (B), and phosphorous (P) atoms. The results unveil that hole defects in the SiOxNy layer diminish with the phosphorous doping. Based on the simulation results, we fabricate the small molecule organic photodetector (OPD) including the phosphorous-doped SiOxNy buffer layer and the active film of blended naphthalene-based donor and C60 acceptor molecules, which shows excellent enhancement in the external quantum efficiency (EQE). The results of our charge-based deep level transient spectroscopy (Q-DLTS) measurements confirmed that the EQE enhancement originates from the decrease of the hole traps induced by the reduced hole defects. The method of controlling the defect states in SiOxNy buffer layers by the doping can be used to improve the performance in various organic photo devices.

17.
Orphanet J Rare Dis ; 14(1): 114, 2019 05 23.
Article in English | MEDLINE | ID: mdl-31122244

ABSTRACT

BACKGROUND: Current diagnostic tests for hereditary spherocytosis (HS) focus on the detection of hemolysis or indirectly assessing defects of membrane protein, whereas direct methods to detect protein defects are complicated and difficult to implement. In the present study, we investigated the patterns of genetic variation associated with HS among patients clinically diagnosed with HS. METHODS: Multi-gene targeted sequencing of 43 genes (17 RBC membrane protein-encoding genes, 20 RBC enzyme-encoding genes, and six additional genes for the differential diagnosis) was performed using the Illumina HiSeq platform. RESULTS: Among 59 patients with HS, 50 (84.7%) had one or more significant variants in a RBC membrane protein-encoding genes. A total of 54 significant variants including 46 novel mutations were detected in six RBC membrane protein-encoding genes, with the highest number of variants found in SPTB (n = 28), and followed by ANK1 (n = 19), SLC4A1 (n = 3), SPTA1 (n = 2), EPB41 (n = 1), and EPB42 (n = 1). Concurrent mutations of genes encoding RBC enzymes (ALDOB, GAPDH, and GSR) were detected in three patients. UGT1A1 mutations were present in 24 patients (40.7%). Positive rate of osmotic fragility test was 86.8% among patients harboring HS-related gene mutations. CONCLUSIONS: This constitutes the first large-scaled genetic study of Korean patients with HS. We demonstrated that multi-gene target sequencing is sensitive and feasible that can be used as a powerful tool for diagnosing HS. Considering the discrepancies of clinical and molecular diagnoses of HS, our findings suggest that molecular genetic analysis is required for accurate diagnosis of HS.


Subject(s)
Osmotic Fragility/physiology , Spherocytes/metabolism , Spherocytosis, Hereditary/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Anion Exchange Protein 1, Erythrocyte/genetics , Anion Exchange Protein 1, Erythrocyte/metabolism , Ankyrins/genetics , Ankyrins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Child , Child, Preschool , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Female , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Humans , Infant , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Middle Aged , Mutation/genetics , Osmotic Fragility/genetics , Pathology, Molecular , Republic of Korea , Spectrin/genetics , Spectrin/metabolism , Spherocytosis, Hereditary/genetics , Young Adult
18.
Appl Radiat Isot ; 64(2): 207-15, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16168660

ABSTRACT

99mTc-labeled 1-thio-beta-D-glucose (99mTc-1-TG) was synthesized under different ligand concentrations. 1-Thio-beta-D-glucose (1-TG) showed different chemical properties and higher stability at acid pH as compared to neutral and basic pH. Under different ligand concentrations, 99mTc-1-TG was obtained with high labeling efficiency of >97%, but the HPLC chromatogram varied with the ligand concentration. The results of a tumor cell uptake assay also depended on the ligand concentration. With the lowest ligand concentration tested (0.5 mg/ml of 1-TG), we obtained the highest uptake. With different glucose and insulin concentrations, 99mTc-1-TG uptake was not significantly different from that of [18F]FDG.


Subject(s)
Glucose/analogs & derivatives , Isotope Labeling/methods , Radiopharmaceuticals/chemical synthesis , Technetium/chemistry , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/metabolism , Cell Line, Tumor , Chromatography, High Pressure Liquid , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/metabolism , Glucose/chemistry , Glucose/pharmacokinetics , Humans , Hydrogen-Ion Concentration , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/metabolism , Radionuclide Imaging , Radiopharmaceuticals/pharmacokinetics
20.
ACS Appl Mater Interfaces ; 8(39): 26143-26151, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27618933

ABSTRACT

There are growing opportunities and demands for image sensors that produce higher-resolution images, even in low-light conditions. Increasing the light input areas through 3D architecture within the same pixel size can be an effective solution to address this issue. Organic photodiodes (OPDs) that possess wavelength selectivity can allow for advancements in this regard. Here, we report on novel push-pull D-π-A dyes specially designed for Gaussian-shaped, narrow-band absorption and the high photoelectric conversion. These p-type organic dyes work both as a color filter and as a source of photocurrents with linear and fast light responses, high sensitivity, and excellent stability, when combined with C60 to form bulk heterojunctions (BHJs). The effectiveness of the OPD composed of the active color filter was demonstrated by obtaining a full-color image using a camera that contained an organic/Si hybrid complementary metal-oxide-semiconductor (CMOS) color image sensor.

SELECTION OF CITATIONS
SEARCH DETAIL