ABSTRACT
Reactive astrogliosis is a hallmark of Alzheimer's disease (AD). However, a clinically validated neuroimaging probe to visualize the reactive astrogliosis is yet to be discovered. Here, we show that PET imaging with 11C-acetate and 18F-fluorodeoxyglucose (18F-FDG) functionally visualizes the reactive astrocyte-mediated neuronal hypometabolism in the brains with neuroinflammation and AD. To investigate the alterations of acetate and glucose metabolism in the diseased brains and their impact on the AD pathology, we adopted multifaceted approaches including microPET imaging, autoradiography, immunohistochemistry, metabolomics, and electrophysiology. Two AD rodent models, APP/PS1 and 5xFAD transgenic mice, one adenovirus-induced rat model of reactive astrogliosis, and post-mortem human brain tissues were used in this study. We further curated a proof-of-concept human study that included 11C-acetate and 18F-FDG PET imaging analyses along with neuropsychological assessments from 11 AD patients and 10 healthy control subjects. We demonstrate that reactive astrocytes excessively absorb acetate through elevated monocarboxylate transporter-1 (MCT1) in rodent models of both reactive astrogliosis and AD. The elevated acetate uptake is associated with reactive astrogliosis and boosts the aberrant astrocytic GABA synthesis when amyloid-ß is present. The excessive astrocytic GABA subsequently suppresses neuronal activity, which could lead to glucose uptake through decreased glucose transporter-3 in the diseased brains. We further demonstrate that 11C-acetate uptake was significantly increased in the entorhinal cortex, hippocampus and temporo-parietal neocortex of the AD patients compared to the healthy controls, while 18F-FDG uptake was significantly reduced in the same regions. Additionally, we discover a strong correlation between the patients' cognitive function and the PET signals of both 11C-acetate and 18F-FDG. We demonstrate the potential value of PET imaging with 11C-acetate and 18F-FDG by visualizing reactive astrogliosis and the associated neuronal glucose hypometablosim for AD patients. Our findings further suggest that the acetate-boosted reactive astrocyte-neuron interaction could contribute to the cognitive decline in AD.
Subject(s)
Alzheimer Disease , Mice , Humans , Rats , Animals , Alzheimer Disease/metabolism , Fluorodeoxyglucose F18/metabolism , Astrocytes/metabolism , Carbon Radioisotopes/metabolism , Gliosis/diagnostic imaging , Brain/pathology , Positron-Emission Tomography/methods , gamma-Aminobutyric Acid/metabolismABSTRACT
Ultrasound elastography has been available on most modern systems; however, the implementation of quality processes tends to be ad hoc. It is essential for a medical physicist to benchmark elastography measurements on each system and track them over time, especially after major software upgrades or repairs. This study aims to establish baseline data using phantoms and monitor them for quality assurance in elastography. In this paper, we utilized two phantoms: a set of cylinders, each with a composite material with varying Young's moduli, and an anthropomorphic abdominal phantom containing a liver modeled to represent early-stage fibrosis. These phantoms were imaged using three ultrasound manufacturers' elastography functions with either point or 2D elastography. The abdominal phantom was also imaged using magnetic resonance elastography (MRE) as it is recognized as the non-invasive gold standard for staging liver fibrosis. The scaling factor was determined based on the data acquired using MR and US elastography from the same vendor. The ultrasound elastography measurements showed inconsistency between different manufacturers, but within the same manufacturer, the measurements showed high repeatability. In conclusion, we have established baseline data for quality assurance procedures and specified the criteria for the acceptable range in liver fibrosis phantoms during routine testing.
Subject(s)
Elasticity Imaging Techniques , Phantoms, Imaging , Elasticity Imaging Techniques/methods , Elasticity Imaging Techniques/instrumentation , Humans , Liver/diagnostic imaging , Liver/pathology , Elastic Modulus , Magnetic Resonance Imaging/methods , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/pathologyABSTRACT
AIM: The purpose of this study was to determine the inter- and intra-observer variability in 99mtechnetium-pyrophosphate (99mTc-PYP) scan interpretation for diagnosis of transthyretin cardiac amyloidosis (ATTR). METHODS AND RESULTS: Our study cohort comprised 100 consecutive subjects referred for 99mTc-PYP imaging based on clinical suspicion of ATTR cardiac amyloidosis. Myocardial 99mTc-PYP uptake was assessed by both visual (comparison of myocardial to rib uptake) and semi-quantitative (heart-to-contralateral lung uptake ratio, H:CL) methods. Twenty scans were analyzed twice, at least 48 hours apart, by each of two independent observers. Patients with visual scores of ≥ 2 on planar imaging as well as myocardial uptake on SPECT/CT were classified as ATTR positive. Diagnosis of ATTR by visual 99mTc-PYP grade was perfectly reproducible [concordance: positive and negative scans 100% (53/53 and 47/47, respectively). Both inter- and intra-observer correlations for H:CL ratio (r2 = 0.90, 0.99 (Observer 1) and 0.98 (Observer 2), respectively) and repeatability values on Bland-Altman plots were excellent. The coefficient of variation (%) for Observers 1 and 2 was 3.21 (2.14 to 4.29) and 7.49 (4.95 to 10.09), respectively. In addition, there was 100% concordance in positive and negative scan interpretation by visual grading between novice CV imagers (< 3 years' experience) and an experienced CV imager (10 years' experience). CONCLUSIONS: This study showed excellent inter-observer reproducibility and intra-observer repeatability of 99mTc-PYP visual scan interpretation and H:CL ratio for diagnosis of cardiac ATTR amyloidosis. Cardiac ATTR amyloidosis can be diagnosed reliably using 99mTc-PYP SPECT/CT by novice and experienced CV imagers.
Subject(s)
Amyloidosis , Cardiomyopathies , Diphosphates , Humans , Prealbumin , Radiopharmaceuticals , Reproducibility of Results , Technetium Tc 99m PyrophosphateABSTRACT
BACKGROUND: 18F-florbetapir PET is emerging as an excellent quantitative tool to quantify cardiac light chain (AL) amyloidosis burden. The primary aim of this study was to determine interobserver reproducibility and intraobserver repeatability, defined per the recommendations of the Quantitative Imaging Biomarker Alliance technical performance group, of PET 18F-florbetapir retention index (RI) in patients with cardiac AL amyloidosis. METHODS: The study cohort comprised 37 subjects with systemic AL amyloidosis enrolled in the prospective study: Molecular Imaging of Primary Amyloid Cardiomyopathy (clinical trials.gov NCT: 02641145). Using 10 mCi of 18F-florbetapir, a 60-minute dynamic cardiac scan was acquired. Global and segmental left ventricular estimates of retention index (RI) of 18F-florbetapir were calculated (Carimas 2.9 software, Turku, Finland). RI was analyzed twice, at least 24 hours apart, by two independent observers. Intraobserver repeatability and interobserver reproducibility were evaluated using Bland-Altman plots and scatter plots with fitted linear regression curves. RESULTS: All reproducibility (interobserver, r = 0.98) and repeatability (intraobserver, R=0.99 for each observer) measures of 18F-florbetapir RI are excellent. On the Bland-Altman plots, the agreement limits for global 18F-florbetapir RI were high and ranged for reproducibility (interobserver) from - 9.3 to + 9.4% (Fig. 1), and for repeatability (observer 1 from - 10.8 to + 10.7% and from - 9.2 to + 11.4%, for observer 2). CONCLUSIONS: The present study showed excellent interobserver reproducibility and intraobserver repeatability of 18F-florbetapir PET retention index in patients with cardiac AL amyloidosis.
Subject(s)
Amyloidosis/complications , Positron Emission Tomography Computed Tomography/standards , Aged , Amyloidosis/diagnostic imaging , Amyloidosis/epidemiology , Female , Finland/epidemiology , Fluorodeoxyglucose F18/administration & dosage , Fluorodeoxyglucose F18/therapeutic use , Humans , Male , Middle Aged , Myocardium/enzymology , Myocardium/metabolism , Positron Emission Tomography Computed Tomography/methods , Positron Emission Tomography Computed Tomography/statistics & numerical data , Reproducibility of ResultsABSTRACT
BACKGROUND: Gallium-68 Dotatate binds preferentially to somatostatin receptor (sstr) subtype-2 (sstr-2) on inflammatory cells. We aimed at investigating the potential clinical use of sstr-targeted imaging for the detection of myocardial inflammation. METHODS: Thirteen patients, with suspected cardiac sarcoidosis (CS) based on clinical history and myocardial uptake on recent fluorine-18 fluorodeoxyglucose (FDG) PET, were enrolled to undergo Dotatate PET after FDG-PET (median time 37 days [IQR 25-55]). Additionally, we investigated ex-vivo the immunohistochemistry expression of sstr-2 in 3 explanted sarcoid hearts. RESULTS: All FDG scans showed cardiac uptake (focal/multifocal = 6, focal on diffuse/heterogeneous = 7), and 46% (n = 6) extra-cardiac uptake (mediastinal/hilar). In comparison, Dotatate scans showed definite abnormal cardiac uptake (focal/multifocal) in 4 patients, probably abnormal (heterogenous/patchy) in 3, and negative uptake in 6 cases. Similarly, 6 patients had increased mediastinal/hilar Dotatate uptake. Overall concordance of FDG and Dotatate uptake was 54% in the heart and 100% for thoracic nodal activity. Quantitatively, FDG maximum standardized uptake value was 5.0 times [3.8-7.1] higher in the heart, but only 2.25 times [1.7-3.0; P = .019] higher in thoracic nodes relative to Dotatate. Ex-vivo, sstr-2 immunostaining was weakly seen within well-formed granulomas in all 3 examined sarcoid heart specimens with no significant staining of background myocardium or normal myocardium. CONCLUSION: Our preliminary data suggest that, compared to FDG imaging, somatostatin receptor-targeted imaging may be less sensitive for the detection of myocardial inflammation, but comparable for detecting extra-cardiac inflammation.
Subject(s)
Myocarditis/diagnostic imaging , Organometallic Compounds/pharmacokinetics , Positron Emission Tomography Computed Tomography , Receptors, Somatostatin/metabolism , Sarcoidosis/diagnostic imaging , Aged , Feasibility Studies , Female , Fluorodeoxyglucose F18/pharmacokinetics , Humans , Male , Middle Aged , Myocarditis/metabolism , Pilot Projects , Prospective Studies , Radiopharmaceuticals/pharmacokinetics , Sarcoidosis/metabolism , Sensitivity and SpecificityABSTRACT
Space radiation presents a substantial threat to travel beyond Earth. Relatively low doses of high-energy particle radiation cause physiological and behavioral impairments in rodents and may pose risks to human spaceflight. There is evidence that 56Fe irradiation, a significant component of space radiation, may be more harmful to males than to females and worsen Alzheimer's disease pathology in genetically vulnerable models. Yet, research on the long-term, sex- and genotype-specific effects of 56Fe irradiation is lacking. Here, we irradiated 4-month-old male and female, wild-type and Alzheimer's-like APP/PS1 mice with 0, 0.10, or 0.50 Gy of 56Fe ions (1GeV/u). Mice underwent microPET scans before and 7.5 months after irradiation, a battery of behavioral tests at 11 months of age and were sacrificed for pathological and biochemical analyses at 12 months of age. 56Fe irradiation worsened amyloid-beta (Aß) pathology, gliosis, neuroinflammation and spatial memory, but improved motor coordination, in male transgenic mice and worsened fear memory in wild-type males. Although sham-irradiated female APP/PS1 mice had more cerebral Aß and gliosis than sham-irradiated male transgenics, female mice of both genotypes were relatively spared from radiation effects 8 months later. These results provide evidence for sex-specific, long-term CNS effects of space radiation.
Subject(s)
Alzheimer Disease , Behavior, Animal/radiation effects , Gamma Rays , Genotype , Iron Radioisotopes , Presenilin-1 , Sex Characteristics , Spatial Memory/radiation effects , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Female , Male , Mice , Mice, Transgenic , Presenilin-1/genetics , Presenilin-1/metabolism , Time FactorsABSTRACT
PURPOSE: The clinical diagnosis of pulmonary involvement in individuals with systemic AL amyloidosis remains challenging. [18F]florbetapir imaging has previously identified AL amyloid deposits in the heart and extra-cardiac organs. The aim of this study is to determine quantitative [18F]florbetapir pulmonary kinetics to identify pulmonary involvement in individuals with systemic AL amyloidosis. METHODS: We prospectively enrolled 58 subjects with biopsy-proven AL amyloidosis and 9 control subjects (5 without amyloidosis and 4 with ATTR cardiac amyloidosis). Pulmonary [18F]florbetapir uptake was evaluated visually and quantified as distribution volume of specific binding (Vs) derived from compartmental analysis and simpler semiquantitative metrics of maximum standardized uptake values (SUVmax), retention index (RI), and target-to-blood ratio (TBR). RESULTS: On visual analysis, pulmonary tracer uptake was absent in most AL subjects (40/58, 69%); 12% (7/58) of AL subjects demonstrated intense bilateral homogeneous tracer uptake. In this group, compared to the control group, Vs (median Vs 30-fold higher, 9.79 vs. 0.26, p < 0.001), TBR (median TBR 12.0 vs. 1.71, p < 0.001), and RI (median RI 0.310 vs. 0.033, p < 0.001) were substantially higher. Notably, the AL group without visually apparent pulmonary [18F]florbetapir uptake also demonstrated a > 3-fold higher Vs compared to the control group (median 0.99 vs. 0.26, p < 0.001). Vs was independently related to left ventricular SUVmax, a marker of cardiac AL deposition, but not to ejection fraction, a marker of cardiac dysfunction. Also, intense [18F]florbetapir lung uptake was not related to [11C]acetate lung uptake, suggesting that intense [18F]florbetapir lung uptake represents AL amyloidosis rather than heart failure. CONCLUSIONS: [18F]florbetapir PET/CT offers the potential to noninvasively identify pulmonary AL amyloidosis, and its clinical relevance warrants further study.
Subject(s)
Immunoglobulin Light-chain Amyloidosis , Positron Emission Tomography Computed Tomography , Aniline Compounds , Ethylene Glycols , Humans , Immunoglobulin Light-chain Amyloidosis/complications , Immunoglobulin Light-chain Amyloidosis/diagnostic imaging , Lung/diagnostic imagingABSTRACT
During hematopoiesis, red blood cells originate from the hematopoietic stem cell reservoir. Although the regulation of erythropoiesis and globin expression has been intensively investigated, the underlining mechanisms are not fully understood, including the interplay between transcription factors and epigenetic factors. Here, we uncover that the Mbd2-free NuRD chromatin remodeling complex potentiates erythroid differentiation of proerythroblasts via managing functions of the CP2c complexes. We found that both Mbd2 and Mbd3 expression is downregulated during differentiation of MEL cells in vitro and in normal erythropoiesis in mouse bone marrow, and Mbd2 downregulation is crucial for erythropoiesis. In uninduced MEL cells, the Mbd2-NuRD complex is recruited to the promoter via Gata1/Fog1, and, via direct binding through p66α, it acts as a transcriptional inhibitor of the CP2c complexes, preventing their DNA binding and promoting degradation of the CP2c family proteins to suppress globin gene expression. Conversely, during erythropoiesis in vitro and in vivo, the Mbd2-free NuRD does not dissociate from the chromatin and acts as a transcriptional coactivator aiding the recruitment of the CP2c complexes to chromatin, and thereby leading to the induction of the active hemoglobin synthesis and erythroid differentiation. Our study highlights the regulation of erythroid differentiation by the Mbd2-CP2c loop.
Subject(s)
DNA-Binding Proteins/metabolism , Erythropoiesis/physiology , Globins/genetics , Transcription Factors/metabolism , Animals , Binding Sites , Cell Differentiation , Chromatin Assembly and Disassembly , DNA-Binding Proteins/genetics , Erythroid Cells/cytology , Erythropoiesis/genetics , GATA1 Transcription Factor/metabolism , Gene Expression Regulation , Hemoglobins/biosynthesis , Hemoglobins/genetics , Humans , Male , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mice, Inbred BALB C , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors/geneticsABSTRACT
The Quality assurance of ultrasound clinical imaging systems is essential for maintaining their performance to the highest level and for complying with the requirements by various regulatory and accrediting agencies. Although there is no standardization yet, most of the quality assessment procedures available in literature are proposed for B-mode and Doppler imaging. However, ultrasound imaging systems offer a variety of advanced imaging modes, besides B-mode and Doppler, which are primarily aimed at improving image quality. This study presents computer-based methods for evaluating image quality for the advanced imaging modes of ultrasound imaging systems: harmonic imaging, spatial compounding imaging, adaptive speckle reduction, and tissue aberration correction. The functions and parameters proposed for evaluating image quality are: grayscale mapping function, image contrast, contrast-to-noise ratio (CNR), and high-contrast spatial resolution. We present our computer-based methods for evaluating image quality of these modes with a number of probe and scanner combinations, which were employed to image targets in ultrasound phantoms. The functions and parameters here proposed in image quality performance evaluation are: grayscale mapping function, image contrast, CNR, and high-contrast spatial resolution. We show that these quantities could be useful in developing standardized methods for evaluating the advanced ultrasound imaging modes, especially when the advanced mode resulted in subtle visual differences.
Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Signal-To-Noise Ratio , Ultrasonography/methods , Ultrasonography/standards , HumansABSTRACT
PURPOSE: This prospective study aimed to evaluate the clinical values of 11C-acetate positron emission tomography/computed tomography (PET/CT) in predicting histologic grades and survival in patients with cerebral glioma. METHODS: Seventy-three patients with surgically confirmed cerebral gliomas (19 grade II, 21 grade III, and 33 grade IV) who underwent 11C-acetate PET/CT before surgery were included. Tumor-to-choroid plexus ratio (TCR), which was defined as the maximum standardized uptake value (SUV) of tumors to the mean SUV of choroid plexus, was compared between three World Health Organization (WHO) grade groups. Moreover, metabolic tumor volumes (MTV) were calculated. Progression-free survival (PFS) and overall survival (OS) curves were plotted using the Kaplan-Meier method, and differences in survival between groups were assessed using the log-rank test. RESULTS: Median TCR was 1.20 (interquartile range [IQR], 1.14 to 1.4) in grade II, 1.65 (IQR, 1.26 to 1.79) in grade III, and 2.53 (IQR, 1.93 to 3.30) in grade IV gliomas. Significant differences in TCR were seen among the three WHO grade groups (P < 0.001). In Cox regression analysis including TCR, MTV, molecular markers, and other clinical factors, TCR was prognostic for PFS (P = 0.016) and TCR and MTV were prognostic for OS (P = 0.024 [TCR], P = 0.030 [MTV]). PFS and OS were significantly shorter in patients with a TCR ≥ 1.6 than in those with a TCR < 1.6. OS were significantly shorter in patients with a MTV ≥ 1 than in those with a TCR < 1. CONCLUSIONS: TCR on 11C-acetate PET/CT significantly differed between low- and high-grade cerebral gliomas, and it showed the capability to further differentiate grade III from grade IV tumors. TCR and MTV were independent prognostic factors and predicted survival better than did the WHO grade.
Subject(s)
Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Positron Emission Tomography Computed Tomography , Acetates , Adult , Aged , Brain Neoplasms/surgery , Carbon Radioisotopes , Cell Differentiation , Disease-Free Survival , Female , Fluorodeoxyglucose F18 , Glioma/surgery , Humans , Male , Middle Aged , Positron-Emission Tomography , Prognosis , Prospective Studies , Retrospective Studies , Tomography, X-Ray Computed , Tumor Burden , Young AdultABSTRACT
OBJECTIVE: In MRI of patients with recurrent glioblastoma, bevacizumab-induced normalization of tumor vascularity can be difficult to differentiate from antitumor effects. The aim of this study was to assess the utility of 18F-fluoroethyl-L-tyrosine (FET) PET in the evaluation of recurrent glioblastoma treated with bevacizumab. SUBJECTS AND METHODS: MRI and FET PET were performed before and after administration of two doses of bevacizumab to 11 patients with recurrent glioblastoma. The ratio between normalized FET uptake at follow-up and baseline of the entire (volume of T2 FLAIR abnormality) and enhancing tumor were assessed for prediction of progression-free survival (PFS) and overall survival (OS). Voxel-wise Spearman correlation between normalized FET uptake and contrast-enhanced T1 signal intensity was assessed and tested as a predictor of PFS and OS. RESULTS: Mean Spearman correlation between FET uptake and contrast-enhanced T1 signal intensity before therapy was 0.65 and after therapy was 0.61 (p = 0.256). The median PFS after initiation of bevacizumab therapy was 111 days, and the OS was 223 days. A post-treatment to pretreatment PET uptake ratio (mean and 90th percentile) greater than 0.7 for both entire and enhancing tumor was associated with lower PFS and OS (p < 0.001-0.049). The increase in correlation between PET uptake and contrast-enhanced T1 intensity after treatment was associated with lower PFS (p < 0.001) and OS (p = 0.049). CONCLUSION: There is only a moderate correlation between FET PET uptake and contrast-enhanced T1 signal intensity. High posttreatment-to-pretreatment FET PET uptake ratio and increase in correlation between PET uptake and contrast-enhanced T1 signal intensity after bevacizumab treatment are associated with poor PFS and OS.
Subject(s)
Angiogenesis Inhibitors/therapeutic use , Brain Neoplasms/diagnostic imaging , Glioblastoma/diagnostic imaging , Magnetic Resonance Imaging , Neoplasm Recurrence, Local/diagnostic imaging , Positron-Emission Tomography , Tyrosine/analogs & derivatives , Bevacizumab/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/mortality , Female , Glioblastoma/drug therapy , Glioblastoma/mortality , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/mortality , Predictive Value of TestsABSTRACT
Alzheimer's disease (AD) is the most common cause of dementia. Neuroinflammation appears to play an important role in AD pathogenesis. Ligands of the 18 kDa translocator protein (TSPO), a marker for activated microglia, have been used as positron emission tomography (PET) tracers to reflect neuroinflammation in humans and mouse models. Here, we used the novel TSPO-targeted PET tracer (18)F-GE180 (flutriciclamide) to investigate differences in neuroinflammation between young and old WT and APP/PS1dE9 transgenic (Tg) mice. In vivo PET scans revealed an overt age-dependent elevation in whole-brain uptake of (18)F-GE180 in both WT and Tg mice, and a significant increase in whole-brain uptake of (18)F-GE180 (peak-uptake and retention) in old Tg mice compared with young Tg mice and all WT mice. Similarly, the (18)F-GE180 binding potential in hippocampus was highest to lowest in old Tg > old WT > young Tg > young WT mice using MRI coregistration. Ex vivo PET and autoradiography analysis further confirmed our in vivo PET results: enhanced uptake and specific binding (SUV75%) of (18)F-GE180 in hippocampus and cortex was highest in old Tg mice followed by old WT, young Tg, and finally young WT mice. (18)F-GE180 specificity was confirmed by an in vivo cold tracer competition study. We also examined (18)F-GE180 metabolites in 4-month-old WT mice and found that, although total radioactivity declined over 2 h, of the remaining radioactivity, â¼90% was due to parent (18)F-GE180. In conclusion, (18)F-GE180 PET scans may be useful for longitudinal monitoring of neuroinflammation during AD progression and treatment. SIGNIFICANCE STATEMENT: Microglial activation, a player in Alzheimer's disease (AD) pathogenesis, is thought to reflect neuroinflammation. Using in vivo microPET imaging with a novel TSPO radioligand, (18)F-GE180, we detected significantly enhanced neuroinflammation during normal aging in WT mice and in response to AD-associated pathology in APP/PS1dE9 Tg mice, an AD mouse model. Increased uptake and specific binding of (18)F-GE180 in whole brain and hippocampus were confirmed by ex vivo PET and autoradiography. The binding specificity and stability of (18)F-GE180 was further confirmed by a cold tracer competition study and a metabolite study, respectively. Therefore, (18)F-GE180 PET imaging may be useful for longitudinal monitoring of neuroinflammation during AD progression and treatment and may also be useful for other neurodegenerative diseases.
Subject(s)
Aging/metabolism , Alzheimer Disease/metabolism , Carbazoles/metabolism , Fluorine Radioisotopes/metabolism , Positron-Emission Tomography/methods , Receptors, GABA/metabolism , Aging/pathology , Alzheimer Disease/diagnostic imaging , Animals , Disease Progression , Humans , Inflammation/diagnosis , Inflammation/diagnostic imaging , Male , Mice , Mice, Inbred C57BL , Mice, TransgenicABSTRACT
Heterochromatin protein 1γ (HP1γ) is a chromatin protein involved in gene silencing. Herein, we show that HP1γ interacts with breast cancer type 1 susceptibility protein (BRCA1) and regulates BRCA1-mediated transcription via modulation of promoter occupancy and histone modification. We used several HP1γ mutants and small interfering RNAs for histone methyltransferases to show that BRCA1-HP1γ interaction, but not methylated histone binding, is important in HP1γ repression of BRCA1-mediated transcription. Time-lapse studies on promoter association and histone methylation after DNA damage revealed that HP1γ accumulates at the promoter before DNA damage, but BRCA1 is recruited at the promoter after the damage while promoter-resident HP1γ is disassembled. Importantly, HP1γ assembly recovers after release from the damage in a BRCA1-HP1γ interaction-dependent manner and targets SUV39H1. HP1γ/SUV39H1 restoration at the promoter results in BRCA1 disassembly and histone methylation, after which transcription repression resumes. We propose that through interaction with BRCA1, HP1γ is guided to the BRCA1 target promoter during recovery and functions in the activation-repression switch and recovery from BRCA1-mediated transcription in response to DNA damage.
Subject(s)
BRCA1 Protein/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Gene Expression Regulation , Promoter Regions, Genetic , Transcription, Genetic , BRCA1 Protein/antagonists & inhibitors , Cell Line , Histones/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , GADD45 ProteinsABSTRACT
Quantitative PET attenuation correction (AC) for cardiac PET/CT and PET/MR is a challenging problem. We propose and evaluate an AC approach that uses coincidences from a relatively weak and physically fixed sparse external source, in combination with that from the patient, to reconstruct µ -maps based on physics principles alone. The low 30 cm3 volume of the source makes it easy to fill and place, and the method does not use prior image data or attenuation map assumptions. Our supplemental transmission aided maximum likelihood reconstruction of attenuation and activity (sTX-MLAA) algorithm contains an attenuation map update that maximizes the likelihood of terms representing coincidences originating from tracer in the patient and a weighted expression of counts segmented from the external source alone. Both external source and patient scatter and randoms are fully corrected. We evaluated performance of sTX-MLAA compared to reference standard CT-based AC with FDG PET/CT phantom studies; including modeling a patient with myocardial inflammation. Through an ROI analysis we measured ≤ 5 % bias in activity concentrations for PET images generated with sTX-MLAA and a TX source strength ≥ 12.7 MBq, relative to CT-AC. PET background variability (from noise and sparse sampling) was substantially reduced with sTX-MLAA compared to using counts segmented from the transmission source alone for AC. Results suggest that sTX-MLAA will enable quantitative PET during cardiac PET/CT and PET/MR of human patients.
Subject(s)
Multimodal Imaging , Positron Emission Tomography Computed Tomography , Humans , Multimodal Imaging/methods , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Algorithms , Image Processing, Computer-Assisted/methodsABSTRACT
Latilactobacillus curvatus CACC879 originated from swine feces in Korea, and its probiotic properties have been analyzed. The complete genome of strain CACC879 contained one chromosome 1,398,247 bp in length and three circular plasmids, namely, pCACC879-1 (591,981 bp), pCACC879-2 (14,542 base pairs [bp]), and pCACC879-3 (45,393 bp). The complete genome encodes a total of 2,077 genes, including 25 rRNA genes and 90 tRNA genes. In addition, probiotic stability- genes acid/bile related to salts tolerance, the biosynthesis of cobalamin (vitamin B12), riboflavin (vitamin B2), and CRISPR/Cas9 were found in the whole genomes. Remarkably, L. curvatus CACC879 contained the antioxidant-related (peroxiredoxin) and bacteriocin-related genes (lysM and blpA). Overall, these results demonstrate that L. curvatus CACC879 is a functional probiotic candidate for animal industry applications.
ABSTRACT
Two probiotic candidates, Lactobacillus reuteri C1 (C1) and Lactobacillus acidophilus C5 (C5), which were previously isolated from canines, were evaluated in the present study. L. reuteri and L. acidophilus have anti-oxidant, anti-inflammatory, immune-enhancing, and anti-cancer properties and exhibit various probiotic effects in humans and animals. The strains C1 and C5 demonstrated good tolerance to acid and bile salt exposure, exhibited effective adhesion to HT-29 cell monolayer, and displayed sensitivity to antibiotics, thus affirming their probiotic characteristics. Moreover, C1 and C5 exhibited the ability to downregulate the expression of inducible NO synthase (iNOS), an immunomodulatory factor, leading to a reduction in NO production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. These strains also demonstrated potent anti-inflammatory effects in LPS-stimulated RAW 264.7 cells, achieved through the augmentation of anti-inflammatory cytokine IL-10 expression and the inhibition of pro-inflammatory cytokine IL-1ß expression. These anti-inflammatory effects of C1 and C5 were closely associated with the mitogen-activated protein kinase (MAPK) signaling pathway. The results of the present study suggest that the C1 and C5 probiotic candidates attenuate LPS-induced inflammation via the MAPK signaling pathway and the strains can be used as probiotics considering their anti-inflammatory potential.
Subject(s)
Limosilactobacillus reuteri , Probiotics , Humans , Animals , Dogs , Lactobacillus , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Anti-Inflammatory Agents/pharmacology , MAP Kinase Signaling System , Cytokines/metabolism , Feces , Lactobacillus acidophilus/physiology , Probiotics/pharmacology , NF-kappa B/metabolismSubject(s)
Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Myocardial Perfusion Imaging , Practice Guidelines as Topic , Tomography, Emission-Computed, Single-Photon , Calibration , Cardiac-Gated Single-Photon Emission Computer-Assisted Tomography , Coronary Circulation , Humans , Myocardial Perfusion Imaging/instrumentation , Myocardial Perfusion Imaging/methods , Tomography, Emission-Computed, Single-Photon/instrumentation , Tomography, Emission-Computed, Single-Photon/methods , Tomography, X-Ray ComputedABSTRACT
During weaning, piglets experience various stressor events that disrupt their gut microbiota and immune balance, decrease growth parameters, and increase mortality rates. In this study, we assessed the efficacy of Pediococcus pentosaceus CACC616 as a probiotic supplement. We characterized this strain and evaluated its effect on improving growth performance, modulating gut microbiota composition, and reducing noxious odor components in weaned piglets compared to a non-supplementary diet (control). During the 26-day period, 40 crossbred weaned piglets were randomly assigned to pens with 20 animals each in two groups: control and treatment groups with CACC616. On day 26, the treatment group exhibited a lower feed conversion ratio (FCR) and a significant alteration in gut microbial composition, correlating with improved growth parameters and gut health (p < 0.05). The treatment group also exhibited significantly reduced digestibility- and intestinal-environment-related noxious odor components (p < 0.05). The CACC616 strain effectively reduced pathogenic genera numbers, including Campylobacter, Mogibacterium, Escherichia-Shigella, and Desulfovibrio spp., with the treatment group exhibiting lower fecal calprotectin levels than the control group (p < 0.05). Overall, this study revealed that the functional probiotic CACC616 contributes to enhanced FCR and effectively modulates weaned piglets' inflammation and intestinal microbiota.
ABSTRACT
BACKGROUND: Given the central importance of cardiorenal interactions, mechanistic tools for evaluating cardiorenal physiology are needed. In the heart and kidneys, shared pathways of neurohormonal activation, hypertension, and vascular and interstitial fibrosis implicate the relevance of systemic vascular health. The availability of a long axial field of view positron emission tomography (PET)/computed tomography (CT) system enables simultaneous evaluation of cardiac and renal blood flow. METHODS: This study evaluated the feasibility of quantification of renal blood flow using data acquired during routine, clinically indicated 13N-ammonia myocardial perfusion PET/CT. Dynamic PET image data were used to calculate renal blood flow. Reproducibility was assessed by the intraclass correlation coefficient among 3 independent readers. PET-derived renal blood flow was correlated with imaging and clinical parameters in the overall cohort and with histopathology in a small companion study of patients with a native kidney biopsy. RESULTS: Among 386 consecutive patients with myocardial perfusion PET/CT, 296 (76.7%) had evaluable images to quantify renal perfusion. PET quantification of renal blood flow was highly reproducible (intraclass correlation coefficient 0.98 [95% CI, 0.93-0.99]) and was correlated with the estimated glomerular filtration rate (r=0.64; P<0.001). Compared across vascular beds, resting renal blood flow was correlated with maximal stress myocardial blood flow and myocardial flow reserve (stress/rest myocardial blood flow), an integrated marker of endothelial health. In patients with kidney biopsy (n=12), resting PET renal blood flow was strongly negatively correlated with histological interstitial fibrosis (r=-0.85; P<0.001). CONCLUSIONS: Renal blood flow can be reliably measured from cardiac 13N-ammonia PET/CT and allows for simultaneous assessment of myocardial and renal perfusion, opening a potential novel avenue to interrogate the mechanisms of emerging therapies with overlapping cardiac and renal benefits.
Subject(s)
Ammonia , Positron Emission Tomography Computed Tomography , Humans , Feasibility Studies , Reproducibility of Results , Positron-Emission Tomography , Kidney/diagnostic imaging , Perfusion , FibrosisABSTRACT
Transcription factor CP2c (also known as TFCP2, α-CP2, LSF, and LBP-1c) is involved in diverse ubiquitous and tissue/stage-specific cellular processes and in human malignancies such as cancer. Despite its importance, many fundamental regulatory mechanisms of CP2c are still unclear. Here, we uncover an unprecedented mechanism of CP2c degradation via a previously unidentified SUMO1/PSME3/20S proteasome pathway and its biological meaning. CP2c is SUMOylated in a SUMO1-dependent way, and SUMOylated CP2c is degraded through the ubiquitin-independent PSME3 (also known as REGγ or PA28)/20S proteasome system. SUMOylated PSME3 could also interact with CP2c to degrade CP2c via the 20S proteasomal pathway. Moreover, precisely timed degradation of CP2c via the SUMO1/PSME3/20S proteasome axis is required for accurate progression of the cell cycle. Therefore, we reveal a unique SUMO1-mediated uncanonical 20S proteasome degradation mechanism via the SUMO1/PSME3 axis involving mutual SUMO-SIM interaction of CP2c and PSME3, providing previously unidentified mechanistic insights into the roles of dynamic degradation of CP2c in cell cycle progression.