Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Phys Chem Chem Phys ; 25(5): 3890-3899, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36647706

ABSTRACT

Selective etching of silicon oxide (SiO2) against silicon (Si) using anhydrous hydrogen fluoride (HF) vapor has been used for semiconductor device fabrication. We studied the underlying mechanism of the selective etching by density functional theory (DFT) calculation. We constructed surface slab models of SiO2 or Si with different degrees of fluorination and simulated the four steps of fluorination. The calculations show relatively low activation energies of 0.72-0.79 eV for the four steps of fluorination of SiO2, which are close to ∼0.69 eV observed in the experiment. The four-membered ring structure of -Si-O-H-F- in all transition states stabilized the system, resulting in relatively low activation energies. Thus, continuous etching of SiO2 by HF is plausible at near-room temperature. In contrast, the fluorinations of Si showed relatively high activation energies ranging from 1.22 to 1.56 eV due to the less stable transition state geometries. Thus, negligible etching of silicon by HF is expected by the near-room temperature process. Our calculation results explain well the experimental observation of the selective etching of SiO2 against Si by HF vapor.

2.
Ecotoxicol Environ Saf ; 262: 115342, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37567104

ABSTRACT

Waste plastics are degraded into microplastics (MPs), which are easily accumulated in the human body through digestive tracts, via the food chain. Alcohol is a widely consumed chemical throughout the world with the ability to alter the intestinal barrier. For this reason, this study was aimed to investigate exact relevance between alcohol consumption and organ distributions of MPs in an ethanol feeding animal model characterized by disrupted intestinal mucosal barriers. In this study, C57BL/6 mice were separated into control, control + MP, ethanol (EtOH), and EtOH + MP groups. Mice in the EtOH group ingested a Lieber-DeCarli diet containing EtOH. Mice in the MP groups ingested 0.1 mg/kg fluorophore polymerized polystyrene microplastics via oral gavage polystyrene MPs via oral gavage. The EtOH + MP group showed higher MP accumulation in the liver than the control + MP group. The same pattern was observed in the intestines, spleen, and brain. This pattern was more prominent in the intestines, with the EtOH + MP group showing the most severe damage due to EtOH ingestion. This result suggests that the intestinal mucosa disruption caused by EtOH ingestion exacerbates MP accumulation in the organs. Moreover, hepatic steatosis was more severe in the EtOH + MP group than in the EtOH group, suggesting the secondary manifestation mediated by MP accumulation. This study reports a novel MP accumulation pattern in the body by providing novel insights into alcohol-induced gut permeability and microplastics toxicity from the perspective of gut-liver axis.

3.
Vet Med (Praha) ; 68(1): 33-37, 2023 Jan.
Article in English | MEDLINE | ID: mdl-38384992

ABSTRACT

Apocrine cystomatosis, also called epitrichial sweat gland cystomatosis, is a non-neoplastic condition characterised by multiple dilated cysts of sweat gland origin. Histopathologically, these cysts comprise two layers of cells: an inner layer of glandular epithelial cells and an outer layer of myoepithelial cells. A case of apocrine cystomatosis was admitted to a local hospital. The microscopic investigation revealed that some enlarged cysts showed the transition of glandular epithelial cells into a spindle, mesenchymal cell-like morphology. The epithelial-to-mesenchymal transition (EMT) has long been studied as a pathway for embryogenesis, organ development, and carcinogenesis. While various molecular factors, including cytokines and growth factors, are known to induce EMT, mechanical forces have also been proposed to initiate EMT. The present case describes a possible relationship between EMT occurring in a cystic condition and further pathological inspection.

4.
Am J Pathol ; 191(9): 1550-1563, 2021 09.
Article in English | MEDLINE | ID: mdl-34126083

ABSTRACT

Despite the increasing clinical importance of nonalcoholic fatty liver disease (NAFLD), little is known about its underlying pathogenesis or specific treatment. The senescence marker protein 30 (SMP30), which regulates the biosynthesis of vitamin C (VC) in many mammals, except primates and humans, was recently recognized as a gluconolactonase. However, the precise relation between VC and lipid metabolism in NAFLD is not completely understood. Therefore, this study aimed to clearly reveal the role of VC in NAFLD progression. SMP30 knockout (KO) mice were used as a VC-deficient mouse model. To investigate the precise role of VC on lipid metabolism, 13- to 15-week-old SMP30 KO mice and wild-type mice fed a 60% high-fat diet were exposed to tap water or VC-containing water (1.5 g/L) ad libitum for 11 weeks. Primary mouse hepatocytes isolated from the SMP30 KO and wild-type mice were used to demonstrate the relation between VC and lipid metabolism in hepatocytes. Long-term VC deficiency significantly suppressed the progression of simple steatosis. The high-fat diet-fed VC-deficient SMP30 KO mice exhibited impaired sterol regulatory element-binding protein-1c activation because of excessive cholesterol accumulation in hepatocytes. Long-term VC deficiency inhibits de novo lipogenesis through impaired sterol regulatory element-binding protein-1c activation.


Subject(s)
Ascorbic Acid Deficiency/metabolism , Hepatocytes/metabolism , Lipogenesis/physiology , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Disease Progression , Lipid Metabolism/physiology , Male , Mice , Mice, Knockout
5.
Int J Mol Sci ; 23(12)2022 Jun 19.
Article in English | MEDLINE | ID: mdl-35743267

ABSTRACT

Recent advances in optical clearing techniques have dramatically improved deep tissue imaging by reducing the obscuring effects of light scattering and absorption. However, these optical clearing methods require specialized equipment or a lengthy undertaking with complex protocols that can lead to sample volume changes and distortion. In addition, the imaging of cleared tissues has limitations, such as fluorescence bleaching, harmful and foul-smelling solutions, and the difficulty of handling samples in high-viscosity refractive index (RI) matching solutions. To address the various limitations of thick tissue imaging, we developed an Aqueous high refractive Index matching and tissue Clearing solution for Imaging (termed AICI) with a one-step tissue clearing protocol that was easily made at a reasonable price in our own laboratory without any equipment. AICI can rapidly clear a 1 mm thick brain slice within 90 min with simultaneous RI matching, low viscosity, and a high refractive index (RI = 1.466), allowing the imaging of the sample without additional processing. We compared AICI with commercially available RI matching solutions, including optical clear agents (OCAs), for tissue clearing. The viscosity of AICI is closer to that of water compared with other RI matching solutions, and there was a less than 2.3% expansion in the tissue linear morphology during 24 h exposure to AICI. Moreover, AICI remained fluid over 30 days of air exposure, and the EGFP fluorescence signal was only reduced to ~65% after 10 days. AICI showed a limited clearing of brain tissue >3 mm thick. However, fine neuronal structures, such as dendritic spines and axonal boutons, could still be imaged in thick brain slices treated with AICI. Therefore, AICI is useful not only for the three-dimensional (3D) high-resolution identification of neuronal structures, but also for the examination of multiple structural imaging by neuronal distribution, projection, and gene expression in deep brain tissue. AICI is applicable beyond the imaging of fluorescent antibodies and dyes, and can clear a variety of tissue types, making it broadly useful to researchers for optical imaging applications.


Subject(s)
Brain , Optical Imaging , Animals , Brain/diagnostic imaging , Fluorescent Antibody Technique , Imaging, Three-Dimensional/methods , Mice , Neurons , Optical Imaging/methods , Refractometry
6.
Korean J Parasitol ; 60(4): 289-293, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36041491

ABSTRACT

Blastocystis is a genus of unicellular heterokont parasites belonging to a group of organisms known as Stramenopiles, which includes algae, diatoms, and water molds. Blastocystis includes several species that habitat in the gastrointestinal tracts of organisms as diverse as humans, farm animals, birds, rodents, reptiles, amphibians, fish, and cockroaches. It is important to public health and distributed globally, but its prevalence in dogs in Korea has not been reported to date. Here, we collected 787 canine fecal samples and assessed Blastocystis infection by age, sex, region, season, and diarrhea symptoms. We determined Blastocystis subtypes using phylogenetic analyses based on 18S rRNA gene sequences. We identified, 10 Blastocystis positive samples (1.3%). A higher proportion of infected dogs was asymptomatic; however, infection rates did not significantly differ according to region, age, sex, and season. Phylogenetic analysis showed that the Blastocystis sp. identified belonged to 4 subtypes (STs), ST1, ST5, ST10, and ST14, thus revealed the genetic diversity of Blastocystis sp. in dogs Korean. This is first report on the presence of Blastocystis sp. in dogs Korean. This study revealed a lower infection rate than expected and differed from previous studies in STs. Further studies are warranted to observe the national infection status of Blastocystis in dogs and the genetic characteristics of this genus.


Subject(s)
Blastocystis Infections , Blastocystis , Animals , Blastocystis/genetics , Blastocystis Infections/epidemiology , Blastocystis Infections/parasitology , Blastocystis Infections/veterinary , Dogs , Feces/parasitology , Genetic Variation , Humans , Phylogeny , Prevalence
7.
Nanotechnology ; 32(45)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34298525

ABSTRACT

Controlling the assembly of 2D materials such as graphene oxides (GO) has a significant impact on their properties and performance. One of the critical issues on the processing and handling of GO is that they need to be in dilution solution (0.5 to 2.5 wt%) to maintain their high degree of exfoliation and dispersion. As a result, the shipment of GO in large quantity involves a huge volume of solvent (water) and thus the transportation costs for large sales volume would become extremely high. Through cross-sectional scanning electron microscopy and polarized optical microscopy together with x-ray diffraction and small-angle x-ray scattering studies, we demonstrated that the assembly and structure of GO microsheets can be preserved without restacking, when assembled GO via water-based wet spinning are re-dispersed into solution. A couple of alkyl ammonium bromides, CTAB and TBAB, as well as NaOH, were examined as coagulants and the resulting fibers were redispersed in an aqueous solution. The redispersed solution of fibers that were wet-spun into the commonly used CTAB and TBAB coagulation baths, maintained their physico-chemical properties (similar to the original GO dispersion) however, did not reveal preservation of liquid crystallinity. Meanwhile, the redispersed fibers that were initially spun into NaOH coagulation bath were able to maintain their liquid crystallinity if the lateral size of the GO sheets was large. Based on these findings, a cost-effective solid handling approach is devised which involves (i) processing GO microsheets in solution into folded layers in solid-state, (ii) transporting assembled GO to the customers, and (iii) redispersion of folded GO into a solution for their use. The proposed solid handling of GO followed by redispersion into solution can greatly reduce the transportation costs of graphene oxide materials by reducing the transportation volume by more than 90%.

8.
Sensors (Basel) ; 21(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072075

ABSTRACT

In this paper, a QR-decomposition-based scheduled belief propagation (BP) detector with interference cancellation (IC) and candidate constraints is proposed for multiple-input multiple-output (MIMO) systems. Based on a bipartite graph generated from an upper triangular channel matrix following linear transformation using QR decomposition, the proposed detector performs a sequential message updating procedure between bit nodes. During this updating procedure, candidate constraints are imposed to restrict the number of possible candidate vectors for the calculation of observation-to-bit messages. In addition, after obtaining the soft message corresponding to the bit sequence in each transmit symbol, a hard-decision IC operation is performed to reduce the size of the bipartite graph and indirectly update the messages for the remaining symbols. Therefore, the proposed scheme provides a huge complexity reduction compared to conventional BP detectors that perform message updating by using all related messages directly. Simulation results confirm that the proposed detector can achieve suboptimum error performance with significantly improved convergence speed and reduced computational complexity compared to conventional BP detectors in MIMO systems.

9.
Sensors (Basel) ; 21(9)2021 May 07.
Article in English | MEDLINE | ID: mdl-34067209

ABSTRACT

Full-duplex (FD) is a promising technology for increasing the spectral efficiency of next-generation wireless communication systems. A major technical challenge in enabling FD in a real network is to remove the self-interference (SI) caused by simultaneous transmission and reception at the transceiver, and the SI cancellation performance depends significantly on the estimation accuracy of the SI channel. In this study, we proposed a novel partial SI channel training method for minimizing the residual SI power for FD massive multiple-input multiple-output (MIMO) systems. Based on an SI channel training framework under a limited training overhead, using the proposed scheme, the BS estimates only a part of the SI channel vectors, while skipping the channel training for the other remaining SI channel vectors by using their last estimates. With this partial training framework, the proposed scheme finds the optimal partial SI channel training strategy for pilot allocation to minimize the expected residual SI power, considering the time-varying Rician fading channel model for the SI channel. Therefore, the proposed scheme can improve the sum-rate performance compared with other simple partial training schemes for FD massive MIMO systems under a limited training overhead. Numerical results confirm the effectiveness of the proposed scheme for FD massive MIMO systems compared with the full training scheme, as well as other partial training schemes.

10.
Int J Mol Sci ; 23(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35008614

ABSTRACT

Glutathione (GSH) is a thiol that plays a significant role in nutrient metabolism, antioxidant defense and the regulation of cellular events. GSH deficiency is related to variety of diseases, so it is useful to develop novel approaches for GSH evaluation and detection. In this study we used nitrogen and phosphorus co-doped carbon dot-gold nanoparticle (NPCD-AuNP) composites to fabricate a simple and selective fluorescence sensor for GSH detection. We employed the reductant potential of the nitrogen and phosphorus co-doped carbon dots (NPCDs) themselves to form AuNPs, and subsequently NPCD-AuNP composites from Au3+. The composites were characterized by using a range of spectroscopic and electron microscopic techniques, including electrophoretic light scattering and X-ray diffraction. The overlap of the fluorescence emission spectrum of NPCDs and the absorption spectrum of AuNPs resulted in an effective inner filter effect (IFE) in the composite material, leading to a quenching of the fluorescence intensity. In the presence of GSH, the fluorescence intensity of the composite was recovered, which increased proportionally to increasing the GSH concentration. In addition, our GSH sensing method showed good selectivity and sensing potential in human serum with a limit of detection of 0.1 µM and acceptable results.


Subject(s)
Carbon/chemistry , Glutathione/analysis , Gold/chemistry , Metal Nanoparticles/chemistry , Quantum Dots/chemistry , Glutathione/blood , Metal Nanoparticles/ultrastructure , Photoelectron Spectroscopy , Quantum Dots/ultrastructure , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , X-Ray Diffraction
11.
Int J Mol Sci ; 22(2)2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33467209

ABSTRACT

Skeletal muscle is the most abundant tissue and constitutes about 40% of total body mass. Herein, we report that crude water extract (CWE) of G. uralensis enhanced myoblast proliferation and differentiation. Pretreatment of mice with the CWE of G. uralensis prior to cardiotoxin-induced muscle injury was found to enhance muscle regeneration by inducing myogenic gene expression and downregulating myostatin expression. Furthermore, this extract reduced nitrotyrosine protein levels and atrophy-related gene expression. Of the five different fractions of the CWE of G. uralensis obtained, the ethyl acetate (EtOAc) fraction more significantly enhanced myoblast proliferation and differentiation than the other fractions. Ten bioactive compounds were isolated from the EtOAc fraction and characterized by GC-MS and NMR. Of these compounds (4-hydroxybenzoic acid, liquiritigenin, (R)-(-)-vestitol, isoliquiritigenin, medicarpin, tetrahydroxymethoxychalcone, licochalcone B, liquiritin, liquiritinapioside, and ononin), liquiritigenin, tetrahydroxymethoxychalcone, and licochalcone B were found to enhance myoblast proliferation and differentiation, and myofiber diameters in injured muscles were wider with the liquiritigenin than the non-treated one. Computational analysis showed these compounds are non-toxic and possess good drug-likeness properties. These findings suggest that G. uralensis-extracted components might be useful therapeutic agents for the management of muscle-associated diseases.


Subject(s)
Glycyrrhiza uralensis/chemistry , Muscular Atrophy/drug therapy , Plant Extracts/chemistry , Animals , Cell Differentiation , Cell Line , Cell Proliferation , Chalcones/chemistry , Chalcones/pharmacology , Chalcones/therapeutic use , Flavanones/chemistry , Flavanones/pharmacology , Flavanones/therapeutic use , Male , Mice , Mice, Inbred C57BL , Myoblasts/cytology , Myoblasts/drug effects , Myoblasts/metabolism , Myostatin/genetics , Myostatin/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Tyrosine/analogs & derivatives , Tyrosine/metabolism
12.
Int J Mol Sci ; 22(5)2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33652881

ABSTRACT

Senescence marker protein 30 (SMP30) is a cell survival factor playing an important role in vitamin C synthesis and antiapoptosis. Moreover, its cytoprotective role suggests a possibility to be related to cancer cell survival. Mammary carcinoma is a common cancer in both humans and animals. Because of its histopathological diversity, especially in the early stage, histopathological diagnosis may be complicated; therefore, a diagnostic marker is helpful for confirmation. The present study analyzed the expression pattern of SMP30 in mammary carcinoma in humans, dogs, and cats. Immunohistochemistry, immunofluorescence, and western blot analysis were used to investigate SMP30 expression patterns. The expression was specifically observed in neoplastic glandular epithelial cells. The expression increased with the malignancy of glandular epithelial cells with a highly proliferative status. However, SMP30 expression was low in normal mammary gland tissues or well-differentiated adenoma tissues. The patterns were consistently reproduced in canine primary mammary carcinoma cells and MCF-7 and MDA-MB-231 human carcinoma cell lines. This study provides useful information to understand SMP30 expression in various stages of mammary carcinoma and to suggest its utility as a pan-species diagnostic marker, thereby helping to establish strategies for diagnosing mammary carcinoma in several species.


Subject(s)
Breast Neoplasms/pathology , Calcium-Binding Proteins/analysis , Cat Diseases/pathology , Dog Diseases/pathology , Intracellular Signaling Peptides and Proteins/analysis , Mammary Neoplasms, Animal/pathology , Animals , Biomarkers, Tumor/analysis , Breast/pathology , Breast Neoplasms/diagnosis , Cat Diseases/diagnosis , Cats , Cell Line, Tumor , Dog Diseases/diagnosis , Dogs , Female , Humans , MCF-7 Cells , Mammary Neoplasms, Animal/diagnosis , Prognosis
13.
Sensors (Basel) ; 20(21)2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33147812

ABSTRACT

In this paper, we propose a novel statistical beamforming (SBF) method called the partial-nulling-based SBF (PN-SBF) to serve a number of users that are undergoing distinct degrees of spatial channel correlations in massive multiple-input multiple-output (MIMO) systems. We consider a massive MIMO system with two user groups. The first group experiences a low spatial channel correlation, whereas the second group has a high spatial channel correlation, which can happen in massive MIMO systems that are based on fifth-generation networks. By analyzing the statistical signal-to-interference-plus-noise ratio, it can be observed that the statistical beamforming vector for the low-correlation group should be designed as the orthogonal complement for the space spanned by the aggregated channel covariance matrices of the high-correlation group. Meanwhile, the spatial degrees of freedom for the high-correlation group should be preserved without cancelling the interference to the low-correlation group. Accordingly, a group-common pre-beamforming matrix is applied to the low-correlation group to cancel the interference to the high-correlation group. In addition, to deal with the intra-group interference in each group, the post-beamforming vector for each group is designed in the manner of maximizing the signal-to-leakage-and-noise ratio, which yields additional performance improvements for the PN-SBF. The simulation results verify that the proposed PN-SBF outperforms the conventional SBF schemes in terms of the ergodic sum rate for the massive MIMO systems with distinct spatial correlations, without the rate ceiling effect in the high signal-to-noise ratio region unlike conventional SBF schemes.

14.
Strahlenther Onkol ; 195(11): 1007-1017, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30989242

ABSTRACT

PURPOSE: Radiotherapy (RT) for peripheral organs can affect circulating lymphocytes and cause lymphopenia. We aimed to investigate RT-related lymphopenia in patients with hepatocellular carcinoma (HCC). METHODS: Medical records of 920 patients who received RT for HCC during 2001-2016 were reviewed. Total lymphocyte count (TLC) were obtained and analyzed for clinical outcome. Acute severe lymphopenia (ASL) was defined as TLC <500/µL within the first 3 months of the start of RT. RESULTS: The median TLCs before and 1 month after the start of RT were 1120 and 310/µl, respectively, and the TLCs did not recover to their initial level after 1 year. Overall, 87.4% of patients developed ASL. The median overall survival was 13.6 and 46.7 months for patients with and without ASL, respectively (p < 0.001). ASL was independently associated with poor overall survival with a hazard ratio (HR) of 1.40; 95% confidence interval (CI), 1.02-1.91 (p = 0.035). In the multivariate analysis, larger planning target volume (HR, 1.02; 95% CI, 1.01-1.03; p < 0.001) and lower baseline TLC (HR, 0.86; 95% CI, 0.82-0.91; p < 0.001) were significantly associated with an increased risk of ASL, while hypofractionation (stereotactic body RT: HR, 0.19; 95% CI, 0.07-0.49; p = 0.001) was significantly associated with a reduced risk of ASL. CONCLUSION: Acute severe lymphopenia after RT was associated with poor overall survival in patients with HCC. Stereotactic body RT may reduce the risk of ASL. Further attention to and research on the cause, prevention, and reversal of this phenomenon are needed.


Subject(s)
Carcinoma, Hepatocellular/radiotherapy , Liver Neoplasms/radiotherapy , Lymphopenia/mortality , Radiation Injuries/mortality , Acute Disease , Carcinoma, Hepatocellular/mortality , Humans , Liver Neoplasms/mortality , Lymphocyte Count , Proportional Hazards Models , Retrospective Studies , Risk Factors , Survival Rate
15.
J Nanosci Nanotechnol ; 19(10): 6178-6182, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31026932

ABSTRACT

High dielectric constant (high-k) materials have been extensively investigated for low-voltage operating electronics. In recent years, solution-processed high-k dielectrics have been of technological interests in low fabrication cost, large area process and good film quality, compared to the vacuum-process technology. In this paper, we demonstrate solution-processed aluminum oxide (Al2O3) dielectrics for high performance solution-processed indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs) operating at low voltage. The material and electrical properties of Al2O3 dielectrics fabricated at different post-annealing temperatures were analyzed by atomic force microscopy, scanning electron microscopy, X-ray diffraction and capacitance-voltage measurements. We also investigate the effect of crystalline Al2O3 dielectrics on the device performance of solution-processed IGZO TFTs. It is concluded that improved interfacial characteristics of crystalline Al2O3 dielectrics enhance the device performance of solution-processed IGZO TFTs operating at 3 V.

16.
Sensors (Basel) ; 20(1)2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31878233

ABSTRACT

A quickly growing location-based services area has led to increased demand for indoor positioning and localization. Undoubtedly, Wi-Fi fingerprint-based localization is one of the promising indoor localization techniques, yet the variation of received signal strength is a major problem for accurate localization. Magnetic field-based localization has emerged as a new player and proved a potential indoor localization technology. However, one of its major limitations is degradation in localization accuracy when various smartphones are used. The localization performance is different from various smartphones even with the same localization technique. This research leverages the use of a deep neural network-based ensemble classifier to perform indoor localization with heterogeneous devices. The chief aim is to devise an approach that can achieve a similar localization accuracy using various smartphones. Features extracted from magnetic data of Galaxy S8 are fed into neural networks (NNs) for training. The experiments are performed with Galaxy S8, LG G6, LG G7, and Galaxy A8 smartphones to investigate the impact of device dependence on localization accuracy. Results demonstrate that NNs can play a significant role in mitigating the impact of device heterogeneity and increasing indoor localization accuracy. The proposed approach is able to achieve a localization accuracy of 2.64 m at 50% on four different devices. The mean error is 2.23 m, 2.52 m, 2.59 m, and 2.78 m for Galaxy S8, LG G6, LG G7, and Galaxy A8, respectively. Experiments on a publicly available magnetic dataset of Sony Xperia M2 using the proposed approach show a mean error of 2.84 m with a standard deviation of 2.24 m, while the error at 50% is 2.33 m. Furthermore, the impact of devices on various attitudes on the localization accuracy is investigated.

17.
Int J Mol Sci ; 20(15)2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31387201

ABSTRACT

The cellular distribution of silica nanoparticles (NPs) in the liver is not well understood. Targeting specific cells is one of the most important issues in NP-based drug delivery to improve delivery efficacy. In this context, the present study analyzed the relative cellular distribution pattern of silica NPs in the liver, and the effect of surface energy modification on NPs. Hydrophobic NP surface modification enhanced NP delivery to the liver and liver sinusoid fFendothelial cells (LSECs). Conversely, hydrophilic NP surface modification was commensurate with targeting hepatic stellate cells (HSCs) rather than other cell types. There was no notable difference in NP delivery to Kupffer cells or hepatocytes, regardless of hydrophilic or hydrophobic NP surface modification, suggesting that both the targeting of hepatocytes and evasion of phagocytosis by Kupffer cells are not associated with surface energy modification of silica NPs. This study provides useful information to target specific cell types using silica NPs, as well as to understand the relationship between NP surface energy and the NP distribution pattern in the liver, thereby helping to establish strategies for cell targeting using various NPs.


Subject(s)
Drug Carriers , Drug Delivery Systems , Liver/metabolism , Nanoparticles , Silicon Dioxide , Drug Carriers/chemistry , Endothelial Cells/metabolism , Hepatic Stellate Cells/metabolism , Hepatocytes/metabolism , Hydrophobic and Hydrophilic Interactions , Kupffer Cells/metabolism , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Surface Properties , Tissue Distribution
18.
Strahlenther Onkol ; 194(11): 1017-1029, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30105451

ABSTRACT

PURPOSE: We investigated whether external beam radiotherapy (EBRT) could induce compensatory liver hypertrophy in liver cancers and assessed related clinical factors. METHODS: A total of 82 consecutive patients receiving EBRT for hepatocellular carcinoma (n = 77) or cholangiocarcinoma (n = 5) from April 2012 to June 2014 were recruited and divided into two subgroups according to tumor location in the right or left lobe. The left lateral and right lobes were considered as unirradiated volumes accordingly. Total liver volume (TLV), nontumor liver volume (NLV), left and right lobe whole volume (LLWV and RLWV, respectively), volume of liver irradiated < 30 Gy (V< 30 Gy), Child-Pugh (CPS) score, future liver remnant (FLR) ratio, and percentage of FLR hypertrophy from baseline (%FLR) were assessed. RESULTS: In the right lobe group, %FLR hypertrophy and LLWV increased significantly at all follow-ups (p < 0.001). %FLR hypertrophy steadily increased until the fourth follow-up. Multivariate analysis showed that the factor associated with maximum %FLR hypertrophy was tumor extent (upper or lower lobe vs. both lobes; p = 0.022). Post-RT treatments including transarterial chemoembolization or hepatic arterial infusion chemotherapy were associated with a CPS increase ≥ 2 (p = 0.002). Analysis of the RT only subgroup also showed a significant increase of %FLR until the fourth follow-up (p < 0.001). In the left lobe group, %FLR hypertrophy and RLWV showed no significant changes during follow-up. CONCLUSION: Significant compensatory hypertrophy of the liver was observed, with a steady increase of %FLR hypertrophy until the fourth follow-up (median: 396 days). Locally advanced tumors extending across the upper and lower right lobe were a significant factor for compensating hypertrophy after EBRT.


Subject(s)
Bile Duct Neoplasms/radiotherapy , Carcinoma, Hepatocellular/radiotherapy , Cholangiocarcinoma/radiotherapy , Liver Neoplasms/radiotherapy , Liver/pathology , Liver/radiation effects , Adult , Aged , Aged, 80 and over , Chemoembolization, Therapeutic , Chemotherapy, Adjuvant , Combined Modality Therapy , Female , Follow-Up Studies , Humans , Infusions, Intra-Arterial , Liver Failure/pathology , Male , Middle Aged , Neoplasm Staging , Organ Size/radiation effects , Retrospective Studies
19.
Mediators Inflamm ; 2017: 6978194, 2017.
Article in English | MEDLINE | ID: mdl-29213193

ABSTRACT

Pest control in the agricultural fields, a major concern globally, is currently achieved through chemical or biological methods. Chemical methods, which leave toxic residue in the produce, are less preferred than biological methods. Venoms injected by stings of various wasps that kill the pest is considered as the examples of the biological method. Although several studies have investigated the biological control of pests through these venoms, very few studies have reported the effects of these venoms on mammalian cells. Bracon hebetor, an ectoparasitoid of the order Hymenoptera, is having a paramount importance in parasitizing various lepidopterous larvae including Plodia interpunctella also called as Indianmeal moth (IMM). Since it is biologically controlled by B. hebetor venom, therefore in our study, herein for the first time, we report the anti-inflammatory activities of the venom from B. hebetor (BHV). We developed a septic shock mice model for in vivo anti-inflammatory studies and RAW 264.7 cells for in vitro studies. Our results clearly demonstrate that BHV can dose dependently abrogate the nitric oxide (NO) production and suppress the levels of proinflammatory mediators and cytokines without posing any cytotoxicity via the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Venoms/chemistry , Animals , Cell Survival/drug effects , Female , Male , Mice , Mice, Inbred ICR , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Nitric Oxide/metabolism , RAW 264.7 Cells , Signal Transduction/drug effects , Wasps
20.
Sensors (Basel) ; 17(10)2017 Oct 13.
Article in English | MEDLINE | ID: mdl-29027948

ABSTRACT

In recent years, indoor localization systems have been the object of significant research activity and of growing interest for their great expected social impact and their impressive business potential. Application areas include tracking and navigation, activity monitoring, personalized advertising, Active and Assisted Living (AAL), traceability, Internet of Things (IoT) networks, and Home-land Security. In spite of the numerous research advances and the great industrial interest, no canned solutions have yet been defined. The diversity and heterogeneity of applications, scenarios, sensor and user requirements, make it difficult to create uniform solutions. From that diverse reality, a main problem is derived that consists in the lack of a consensus both in terms of the metrics and the procedures used to measure the performance of the different indoor localization and navigation proposals. This paper introduces the general lines of the EvAAL benchmarking framework, which is aimed at a fair comparison of indoor positioning systems through a challenging competition under complex, realistic conditions. To evaluate the framework capabilities, we show how it was used in the 2016 Indoor Positioning and Indoor Navigation (IPIN) Competition. The 2016 IPIN competition considered three different scenario dimensions, with a variety of use cases: (1) pedestrian versus robotic navigation, (2) smartphones versus custom hardware usage and (3) real-time positioning versus off-line post-processing. A total of four competition tracks were evaluated under the same EvAAL benchmark framework in order to validate its potential to become a standard for evaluating indoor localization solutions. The experience gained during the competition and feedback from track organizers and competitors showed that the EvAAL framework is flexible enough to successfully fit the very different tracks and appears adequate to compare indoor positioning systems.

SELECTION OF CITATIONS
SEARCH DETAIL