Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 111(3): 456-472, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38367619

ABSTRACT

The impact of tobacco exposure on health varies by race and ethnicity and is closely tied to internal nicotine dose, a marker of carcinogen uptake. DNA methylation is strongly responsive to smoking status and may mediate health effects, but study of associations with internal dose is limited. We performed a blood leukocyte epigenome-wide association study (EWAS) of urinary total nicotine equivalents (TNEs; a measure of nicotine uptake) and DNA methylation measured using the MethylationEPIC v1.0 BeadChip (EPIC) in six racial and ethnic groups across three cohort studies. In the Multiethnic Cohort Study (discovery, n = 1994), TNEs were associated with differential methylation at 408 CpG sites across >250 genomic regions (p < 9 × 10-8). The top significant sites were annotated to AHRR, F2RL3, RARA, GPR15, PRSS23, and 2q37.1, all of which had decreasing methylation with increasing TNEs. We identified 45 novel CpG sites, of which 42 were unique to the EPIC array and eight annotated to genes not previously linked with smoking-related DNA methylation. The most significant signal in a novel gene was cg03748458 in MIR383;SGCZ. Fifty-one of the 408 discovery sites were validated in the Singapore Chinese Health Study (n = 340) and the Southern Community Cohort Study (n = 394) (Bonferroni corrected p < 1.23 × 10-4). Significant heterogeneity by race and ethnicity was detected for CpG sites in MYO1G and CYTH1. Furthermore, TNEs significantly mediated the association between cigarettes per day and DNA methylation at 15 sites (average 22.5%-44.3% proportion mediated). Our multiethnic study highlights the transethnic and ethnic-specific methylation associations with internal nicotine dose, a strong predictor of smoking-related morbidities.


Subject(s)
MicroRNAs , Smokers , Humans , Nicotine , Epigenesis, Genetic/genetics , Epigenome , Cohort Studies , Prospective Studies , Genome-Wide Association Study , DNA Methylation/genetics , CpG Islands/genetics , Receptors, Peptide/genetics , Receptors, G-Protein-Coupled/genetics
2.
Chem Res Toxicol ; 37(2): 374-384, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38315500

ABSTRACT

Approximately 10% of smokers will develop lung cancer. Sensitive predictive biomarkers are needed to identify susceptible individuals. 1,3-Butadiene (BD) is among the most abundant tobacco smoke carcinogens. BD is metabolically activated to 3,4-epoxy-1-butene (EB), which is detoxified via the glutathione conjugation/mercapturic acid pathway to form monohydroxybutenyl mercapturic acid (MHBMA) and dihydroxybutyl mercapturic acid (DHBMA). Alternatively, EB can react with guanine nucleobases of DNA to form N7-(1-hydroxyl-3-buten-1-yl) guanine (EB-GII) adducts. We employed isotope dilution LC/ESI-HRMS/MS methodologies to quantify MHBMA, DHBMA, and EB-GII in urine of smokers who developed lung cancer (N = 260) and matched smoking controls (N = 259) from the Southern Community Cohort (white and African American). The concentrations of all three biomarkers were significantly higher in smokers that subsequently developed lung cancer as compared to matched smoker controls after adjusting for age, sex, and race/ethnicity (p < 0.0001 for EB-GII, p < 0.0001 for MHBMA, and p = 0.0007 for DHBMA). The odds ratio (OR) for lung cancer development was 1.63 for MHBMA, 1.37 for DHBMA, and 1.97 for EB-GII, with a higher OR in African American subjects than in whites. The association of urinary EB-GII, MHBMA, and DHBMA with lung cancer status did not remain upon adjustment for total nicotine equivalents. These findings reveal that urinary MHBMA, DHBMA, and EB-GII are directly correlated with the BD dose delivered via smoking and are associated with lung cancer risk.


Subject(s)
Lung Neoplasms , Tobacco Products , Humans , Smokers , Butadienes/metabolism , Acetylcysteine/metabolism , Lung Neoplasms/chemically induced , Guanine , Biomarkers/urine , DNA Adducts
3.
Chem Res Toxicol ; 36(2): 313-321, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36735658

ABSTRACT

Smoking intensity varies across smokers and is influenced by individual variability in the metabolism of nicotine, the major addictive agent in tobacco. Therefore, lung cancer risk, which varies by racial ethnic group, is influenced by the primary catalyst of nicotine metabolism, cytochrome P450 2A6 (CYP2A6). In smokers, CYP2A6 catalyzes nicotine 5'-oxidation. In vitro, CYP2A6 also catalyzes, to a much lower extent, 2'-oxidation, which leads to the formation of 4-hydroxy-4-(3-pyridyl) butanoic acid (hydroxy acid). The urinary concentration of hydroxy acid has been quantified in only a few small studies of White smokers. To quantitatively assess the importance of nicotine 2'-oxidation in smokers, an LC-MS/MS-based method was developed for the analysis of nicotine and ten metabolites in urine. The concentrations of nicotine and these metabolites were measured in 303 smokers (99 Whites, 99 Native Hawaiians, and 105 Japanese Americans), and the relative metabolism of nicotine by four pathways was determined. Metabolism by these pathways was also compared across quartiles of CYP2A6 activity (measured as the plasma ratio of 3-hydroxycotinine to cotinine). As reported previously and consistent with their average CYP2A6 activity, nicotine 5'-oxidation was highest in Whites and lowest in Japanese Americans. Nicotine N-glucuronidation and N-oxidation increased with decreasing CYP2A6 activity. However, the relative urinary concentration of hydroxy acid (mean, 2.3%; 95% CI, 2.2-2.4%) did not vary by ethnic group or by CYP2A6 activity. In summary, CYP2A6 is not an important catalyst of nicotine 2'-oxidation in smokers, nor does nicotine 2'-oxidation compensate for decreased CYP2A6 activity.


Subject(s)
Asian , Nicotine , Humans , Nicotine/metabolism , Butyric Acid , Native Hawaiian or Other Pacific Islander , Chromatography, Liquid , White , Tandem Mass Spectrometry , Cotinine/metabolism , Cytochrome P-450 CYP2A6
4.
Chem Res Toxicol ; 35(10): 1914-1922, 2022 10 17.
Article in English | MEDLINE | ID: mdl-35998368

ABSTRACT

The Multiethnic Cohort Study has demonstrated that the risk for lung cancer in cigarette smokers among three ethnic groups is highest in Native Hawaiians, intermediate in Whites, and lowest in Japanese Americans. We hypothesized that differences in levels of DNA adducts in oral cells of cigarette smokers would be related to these differing risks of lung cancer. Therefore, we used liquid chromatography-nanoelectrospray ionization-high resolution tandem mass spectrometry to quantify the acrolein-DNA adduct (8R/S)-3-(2'-deoxyribos-1'-yl)-5,6,7,8-tetrahydro-8-hydroxypyrimido[1,2-a]purine-10(3H)-one (γ-OH-Acr-dGuo, 1) and the lipid peroxidation-related DNA adduct 1,N6-etheno-dAdo (εdAdo, 2) in DNA obtained by oral rinse from 101 Native Hawaiians, 101 Whites, and 79 Japanese Americans. Levels of urinary biomarkers of nicotine, acrolein, acrylonitrile, and a mixture of crotonaldehyde, methyl vinyl ketone, and methacrolein were also quantified. Whites had significantly higher levels of γ-OH-Acr-dGuo than Japanese Americans and Native Hawaiians after adjusting for age and sex. There was no significant difference in levels of this DNA adduct between Japanese Americans and Native Hawaiians, which is not consistent with the high lung cancer risk of Native Hawaiians. Levels of εdAdo were modestly higher in Whites and Native Hawaiians than in Japanese Americans. The lower level of DNA adducts in the oral cells of Japanese American cigarette smokers than Whites is consistent with their lower risk for lung cancer. The higher levels of εdAdo, but not γ-OH-Acr-dGuo, in Native Hawaiian versus Japanese American cigarette smokers suggest that lipid peroxidation and related processes may be involved in their high risk for lung cancer, but further studies are required.


Subject(s)
Acrylonitrile , Lung Neoplasms , Tobacco Products , Acrolein/chemistry , Cohort Studies , DNA , DNA Adducts , Ethnicity , Humans , Lipid Peroxidation , Lung Neoplasms/urine , Nicotine/urine , Purines , Smokers , Smoking
5.
Nicotine Tob Res ; 23(12): 2162-2169, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34313775

ABSTRACT

INTRODUCTION: The nicotine metabolite ratio and nicotine equivalents are measures of metabolism rate and intake. Genome-wide prediction of these nicotine biomarkers in multiethnic samples will enable tobacco-related biomarker, behavioral, and exposure research in studies without measured biomarkers. AIMS AND METHODS: We screened genetic variants genome-wide using marginal scans and applied statistical learning algorithms on top-ranked genetic variants, age, ethnicity and sex, and, in additional modeling, cigarettes per day (CPD), (in additional modeling) to build prediction models for the urinary nicotine metabolite ratio (uNMR) and creatinine-standardized total nicotine equivalents (TNE) in 2239 current cigarette smokers in five ethnic groups. We predicted these nicotine biomarkers using model ensembles and evaluated external validity using dependence measures in 1864 treatment-seeking smokers in two ethnic groups. RESULTS: The genomic regions with the most selected and included variants for measured biomarkers were chr19q13.2 (uNMR, without and with CPD) and chr15q25.1 and chr10q25.3 (TNE, without and with CPD). We observed ensemble correlations between measured and predicted biomarker values for the uNMR and TNE without (with CPD) of 0.67 (0.68) and 0.65 (0.72) in the training sample. We observed inconsistency in penalized regression models of TNE (with CPD) with fewer variants at chr15q25.1 selected and included. In treatment-seeking smokers, predicted uNMR (without CPD) was significantly associated with CPD and predicted TNE (without CPD) with CPD, time-to-first-cigarette, and Fagerström total score. CONCLUSIONS: Nicotine metabolites, genome-wide data, and statistical learning approaches developed novel robust predictive models for urinary nicotine biomarkers in multiple ethnic groups. Predicted biomarker associations helped define genetically influenced components of nicotine dependence. IMPLICATIONS: We demonstrate development of robust models and multiethnic prediction of the uNMR and TNE using statistical and machine learning approaches. Variants included in trained models for nicotine biomarkers include top-ranked variants in multiethnic genome-wide studies of smoking behavior, nicotine metabolites, and related disease. Association of the two predicted nicotine biomarkers with Fagerström Test for Nicotine Dependence items supports models of nicotine biomarkers as predictors of physical dependence and nicotine exposure. Predicted nicotine biomarkers may facilitate tobacco-related disease and treatment research in samples with genomic data and limited nicotine metabolite or tobacco exposure data.


Subject(s)
Tobacco Products , Tobacco Use Disorder , Biomarkers , Humans , Nicotine , Smoking/genetics , Tobacco Use Disorder/genetics
6.
Chem Res Toxicol ; 31(3): 168-175, 2018 03 19.
Article in English | MEDLINE | ID: mdl-29460622

ABSTRACT

At similar smoking levels, African American's lung cancer risk is as much as twice that of whites. We hypothesized that racial/ethnic differences in UDP-glucuronosyltransferase (UGT)-catalyzed glucuronidation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), a detoxication pathway for the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) may contribute to this variable risk. UGT2B10 catalyzes NNAL- N-glucuronidation, and a UGT2B10 splice variant is common among African Americans. Smokers from two independent studies were genotyped for this variant (rs116294140) and an Asp67Tyr variant (rs61750900), and urinary NNAL and NNAL-glucuronide concentrations were quantified. In the first, no significant differences in NNAL- N-glucuronidation between African Americans ( n = 257) and whites ( n = 354) or between homozygous carriers of UGT2B10 variants (genetic score 2) and noncarriers (score 0) were detected. However, total NNAL glucuronidation by score 2 compared to score 0 smokers was lower (68.9 vs 71.2%, p < 0.0001). For NNAL- N-glucuronide to be more precisely quantified in a second study, a sensitive high-resolution LC-MS/MS-based method, which separated NNAL, NNAL- O-glucuronide, and NNAL- N-glucuronide prior to analysis, was developed. In this study, the excretion of total NNAL (free plus glucuronides) by African American ( n = 52) and white ( n = 54) smokers was not different; however, total NNAL glucuronidation by African Americans (64.0%) was slightly less than by whites (68.3%, p = 0.05). The mean NNAL- N-glucuronidation by African Americans was much lower than for whites (14 vs 24.9%, p < 0.00001), but the NNAL- O-glucuronidation was greater (50.0 vs 43.3%, p = 0.013). UGT2B10 genotype influenced NNAL- N-glucuronidation; the geometric mean percentage N-glucuronidation was 22.5% for smokers with genetic score 0 ( n = 57) and 11.2% for score 2 ( n = 11). In summary, the high prevalence of a UGT2B10 splice variant among African Americans results in lower NNAL- N-glucuronidation but only a small decrease in total NNAL glucuronidation. Therefore, despite the significant contribution of UGT2B10 to NNAL- N-glucuronidation, the UGT2B10 genotype does not play a large role in NNAL detoxication. Any decrease in N-glucuronidation was accompanied by a parallel increase in O-glucuronidation.


Subject(s)
Black or African American/genetics , Genotype , Glucuronides/urine , Glucuronosyltransferase/genetics , Nitrosamines/urine , Tobacco Smoking/genetics , Tobacco Smoking/urine , Female , Humans , Male , Protein Isoforms/genetics , Smokers
7.
Carcinogenesis ; 37(3): 269-279, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26818358

ABSTRACT

Genetic variation in cytochrome P450 2A6 (CYP2A6) gene is the primary contributor to the intraindividual and interindividual differences in nicotine metabolism and has been found to influence smoking intensity. However, no study has evaluated the relationship between CYP2A6 genetic variants and the CYP2A6 activity ratio (total 3-hydroxycotinine/cotinine) and their influence on smoking intensity [total nicotine equivalents (TNE)], across five racial/ethnic groups found to have disparate rates of lung cancer. This study genotyped 10 known functional CYP2A6 genetic or copy number variants in 2115 current smokers from the multiethnic cohort study [African Americans (AA) = 350, Native Hawaiians (NH) = 288, Whites = 413, Latinos (LA) = 437 and Japanese Americans (JA) = 627] to conduct such an investigation. Here, we found that LA had the highest CYP2A6 activity followed by Whites, AA, NH and JA, who had the lowest levels. Adjusting for age, sex, race/ethnicity and body mass index, we found that CYP2A6 diplotypes were predictive of TNE levels, particularly in AA and JA (P trend < 0.0001). However, only in JA did the association remain after accounting for cigarettes per day. Also, it is only in this population that the lower activity ratio supports lower TNE levels, carcinogen exposure and thereby lower risk of lung cancer. Despite the association between nicotine metabolism (CYP2A6 activity phenotype and diplotypes) and smoking intensity (TNE), CYP2A6 levels did not correlate with the higher TNE levels found in AA nor the lower TNE levels found in LA, suggesting that other factors may influence smoking dose in these populations. Therefore, further study in these populations is recommended.


Subject(s)
Cytochrome P-450 CYP2A6/genetics , Lung Neoplasms/ethnology , Lung Neoplasms/genetics , Smoking/genetics , Adult , Aged , Chromatography, Liquid , Cohort Studies , Ethnicity/genetics , Female , Genetic Variation , Genotype , Humans , Lung Neoplasms/etiology , Male , Mass Spectrometry , Middle Aged , Nicotine/metabolism , Oligonucleotide Array Sequence Analysis , Risk Factors , Smoking/adverse effects
8.
PLoS Genet ; 9(1): e1003087, 2013.
Article in English | MEDLINE | ID: mdl-23382687

ABSTRACT

Using a phenome-wide association study (PheWAS) approach, we comprehensively tested genetic variants for association with phenotypes available for 70,061 study participants in the Population Architecture using Genomics and Epidemiology (PAGE) network. Our aim was to better characterize the genetic architecture of complex traits and identify novel pleiotropic relationships. This PheWAS drew on five population-based studies representing four major racial/ethnic groups (European Americans (EA), African Americans (AA), Hispanics/Mexican-Americans, and Asian/Pacific Islanders) in PAGE, each site with measurements for multiple traits, associated laboratory measures, and intermediate biomarkers. A total of 83 single nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) were genotyped across two or more PAGE study sites. Comprehensive tests of association, stratified by race/ethnicity, were performed, encompassing 4,706 phenotypes mapped to 105 phenotype-classes, and association results were compared across study sites. A total of 111 PheWAS results had significant associations for two or more PAGE study sites with consistent direction of effect with a significance threshold of p<0.01 for the same racial/ethnic group, SNP, and phenotype-class. Among results identified for SNPs previously associated with phenotypes such as lipid traits, type 2 diabetes, and body mass index, 52 replicated previously published genotype-phenotype associations, 26 represented phenotypes closely related to previously known genotype-phenotype associations, and 33 represented potentially novel genotype-phenotype associations with pleiotropic effects. The majority of the potentially novel results were for single PheWAS phenotype-classes, for example, for CDKN2A/B rs1333049 (previously associated with type 2 diabetes in EA) a PheWAS association was identified for hemoglobin levels in AA. Of note, however, GALNT2 rs2144300 (previously associated with high-density lipoprotein cholesterol levels in EA) had multiple potentially novel PheWAS associations, with hypertension related phenotypes in AA and with serum calcium levels and coronary artery disease phenotypes in EA. PheWAS identifies associations for hypothesis generation and exploration of the genetic architecture of complex traits.


Subject(s)
Genetic Association Studies , Genetic Pleiotropy , Genetic Predisposition to Disease , Genome-Wide Association Study , Calcium/blood , Coronary Artery Disease/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Ethnicity/genetics , Gene Regulatory Networks , Genomics , Hemoglobins/genetics , Humans , Hypertension/genetics , N-Acetylgalactosaminyltransferases , Phenotype , Polymorphism, Single Nucleotide/genetics , Polypeptide N-acetylgalactosaminyltransferase
9.
Am J Epidemiol ; 182(11): 945-51, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26568573

ABSTRACT

Differences in internal dose of nicotine and tobacco-derived carcinogens among ethnic/racial groups have been observed. In this study, we explicitly examined the relationships between genetic ancestries (genome-wide average) and 19 tobacco-derived biomarkers in smokers from 3 admixed groups in the Multiethnic Cohort Study (1993-present), namely, African ancestry in African Americans (n = 362), Amerindian ancestry in Latinos (n = 437), and Asian and Native Hawaiian ancestries in Native Hawaiians (n = 300). After multiple comparison adjustment, both African and Asian ancestries were significantly related to a greater level of free cotinine; African ancestry was also significantly related to lower cotinine glucuronidation (P's < 0.00156). The predicted decrease in cotinine glucuronidation was 8.6% (P = 4.5 × 10(-6)) per a 20% increase in African ancestry. Follow-up admixture mapping revealed that African ancestry in a 12-Mb region on chromosome 4q was related to lower cotinine glucuronidation (P's < 2.7 × 10(-7), smallest P = 1.5 × 10(-9)), although this is the same region reported in our previous genome-wide association study. Our results implicate a genetic ancestral component in the observed ethnic/racial variation in nicotine metabolism. Further studies are needed to identify the underlying genetic variation that could potentially be ethnic/racial specific.


Subject(s)
Nicotine/metabolism , Racial Groups/genetics , Black or African American/genetics , Aged , Asian People/genetics , Biomarkers/blood , Cohort Studies , Cotinine/blood , Female , Humans , Indians, North American/genetics , Male , Middle Aged , Native Hawaiian or Other Pacific Islander/genetics , Nitrosamines/blood , Smoking/blood , White People/genetics
10.
Epigenetics ; 19(1): 2333668, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38571307

ABSTRACT

Systemic low-grade inflammation is a feature of chronic disease. C-reactive protein (CRP) is a common biomarker of inflammation and used as an indicator of disease risk; however, the role of inflammation in disease is not completely understood. Methylation is an epigenetic modification in the DNA which plays a pivotal role in gene expression. In this study we evaluated differential DNA methylation patterns associated with blood CRP level to elucidate biological pathways and genetic regulatory mechanisms to improve the understanding of chronic inflammation. The racially and ethnically diverse participants in this study were included as 50% White, 41% Black or African American, 7% Hispanic or Latino/a, and 2% Native Hawaiian, Asian American, American Indian, or Alaska Native (total n = 13,433) individuals. We replicated 113 CpG sites from 87 unique loci, of which five were novel (CADM3, NALCN, NLRC5, ZNF792, and cg03282312), across a discovery set of 1,150 CpG sites associated with CRP level (p < 1.2E-7). The downstream pathways affected by DNA methylation included the identification of IFI16 and IRF7 CpG-gene transcript pairs which contributed to the innate immune response gene enrichment pathway along with NLRC5, NOD2, and AIM2. Gene enrichment analysis also identified the nuclear factor-kappaB transcription pathway. Using two-sample Mendelian randomization (MR) we inferred methylation at three CpG sites as causal for CRP levels using both White and Black or African American MR instrument variables. Overall, we identified novel CpG sites and gene transcripts that could be valuable in understanding the specific cellular processes and pathogenic mechanisms involved in inflammation.


Subject(s)
C-Reactive Protein , DNA Methylation , Humans , C-Reactive Protein/genetics , Epigenesis, Genetic , DNA , Inflammation/genetics , Genome-Wide Association Study , CpG Islands , Intracellular Signaling Peptides and Proteins/genetics
11.
Cancer Epidemiol Biomarkers Prev ; 32(3): 306-314, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36350738

ABSTRACT

BACKGROUND: While cigarette smoking is the leading cause of lung cancer, the majority of smokers do not develop the disease over their lifetime. The inter-individual differences in risk among smokers may in part be due to variations in exposure to smoking-related toxicants. METHODS: Using data from a subcohort of 2,309 current smokers at the time of urine collection from the Multiethnic Cohort Study, we prospectively evaluated the association of ten urinary biomarkers of smoking-related toxicants [total nicotine equivalents (TNE), a ratio of total trans-3'-hydroxycotinine (3-HCOT)/cotinine (a phenotypic measure of CYP2A6 enzymatic activity), 4-(methylnitrosamino)-1-3-(pyridyl)-1-butanol (NNAL), S-phenylmercapturic acid (SPMA), 3-hydroxypropyl mercapturic acid (3-HPMA), phenanthrene tetraol (PheT), 3-hydroxyphenanthrene (PheOH), the ratio of PheT/PheOH, cadmium (Cd), and (Z)-7-(1R,2R,3R,5S)-3,5-dihydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]cyclopenyl]hept-5-enoic acid (8-iso-PGF2α)] with lung cancer risk (n = 140 incident lung cancer cases over an average of 13.4 years of follow-up). Lung cancer risk was estimated using Cox proportional hazards models. RESULTS: After adjusting for decade of birth, sex, race/ethnicity, body mass index, self-reported pack-years, creatinine, and urinary TNE (a biomarker of internal smoking dose), a one SD increase in log total 3-HCOT/cotinine (HR, 1.33; 95% CI, 1.06-1.66), 3-HPMA (HR, 1.41; 95% CI, 1.07-1.85), and Cd (HR, 1.45; 95% CI, 1.18-1.79) were each associated with increased lung cancer risk. CONCLUSIONS: Our study demonstrates that urinary total 3-HCOT/cotinine, 3-HPMA, and Cd are positively associated with lung cancer risk. These findings warrant replication and consideration as potential biomarkers for smoking-related lung cancer risk. IMPACT: These biomarkers may provide additional information on lung cancer risk that is not captured by self-reported smoking history or TNE. See related commentary by Etemadi et al., p. 289.


Subject(s)
Cigarette Smoking , Lung Neoplasms , Nitrosamines , Humans , Cohort Studies , Cotinine , Incidence , Smokers , Cadmium , Biomarkers/urine , Lung Neoplasms/etiology , Nitrosamines/urine
12.
Cancer Res ; 82(18): 3201-3208, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-35834270

ABSTRACT

Women who have had breast cancer in the past are at increased risk of developing a second primary cancer (SPC), including second primary breast cancer (SPBC) or a second primary non-breast cancer (SPNBC). In the Multiethnic Cohort (MEC) Study, we conducted a prospective cohort analysis in 3,223 female breast cancer survivors from five racial/ethnic populations (White, African American, Japanese American, Latino, and Native Hawaiian) to assess the association of rare pathogenic variants (PV) in 37 known cancer predisposition genes with risk of SPC. A total of 719 (22.3%) women developed SPC, of which, 323 (10.0%) were SPBC. Germline PVs in BRCA1 (HR, 2.28; 95% CI, 1.11-4.65) and ERCC2 (HR, 3.51; 95% CI, 1.29-9.54) were significantly enriched in women with SPC. In the subtype analysis for SPBC, a significant association of ERCC2 PVs (HR, 5.09; 95% CI, 1.58-16.4) and a suggestive association of BRCA2 PVs (HR, 2.24; 95% CI, 0.91-5.55) were observed. There was also a higher risk of SPNBC in carriers of BRCA1 PVs (HR, 2.98; 95% CI, 1.21-7.36). These results provide evidence that germline PVs in BRCA1, BRCA2, and ERCC2 contribute to the development of SPC in breast cancer survivors. These findings also suggest that compromised DNA repair mechanisms could be a predisposition factor for SPC in patients with breast cancer, supporting the need for closer monitoring of SPC in women carrying PVs in these genes. SIGNIFICANCE: This multiethnic study links germline pathogenic variants in BRCA1, BRCA2, and ERCC2 to the development of second primary cancer in breast cancer survivors, providing biological insights and biomarkers to guide patient monitoring.


Subject(s)
Breast Neoplasms , Cancer Survivors , Neoplasms, Second Primary , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cohort Studies , Female , Genes, BRCA1 , Genetic Predisposition to Disease , Humans , Male , Neoplasms, Second Primary/genetics , Prospective Studies , Xeroderma Pigmentosum Group D Protein/genetics
13.
Article in English | MEDLINE | ID: mdl-33800899

ABSTRACT

The Multiethnic Cohort Study (MEC) has demonstrated racial/ethnic differences in smoking-associated lung cancer risk. As part of the ongoing effort to characterize exposure to cigarette smoke constituents and better understand risk differences, we evaluated Cd exposure as it is a known lung carcinogen. We quantified urinary cadmium (Cd) by inductively coupled plasma mass spectrometry in a subset of 1956 current smokers from MEC. Ethnic-specific geometric means (GM) were compared adjusting for age at urine collection, sex, creatinine (natural log), education, and smoking (urinary total nicotine equivalents [TNE] and smoking duration). Self-reported questionnaire data, including occupation, were also considered. Latinos and Native Hawaiians had the highest GM urinary Cd (0.871 and 0.836 ng/mL, respectively) followed by Japanese Americans and African Americans (0.811 ng/mL and 0.807, respectively) and Whites (0.736 ng/mL). Patterns in race/ethnicity were consistent by sex such that females had the highest GM urinary Cd. When further adjusting for categorical occupational Cd exposure, racial/ethnic differences of Cd remained (p = 0.009). Findings suggest differences in urinary Cd among smokers across different racial/ethnic groups exist and highlight the importance in considering environmental sources of Cd exposure beyond smoking. These finding lay ground for future studies of individual characteristics that are associated with lower risk for cancer despite higher carcinogenic exposures.


Subject(s)
Cadmium , Tobacco Products , Cohort Studies , Ethnicity , Female , Hawaii/epidemiology , Humans , Smokers
14.
Carcinogenesis ; 31(7): 1264-71, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20478923

ABSTRACT

Constituents of tobacco smoke can cause DNA double-strand breaks (DSBs), leading to tumorigenesis. The NBS1 gene product is a vital component in DSB detection and repair, thus genetic variations may influence cancer development. We examined the associations between NBS1 polymorphisms and haplotypes and newly incident smoking-related cancers in three case-control studies (Los Angeles: 611 lung and 601 upper aero-digestive tract (UADT) cancer cases and 1040 controls; Memorial Sloan-Kettering Cancer Center: 227 bladder cancer cases and 211 controls and Taixing, China: 218 esophagus, 206 stomach, 204 liver cancer cases and 415 controls). rs1061302 was associated with cancers of the lung [adjusted odds ratio (OR(adj)) = 1.6, 95% confidence interval (CI): 1.2, 2.4], larynx (OR(adj) = 0.56, 95% CI: 0.32, 0.97) and liver (OR(adj) = 1.7, 95% CI: 1.0, 2.9). Additionally, positive associations were found for rs709816 with bladder cancer (OR(adj) = 4.2, 95% CI: 1.4, 12) and rs1063054 with lung cancer (OR(adj) = 1.6, 95% CI: 1.0, 2.3). Some associations in lung and stomach cancers varied with smoking status. CAC haplotype was positively associated with smoking-related cancers: lung (OR(adj) = 1.7, 95% CI: 1.1, 2.9) and UADT (OR(adj) = 2.0, 95% CI: 1.1, 3.7), specifically, oropharynx (OR(adj) = 2.1, 95% CI: 1.0, 4.2) and larynx (OR(adj) = 4.8, 95% CI: 1.7, 14). Bayesian false-discovery probabilities were calculated to assess Type I error. It appears that NBS1 polymorphisms and haplotypes may be associated with smoking-related cancers and that these associations may differ by smoking status. Our findings also suggest that single-nucleotide polymorphisms located in the binding region of the MRE-RAD50-NBS1 complex or microRNA targeted pathways may influence tumor development. These hypotheses should be further examined in functional studies.


Subject(s)
Cell Cycle Proteins/genetics , Haplotypes , Neoplasms/genetics , Nuclear Proteins/genetics , Polymorphism, Single Nucleotide , Smoking/adverse effects , Adolescent , Adult , Aged , Case-Control Studies , Female , Humans , Linkage Disequilibrium , Lung Neoplasms/etiology , Lung Neoplasms/genetics , Male , Middle Aged , Neoplasms/etiology
15.
PLoS One ; 14(12): e0226771, 2019.
Article in English | MEDLINE | ID: mdl-31891604

ABSTRACT

We performed a hypothesis-generating phenome-wide association study (PheWAS) to identify and characterize cross-phenotype associations, where one SNP is associated with two or more phenotypes, between thousands of genetic variants assayed on the Metabochip and hundreds of phenotypes in 5,897 African Americans as part of the Population Architecture using Genomics and Epidemiology (PAGE) I study. The PAGE I study was a National Human Genome Research Institute-funded collaboration of four study sites accessing diverse epidemiologic studies genotyped on the Metabochip, a custom genotyping chip that has dense coverage of regions in the genome previously associated with cardio-metabolic traits and outcomes in mostly European-descent populations. Here we focus on identifying novel phenome-genome relationships, where SNPs are associated with more than one phenotype. To do this, we performed a PheWAS, testing each SNP on the Metabochip for an association with up to 273 phenotypes in the participating PAGE I study sites. We identified 133 putative pleiotropic variants, defined as SNPs associated at an empirically derived p-value threshold of p<0.01 in two or more PAGE study sites for two or more phenotype classes. We further annotated these PheWAS-identified variants using publicly available functional data and local genetic ancestry. Amongst our novel findings is SPARC rs4958487, associated with increased glucose levels and hypertension. SPARC has been implicated in the pathogenesis of diabetes and is also known to have a potential role in fibrosis, a common consequence of multiple conditions including hypertension. The SPARC example and others highlight the potential that PheWAS approaches have in improving our understanding of complex disease architecture by identifying novel relationships between genetic variants and an array of common human phenotypes.


Subject(s)
Atherosclerosis/genetics , Black or African American/genetics , Genetic Pleiotropy , Metagenomics , Phenomics , Aged , Epidemiologic Studies , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
16.
Cancer Epidemiol Biomarkers Prev ; 27(4): 405-417, 2018 04.
Article in English | MEDLINE | ID: mdl-28637795

ABSTRACT

Genome-wide association studies (GWAS) of cancer have identified more than 700 risk loci, of which approximately 80% were first discovered in European ancestry populations, approximately 15% in East Asians, 3% in multiethnic scans, and less than 1% in African and Latin American populations. These percentages closely mirror the distribution of samples included in the discovery phase of cancer GWAS to date (84% European, 11% East Asian, 4% African, and 1% Latin American ancestry). GWAS in non-European ancestry populations have provided insight into ancestry-specific variation in cancer and have pointed to regions of susceptibility that are of particular importance in certain populations. Uncovering and characterizing cancer risk loci in diverse populations is critical for understanding underlying biological mechanisms and developing future genetic risk prediction models in non-European ancestry populations. New GWAS and continued collaborations will be required to eliminate population inequalities in the number of studies, sample sizes, and variant content on GWAS arrays, and to better align genetic research in cancer to the global distribution of race/ethnicity Cancer Epidemiol Biomarkers Prev; 27(4); 405-17. ©2018 AACRSee all articles in this CEBP Focus section, "Genome-Wide Association Studies in Cancer."


Subject(s)
Genetic Predisposition to Disease/ethnology , Genome-Wide Association Study/methods , Neoplasms/genetics , Asian People/genetics , Black People/genetics , Genetic Loci , Global Burden of Disease , Hispanic or Latino/genetics , Humans , International Cooperation , Neoplasms/ethnology , Polymorphism, Single Nucleotide , White People/genetics
17.
Clin Epigenetics ; 10(1): 110, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30139389

ABSTRACT

BACKGROUND: Lung cancer is the leading cause of cancer-related death. While cigarette smoking is the primary cause of this malignancy, risk differs across racial/ethnic groups. For the same number of cigarettes smoked, Native Hawaiians compared to whites are at greater risk and Japanese Americans are at lower risk of developing lung cancer. DNA methylation of specific CpG sites (e.g., in AHRR and F2RL3) is the most common blood epigenetic modification associated with smoking status. However, the influence of internal smoking dose, measured by urinary nicotine equivalents (NE), on DNA methylation in current smokers has not been investigated, nor has a study evaluated whether for the same smoking dose, circulating leukocyte DNA methylation patterns differ by race. METHODS: We conducted an epigenome-wide association study (EWAS) of NE in 612 smokers from three racial/ethnic groups: whites (n = 204), Native Hawaiians (n = 205), and Japanese Americans (n = 203). Genome-wide DNA methylation profiling of blood leukocyte DNA was measured using the Illumina 450K BeadChip array. Average ß value, the ratio of signal from a methylated probe relative to the sum of the methylated and unmethylated probes at that CpG, was the dependent variables in linear regression models adjusting for age, sex, race (for pan-ethnic analysis), and estimated cell-type distribution. RESULTS: We found that NE was significantly associated with six differentially methylated CpG sites (Bonferroni corrected p < 1.48 × 10-7): four in or near the FOXK2, PBX1, FNDC7, and FUBP3 genes and two in non-annotated genetic regions. Higher levels of NE were associated with increasing methylation beta-valuesin all six sites. For all six CpG sites, the association was only observed in Native Hawaiians, suggesting that the influence of smoking dose on DNA methylation patterns is heterogeneous across race/ethnicity (p interactions < 8.8 × 10-8). We found two additional CpG sites associated with NE in only Native Hawaiians. CONCLUSIONS: In conclusion, internal smoking dose was associated with increased DNA methylation in circulating leukocytes at specific sites in Native Hawaiian smokers but not in white or Japanese American smokers.


Subject(s)
Asian/genetics , DNA Methylation , Genome-Wide Association Study/methods , Native Hawaiian or Other Pacific Islander/genetics , Smoking/genetics , White People/genetics , Adult , Aged , CpG Islands , Epigenesis, Genetic , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Nicotine/urine , Sequence Analysis, DNA , Smoking/ethnology , Smoking/urine , United States/ethnology
18.
PLoS One ; 12(5): e0178435, 2017.
Article in English | MEDLINE | ID: mdl-28542511

ABSTRACT

While smoking is the primary cause of lung cancer, only 11-24% of smokers develop the malignancy over their lifetime. The primary addictive agent in tobacco smoke is nicotine and variation in nicotine metabolism may influence the smoking levels of an individual. Therefore, inter-individual variation in lung cancer risk among smokers may be due in part to differences in the activity of enzymes involved in nicotine metabolism. In most smokers, cytochrome P450 2A6 (CYP2A6)-catalyzed C-oxidation accounts for >75% of nicotine metabolism, and the activity of this enzyme has been shown to correlate with the amount of nicotine and carcinogens drawn from cigarettes. We prospectively evaluated the association of urinary biomarkers of nicotine uptake (total nicotine equivalents [TNE]) and CYP2A6 activity (ratio of urinary total trans-3'-hydroxycotinine to cotinine) with lung cancer risk among 2,309 Multiethnic Cohort Study participants who were current smokers at time of urine collection; 92 cases were diagnosed during a mean follow-up of 9.5 years. We found that higher CYP2A6 activity and TNE was associated with increased lung cancer risk after adjusting for age, sex, race/ethnicity, body mass index, smoking duration, and urinary creatinine (p's = 0.002). The association for CYP2A6 activity remained even after adjusting for self-reported cigarettes per day (CPD) (Hazard Ratio [HR] per unit increase in log-CYP2A6 activity = 1.52; p = 0.005) and after adjusting for TNE (HR = 1.46; p = 0.01). In contrast, the association between TNE and lung cancer risk was of borderline statistical significance when adjusted for CPD (HR = 1.53; p = 0.06) and not statistically significant when further adjusted for CYP2A6 activity (HR = 1.30; p = 0.22). These findings suggest that CYP2A6 activity provides information on lung cancer risk that is not captured by smoking history or a (short-term) biomarker of dose. CYP2A6 activity should be further studied as a risk biomarker for smoking-related lung cancer.


Subject(s)
Cytochrome P-450 CYP2A6/adverse effects , Cytochrome P-450 CYP2A6/genetics , Lung Neoplasms/etiology , Lung Neoplasms/genetics , Smoking/adverse effects , Tobacco Products/adverse effects , Aged , Female , Follow-Up Studies , Genetic Variation/genetics , Genotype , Humans , Incidence , Male , Middle Aged , Nicotine/adverse effects , Prospective Studies , Risk , Smoke/adverse effects , Nicotiana/adverse effects
19.
Cancer Epidemiol Biomarkers Prev ; 26(7): 1034-1042, 2017 07.
Article in English | MEDLINE | ID: mdl-28292921

ABSTRACT

Background: 1,3-Butadiene (BD) is an important carcinogen in tobacco smoke that undergoes metabolic activation to DNA-reactive epoxides. These species can be detoxified via glutathione conjugation and excreted in urine as the corresponding N-acetylcysteine conjugates. We hypothesize that single nucleotide polymorphisms (SNPs) in BD-metabolizing genes may change the balance of BD bioactivation and detoxification in White, Japanese American, and African American smokers, potentially contributing to ethnic differences in lung cancer risk.Methods: We measured the levels of BD metabolites, 1- and 2-(N-acetyl-L-cysteine-S-yl)-1-hydroxybut-3-ene (MHBMA) and N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (DHBMA), in urine samples from a total of 1,072 White, Japanese American, and African American smokers and adjusted these values for body mass index, age, batch, and total nicotine equivalents. We also conducted a genome-wide association study to identify genetic determinants of BD metabolism.Results: We found that mean urinary MHBMA concentrations differed significantly by ethnicity (P = 4.0 × 10-25). African Americans excreted the highest levels of MHBMA followed by Whites and Japanese Americans. MHBMA levels were affected by GSTT1 gene copy number (P < 0.0001); conditional on GSTT1, no other polymorphisms showed a significant association. Urinary DHBMA levels also differed between ethnic groups (P = 3.3 × 10-4), but were not affected by GSTT1 copy number (P = 0.226).Conclusions:GSTT1 gene deletion has a strong effect on urinary MHBMA levels, and therefore BD metabolism, in smokers.Impact: Our results show that the order of MHBMA levels among ethnic groups is consistent with their respective lung cancer risk and can be partially explained by GSTT1 genotype. Cancer Epidemiol Biomarkers Prev; 26(7); 1034-42. ©2017 AACR.


Subject(s)
Butadienes/metabolism , Carcinogens/metabolism , Glutathione Transferase/genetics , Lung Neoplasms/genetics , Smokers/statistics & numerical data , Smoking/metabolism , Acetylcysteine/analogs & derivatives , Acetylcysteine/metabolism , Acetylcysteine/urine , Black or African American/statistics & numerical data , Aged , Asian/statistics & numerical data , Biomarkers/urine , Female , Gene Deletion , Gene Dosage , Genome-Wide Association Study , Glutathione/metabolism , Glutathione Transferase/metabolism , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/urine , Male , Middle Aged , Polymorphism, Single Nucleotide , Risk Factors , Smoking/adverse effects , Smoking/urine , White People/statistics & numerical data
20.
PLoS One ; 12(6): e0177875, 2017.
Article in English | MEDLINE | ID: mdl-28594918

ABSTRACT

BACKGROUND: Assessing the relationship between lung cancer and metabolic conditions is challenging because of the confounding effect of tobacco. Mendelian randomization (MR), or the use of genetic instrumental variables to assess causality, may help to identify the metabolic drivers of lung cancer. METHODS AND FINDINGS: We identified genetic instruments for potential metabolic risk factors and evaluated these in relation to risk using 29,266 lung cancer cases (including 11,273 adenocarcinomas, 7,426 squamous cell and 2,664 small cell cases) and 56,450 controls. The MR risk analysis suggested a causal effect of body mass index (BMI) on lung cancer risk for two of the three major histological subtypes, with evidence of a risk increase for squamous cell carcinoma (odds ratio (OR) [95% confidence interval (CI)] = 1.20 [1.01-1.43] and for small cell lung cancer (OR [95%CI] = 1.52 [1.15-2.00]) for each standard deviation (SD) increase in BMI [4.6 kg/m2]), but not for adenocarcinoma (OR [95%CI] = 0.93 [0.79-1.08]) (Pheterogeneity = 4.3x10-3). Additional analysis using a genetic instrument for BMI showed that each SD increase in BMI increased cigarette consumption by 1.27 cigarettes per day (P = 2.1x10-3), providing novel evidence that a genetic susceptibility to obesity influences smoking patterns. There was also evidence that low-density lipoprotein cholesterol was inversely associated with lung cancer overall risk (OR [95%CI] = 0.90 [0.84-0.97] per SD of 38 mg/dl), while fasting insulin was positively associated (OR [95%CI] = 1.63 [1.25-2.13] per SD of 44.4 pmol/l). Sensitivity analyses including a weighted-median approach and MR-Egger test did not detect other pleiotropic effects biasing the main results. CONCLUSIONS: Our results are consistent with a causal role of fasting insulin and low-density lipoprotein cholesterol in lung cancer etiology, as well as for BMI in squamous cell and small cell carcinoma. The latter relation may be mediated by a previously unrecognized effect of obesity on smoking behavior.


Subject(s)
Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mendelian Randomization Analysis , Obesity/complications , Body Mass Index , Fasting , Humans , Insulin/blood , Insulin Resistance , Likelihood Functions , Lipids/blood , Lung Neoplasms/blood , Lung Neoplasms/complications , Obesity/blood , Phenotype , Polymorphism, Single Nucleotide , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL