Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Magn Reson Med ; 92(2): 469-495, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38594906

ABSTRACT

Accurate assessment of cerebral perfusion is vital for understanding the hemodynamic processes involved in various neurological disorders and guiding clinical decision-making. This guidelines article provides a comprehensive overview of quantitative perfusion imaging of the brain using multi-timepoint arterial spin labeling (ASL), along with recommendations for its acquisition and quantification. A major benefit of acquiring ASL data with multiple label durations and/or post-labeling delays (PLDs) is being able to account for the effect of variable arterial transit time (ATT) on quantitative perfusion values and additionally visualize the spatial pattern of ATT itself, providing valuable clinical insights. Although multi-timepoint data can be acquired in the same scan time as single-PLD data with comparable perfusion measurement precision, its acquisition and postprocessing presents challenges beyond single-PLD ASL, impeding widespread adoption. Building upon the 2015 ASL consensus article, this work highlights the protocol distinctions specific to multi-timepoint ASL and provides robust recommendations for acquiring high-quality data. Additionally, we propose an extended quantification model based on the 2015 consensus model and discuss relevant postprocessing options to enhance the analysis of multi-timepoint ASL data. Furthermore, we review the potential clinical applications where multi-timepoint ASL is expected to offer significant benefits. This article is part of a series published by the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group, aiming to guide and inspire the advancement and utilization of ASL beyond the scope of the 2015 consensus article.


Subject(s)
Brain , Cerebrovascular Circulation , Spin Labels , Humans , Brain/diagnostic imaging , Brain/blood supply , Cerebrovascular Circulation/physiology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Angiography/methods , Magnetic Resonance Imaging/methods , Perfusion Imaging
2.
NMR Biomed ; : e5240, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39188210

ABSTRACT

Functional magnetic resonance spectroscopy (fMRS) measures dynamic changes in metabolite concentration in response to neural stimulation. The biophysical basis of these changes remains unclear. One hypothesis suggests that an increase or decrease in the glutamate signal detected by fMRS could be due to neurotransmitter movements between cellular compartments with different T2 relaxation times. Previous studies reporting glutamate (Glu) T2 values have generally sampled at echo times (TEs) within the range of 30-450 ms, which is not adequate to observe a component with short T2 (<20 ms). Here, we acquire MRS measurements for Glu, (t) total creatine (tCr) and total N-acetylaspartate (tNAA) from the visual cortex in 14 healthy participants at a range of TE values between 9.3-280 ms during short blocks (64 s) of flickering checkerboards and rest to examine both the short- and long-T2 components of the curve. We fit monoexponential and biexponential Glu, tCr and tNAA T2 relaxation curves for rest and stimulation and use Akaike information criterion to assess best model fit. We also include power calculations for detection of a 2% shift of Glu between compartments for each TE. Using pooled data over all participants at rest, we observed a short Glu T2-component with T2 = 10 ms and volume fraction of 0.35, a short tCr T2-component with T2 = 26 ms and volume fraction of 0.25 and a short tNAA T2-component around 15 ms with volume fraction of 0.34. No statistically significant change in Glu, tCr and tNAA signal during stimulation was detected at any TE. The volume fractions of short-T2 component between rest and active conditions were not statistically different. This study provides evidence for a short T2-component for Glu, tCr and tNAA but no evidence to support the hypothesis of task-related changes in glutamate distribution between short and long T2 compartments.

3.
Magn Reson Med ; 90(1): 34-50, 2023 07.
Article in English | MEDLINE | ID: mdl-36892973

ABSTRACT

PURPOSE: To evaluate potential modeling paradigms and the impact of relaxation time effects on human blood-brain barrier (BBB) water exchange measurements using FEXI (BBB-FEXI), and to quantify the accuracy, precision, and repeatability of BBB-FEXI exchange rate estimates at 3 T $$ \mathrm{T} $$ . METHODS: Three modeling paradigms were evaluated: (i) the apparent exchange rate (AXR) model; (ii) a two-compartment model ( 2 CM $$ 2\mathrm{CM} $$ ) explicitly representing intra- and extravascular signal components, and (iii) a two-compartment model additionally accounting for finite compartmental T 1 $$ {\mathrm{T}}_1 $$ and T 2 $$ {\mathrm{T}}_2 $$ relaxation times ( 2 CM r $$ 2{\mathrm{CM}}_r $$ ). Each model had three free parameters. Simulations quantified biases introduced by the assumption of infinite relaxation times in the AXR and 2 CM $$ 2\mathrm{CM} $$ models, as well as the accuracy and precision of all three models. The scan-rescan repeatability of all paradigms was quantified for the first time in vivo in 10 healthy volunteers (age range 23-52 years; five female). RESULTS: The assumption of infinite relaxation times yielded exchange rate errors in simulations up to 42%/14% in the AXR/ 2 CM $$ 2\mathrm{CM} $$ models, respectively. Accuracy was highest in the compartmental models; precision was best in the AXR model. Scan-rescan repeatability in vivo was good for all models, with negligible bias and repeatability coefficients in grey matter of RC AXR = 0 . 43 $$ {\mathrm{RC}}_{\mathrm{AXR}}=0.43 $$ s - 1 $$ {\mathrm{s}}^{-1} $$ , RC 2 CM = 0 . 51 $$ {\mathrm{RC}}_{2\mathrm{CM}}=0.51 $$ s - 1 $$ {\mathrm{s}}^{-1} $$ , and RC 2 CM r = 0 . 61 $$ {\mathrm{RC}}_{2{\mathrm{CM}}_r}=0.61 $$ s - 1 $$ {\mathrm{s}}^{-1} $$ . CONCLUSION: Compartmental modelling of BBB-FEXI signals can provide accurate and repeatable measurements of BBB water exchange; however, relaxation time and partial volume effects may cause model-dependent biases.


Subject(s)
Blood-Brain Barrier , Water , Humans , Female , Young Adult , Adult , Middle Aged , Blood-Brain Barrier/diagnostic imaging , Algorithms , Computer Simulation , Magnetic Resonance Imaging
4.
NMR Biomed ; 36(11): e5009, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37666494

ABSTRACT

A technique for quantifying regional blood-brain barrier (BBB) water exchange rates using contrast-enhanced arterial spin labelling (CE-ASL) is presented and evaluated in simulations and in vivo. The two-compartment ASL model describes the water exchange rate from blood to tissue, k b , but to estimate k b in practice it is necessary to separate the intra- and extravascular signals. This is challenging in standard ASL data owing to the small difference in T 1 values. Here, a gadolinium-based contrast agent is used to increase this T 1 difference and enable the signal components to be disentangled. The optimal post-contrast blood T 1 ( T 1 , b post ) at 3 T was determined in a sensitivity analysis, and the accuracy and precision of the method quantified using Monte Carlo simulations. Proof-of-concept data were acquired in six healthy volunteers (five female, age range 24-46 years). The sensitivity analysis identified the optimal T 1 , b post at 3 T as 0.8 s. Simulations showed that k b could be estimated in individual cortical regions with a relative error ϵ < 1 % and coefficient of variation CoV = 30 %; however, a high dependence on blood T 1 was also observed. In volunteer data, mean parameter values in grey matter were: arterial transit time t A = 1 . 15 ± 0 . 49 s, cerebral blood flow f = 58 . 0 ± 14 . 3 mL blood/min/100 mL tissue and water exchange rate k b = 2 . 32 ± 2 . 49 s-1 . CE-ASL can provide regional BBB water exchange rate estimates; however, the clinical utility of the technique is dependent on the achievable accuracy of measured T 1 values.


Subject(s)
Blood-Brain Barrier , Brain , Humans , Female , Young Adult , Adult , Middle Aged , Blood-Brain Barrier/diagnostic imaging , Brain/physiology , Water , Magnetic Resonance Imaging/methods , Gray Matter , Spin Labels , Cerebrovascular Circulation/physiology
5.
Eur J Nucl Med Mol Imaging ; 50(4): 1051-1083, 2023 03.
Article in English | MEDLINE | ID: mdl-36437425

ABSTRACT

The blood-brain barrier (BBB) is the interface between the central nervous system and systemic circulation. It tightly regulates what enters and is removed from the brain parenchyma and is fundamental in maintaining brain homeostasis. Increasingly, the BBB is recognised as having a significant role in numerous neurological disorders, ranging from acute disorders (traumatic brain injury, stroke, seizures) to chronic neurodegeneration (Alzheimer's disease, vascular dementia, small vessel disease). Numerous approaches have been developed to study the BBB in vitro, in vivo, and ex vivo. The complex multicellular structure and effects of disease are difficult to recreate accurately in vitro, and functional aspects of the BBB cannot be easily studied ex vivo. As such, the value of in vivo methods to study the intact BBB cannot be overstated. This review discusses the structure and function of the BBB and how these are affected in diseases. It then discusses in depth several established and novel methods for imaging the BBB in vivo, with a focus on MRI, nuclear imaging, and high-resolution intravital fluorescence microscopy.


Subject(s)
Alzheimer Disease , Stroke , Humans , Blood-Brain Barrier/diagnostic imaging , Brain/blood supply , Biological Transport
6.
Mov Disord ; 38(12): 2269-2281, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37964373

ABSTRACT

BACKGROUND: Increasing evidence points to a pathophysiological role for the cerebellum in Parkinson's disease (PD). However, regional cerebellar changes associated with motor and non-motor functioning remain to be elucidated. OBJECTIVE: To quantify cross-sectional regional cerebellar lobule volumes using three dimensional T1-weighted anatomical brain magnetic resonance imaging from the global ENIGMA-PD working group. METHODS: Cerebellar parcellation was performed using a deep learning-based approach from 2487 people with PD and 1212 age and sex-matched controls across 22 sites. Linear mixed effects models compared total and regional cerebellar volume in people with PD at each Hoehn and Yahr (HY) disease stage, to an age- and sex- matched control group. Associations with motor symptom severity and Montreal Cognitive Assessment scores were investigated. RESULTS: Overall, people with PD had a regionally smaller posterior lobe (dmax = -0.15). HY stage-specific analyses revealed a larger anterior lobule V bilaterally (dmax = 0.28) in people with PD in HY stage 1 compared to controls. In contrast, smaller bilateral lobule VII volume in the posterior lobe was observed in HY stages 3, 4, and 5 (dmax = -0.76), which was incrementally lower with higher disease stage. Within PD, cognitively impaired individuals had lower total cerebellar volume compared to cognitively normal individuals (d = -0.17). CONCLUSIONS: We provide evidence of a dissociation between anterior "motor" lobe and posterior "non-motor" lobe cerebellar regions in PD. Whereas less severe stages of the disease are associated with larger motor lobe regions, more severe stages of the disease are marked by smaller non-motor regions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/complications , Cross-Sectional Studies , Magnetic Resonance Imaging , Cerebellum , Brain
7.
Mov Disord ; 37(5): 1028-1039, 2022 05.
Article in English | MEDLINE | ID: mdl-35165920

ABSTRACT

BACKGROUND: Clinical diagnosis and monitoring of Parkinson's disease (PD) remain challenging because of the lack of an established biomarker. Neuromelanin-magnetic resonance imaging (NM-MRI) is an emerging biomarker of nigral depigmentation indexing the loss of melanized neurons but has unknown prospective diagnostic and tracking performance in multicenter settings. OBJECTIVES: The aim was to investigate the diagnostic accuracy of NM-MRI in early PD in a multiprotocol setting and to determine and compare serial NM-MRI changes in PD and controls. METHODS: In this longitudinal case-control 3 T MRI study, 148 patients and 97 controls were included from six UK clinical centers, of whom 140 underwent a second scan after 1.5 to 3 years. An automated template-based analysis was applied for subregional substantia nigra NM-MRI contrast and volume assessment. A point estimate of the period of prediagnostic depigmentation was computed. RESULTS: All NM metrics performed well to discriminate patients from controls, with receiver operating characteristic showing 85% accuracy for ventral NM contrast and 83% for volume. Generalizability using a priori volume cutoff was good (79% accuracy). Serial MRI demonstrated accelerated NM loss in patients compared to controls. Ventral NM contrast loss was point estimated to start 5 to 6 years before clinical diagnosis. Ventral nigral depigmentation was greater in the most affected side, more severe cases, and nigral NM volume change correlated with change in motor severity. CONCLUSIONS: We demonstrate that NM-MRI provides clinically useful diagnostic information in early PD across protocols, platforms, and sites. It provides methods and estimated depigmentation rates that highlight the potential to detect preclinical PD and track progression for biomarker-enabled clinical trials. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Biomarkers , Humans , Longitudinal Studies , Magnetic Resonance Imaging/methods , Melanins , Parkinson Disease/diagnosis , Prospective Studies , Substantia Nigra/diagnostic imaging , Substantia Nigra/pathology
8.
Magn Reson Med ; 86(3): 1314-1329, 2021 09.
Article in English | MEDLINE | ID: mdl-33780045

ABSTRACT

PURPOSE: We sought to determine the degree to which oxygen extraction fraction (OEF) estimated using quantitative susceptibility mapping (QSM) depends on two critical acquisition parameters that have a significant impact on acquisition time: voxel size and final echo time. METHODS: Four healthy volunteers were imaged using a range of isotropic voxel sizes and final echo times. The 0.7 mm data were downsampled at different stages of QSM processing by a factor of 2 (to 1.4 mm), 3 (2.1 mm), or 4 (2.8 mm) to determine the impact of voxel size on each analysis step. OEF was estimated from 11 veins of varying diameter. Inter- and intra-session repeatability were estimated for the optimal protocol by repeat scanning in 10 participants. RESULTS: Final echo time was found to have no significant effect on OEF. The effect of voxel size was significant, with larger voxel sizes underestimating OEF, depending on the proximity of the vein to the superficial surface of the brain and on vein diameter. The last analysis step of estimating vein OEF values from susceptibility images had the largest dependency on voxel size. Inter-session coefficients of variation on OEF estimates of between 5.2% and 8.7% are reported, depending on the vein. CONCLUSION: QSM acquisition times can be minimized by reducing the final echo time but an isotropic voxel size no larger than 1 mm is needed to accurately estimate OEF in most medium/large veins in the brain. Such acquisitions can be achieved in under 4 min.


Subject(s)
Brain Mapping , Oxygen , Brain/diagnostic imaging , Cerebrovascular Circulation , Humans , Magnetic Resonance Imaging , Oxygen Consumption
9.
Magn Reson Med ; 86(4): 1888-1903, 2021 10.
Article in English | MEDLINE | ID: mdl-34002894

ABSTRACT

PURPOSE: Dynamic contrast-enhanced (DCE) -MRI with Patlak model analysis is increasingly used to quantify low-level blood-brain barrier (BBB) leakage in studies of pathophysiology. We aimed to investigate systematic errors due to physiological, experimental, and modeling factors influencing quantification of the permeability-surface area product PS and blood plasma volume vp , and to propose modifications to reduce the errors so that subtle differences in BBB permeability can be accurately measured. METHODS: Simulations were performed to predict the effects of potential sources of systematic error on conventional PS and vp quantification: restricted BBB water exchange, reduced cerebral blood flow, arterial input function (AIF) delay and B1+ error. The impact of targeted modifications to the acquisition and processing were evaluated, including: assumption of fast versus no BBB water exchange, bolus versus slow injection of contrast agent, exclusion of early data from model fitting and B1+ correction. The optimal protocol was applied in a cohort of recent mild ischaemic stroke patients. RESULTS: Simulation results demonstrated substantial systematic errors due to the factors investigated (absolute PS error ≤ 4.48 × 10-4 min-1 ). However, these were reduced (≤0.56 × 10-4 min-1 ) by applying modifications to the acquisition and processing pipeline. Processing modifications also had substantial effects on in-vivo normal-appearing white matter PS estimation (absolute change ≤ 0.45 × 10-4 min-1 ). CONCLUSION: Measuring subtle BBB leakage with DCE-MRI presents unique challenges and is affected by several confounds that should be considered when acquiring or interpreting such data. The evaluated modifications should improve accuracy in studies of neurodegenerative diseases involving subtle BBB breakdown.


Subject(s)
Brain Ischemia , Stroke , Blood-Brain Barrier/diagnostic imaging , Contrast Media , Humans , Magnetic Resonance Imaging
10.
NMR Biomed ; 34(7): e4510, 2021 07.
Article in English | MEDLINE | ID: mdl-33723901

ABSTRACT

The effects of Alzheimer's disease (AD) and ageing on blood-brain barrier (BBB) breakdown are investigated in TgF344-AD and wild-type rats aged 13, 18 and 21 months. Permeability surface area products of the BBB to water (PSw ) and gadolinium-based contrast agent (PSg ) were measured in grey matter using multiflip angle multiecho dynamic contrast-enhanced MRI. At 13 months of age, there was no significant difference in PSw between TgF344-AD and wild-types (p = 0.82). Between 13 and 18 months, PSw increased in TgF344-AD rats (p = 0.027), but not in wild-types (p = 0.99), leading to significantly higher PSw in TgF344-AD rats at 18 months, as previously reported (p = 0.012). Between 18 and 21 months, PSw values increased in wild-types (p = 0.050), but not in TgF344-AD rats (p = 0.50). These results indicate that BBB water permeability is affected by both AD pathology and ageing, but that changes occur earlier in the presence of AD pathology. There were no significant genotype or ageing effects on PSg (p > 0.05). In conclusion, we detected increases in BBB water permeability with age in TgF344-AD and wild-type rats, and found that changes occurred at an earlier age in rats with AD pathology.


Subject(s)
Aging/pathology , Alzheimer Disease/pathology , Blood-Brain Barrier/pathology , Water , Animals , Female , Hippocampus/metabolism , Male , Models, Biological , Permeability , Rats, Inbred F344 , Rats, Transgenic
11.
Mov Disord ; 36(11): 2583-2594, 2021 11.
Article in English | MEDLINE | ID: mdl-34288137

ABSTRACT

BACKGROUND: Brain structure abnormalities throughout the course of Parkinson's disease have yet to be fully elucidated. OBJECTIVE: Using a multicenter approach and harmonized analysis methods, we aimed to shed light on Parkinson's disease stage-specific profiles of pathology, as suggested by in vivo neuroimaging. METHODS: Individual brain MRI and clinical data from 2357 Parkinson's disease patients and 1182 healthy controls were collected from 19 sources. We analyzed regional cortical thickness, cortical surface area, and subcortical volume using mixed-effects models. Patients grouped according to Hoehn and Yahr stage were compared with age- and sex-matched controls. Within the patient sample, we investigated associations with Montreal Cognitive Assessment score. RESULTS: Overall, patients showed a thinner cortex in 38 of 68 regions compared with controls (dmax  = -0.20, dmin  = -0.09). The bilateral putamen (dleft  = -0.14, dright  = -0.14) and left amygdala (d = -0.13) were smaller in patients, whereas the left thalamus was larger (d = 0.13). Analysis of staging demonstrated an initial presentation of thinner occipital, parietal, and temporal cortices, extending toward rostrally located cortical regions with increased disease severity. From stage 2 and onward, the bilateral putamen and amygdala were consistently smaller with larger differences denoting each increment. Poorer cognition was associated with widespread cortical thinning and lower volumes of core limbic structures. CONCLUSIONS: Our findings offer robust and novel imaging signatures that are generally incremental across but in certain regions specific to disease stages. Our findings highlight the importance of adequately powered multicenter collaborations. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Brain/diagnostic imaging , Brain/pathology , Humans , Magnetic Resonance Imaging , Neuroimaging , Parkinson Disease/complications , Thalamus/pathology
12.
Eur J Neurosci ; 51(8): 1784-1793, 2020 04.
Article in English | MEDLINE | ID: mdl-31705723

ABSTRACT

Magnetic resonance spectroscopy (MRS) is a research tool for measuring the concentration of metabolites such as γ-aminobutyric acid (GABA) and glutamate in the brain. MEGA-PRESS has been the preferred pulse sequence for GABA measurements due to low physiological GABA concentrations, hence low signal. To compensate, researchers incorporate long acquisition durations (7-10 min) making functional measurements of this metabolite challenging. Here, the acquisition duration and sample sizes required to detect specific concentration changes in GABA using MEGA-PRESS at 3 T are presented for both between-groups and within-session study designs. 75 spectra were acquired during rest using MEGA-PRESS from 41 healthy volunteers in 6 different brain regions at 3 T with voxel sizes between 13 and 22 cm3 . Between-group and within-session variance was calculated for different acquisition durations and power calculations were performed to determine the number of subjects required to detect a given percentage change in GABA/NAA signal ratio. Within-subject variability was assessed by sampling different segments of a single acquisition. Power calculations suggest that detecting a 15% change in GABA using a 2 min acquisition and a 27 cm3 voxel size, depending on the region, requires between 8 and 93 subjects using a within-session design. A between-group design typically requires more participants to detect the same difference. In brain regions with suboptimal shimming, the subject numbers can be up to 4-fold more. Collecting data for longer than 4 min in brain regions examined in this study is deemed unnecessary, as variance in the signal did not reduce further for longer durations.


Subject(s)
Magnetic Resonance Imaging , gamma-Aminobutyric Acid , Brain/diagnostic imaging , Glutamic Acid , Humans , Magnetic Resonance Spectroscopy
13.
Epilepsy Behav ; 104(Pt B): 106396, 2020 03.
Article in English | MEDLINE | ID: mdl-31371203

ABSTRACT

There is an important bidirectional relationship between seizures and cerebrovascular disease (CVD). Aside from poststroke epilepsy, Occult CVD is an important cause of late-onset seizures (LOS) and late-onset epilepsy (LOE). Late-onset seizures/LOE are associated with a threefold increased risk of subsequent clinical stroke. This relationship exists not only in later life, but with 'late-onset' seizures or epilepsy occurring from the fourth decade of life onwards. There is increasing evidence for the importance of hypertension and cerebral small vessel disease (SVD) in epileptogenesis, but there is a considerable need for further work to elucidate underlying mechanisms. There may be a disproportionately increased risk of intracerebral hemorrhage (ICH) after LOS/LOE; this too requires further study. There is also a bidirectional relationship between LOS/LOE and cognitive impairment/dementia: it is likely that there are important interactions between vascular and neurodegenerative pathological processes mediating LOE, stroke, and dementia. There is a pressing need for better epidemiological and natural history data as well as elucidation of epileptogenic mechanisms, in order to progress our understanding and to better inform clinical practice.


Subject(s)
Cerebrovascular Disorders/complications , Cerebrovascular Disorders/diagnosis , Epilepsy/diagnosis , Epilepsy/etiology , Seizures/diagnosis , Seizures/etiology , Humans , Hypertension/complications , Hypertension/diagnosis , Stroke/complications , Stroke/diagnosis
14.
Proc Natl Acad Sci U S A ; 114(33): 8871-8876, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28765375

ABSTRACT

Frequency-dependent plasticity (FDP) describes adaptation at the synapse in response to stimulation at different frequencies. Its consequence on the structure and function of cortical networks is unknown. We tested whether cortical "resonance," favorable stimulation frequencies at which the sensory cortices respond maximally, influenced the impact of FDP on perception, functional topography, and connectivity of the primary somatosensory cortex using psychophysics and functional imaging (fMRI). We costimulated two digits on the hand synchronously at, above, or below the resonance frequency of the somatosensory cortex, and tested subjects' accuracy and speed on tactile localization before and after costimulation. More errors and slower response times followed costimulation at above- or below-resonance, respectively. Response times were faster after at-resonance costimulation. In the fMRI, the cortical representations of the two digits costimulated above-resonance shifted closer, potentially accounting for the poorer performance. Costimulation at-resonance did not shift the digit regions, but increased the functional coupling between them, potentially accounting for the improved response time. To relate these results to synaptic plasticity, we simulated a network of oscillators incorporating Hebbian learning. Two neighboring patches embedded in a cortical sheet, mimicking the two digit regions, were costimulated at different frequencies. Network activation outside the stimulated patches was greatest at above-resonance frequencies, reproducing the spread of digit representations seen with fMRI. Connection strengths within the patches increased following at-resonance costimulation, reproducing the increased fMRI connectivity. We show that FDP extends to the cortical level and is influenced by cortical resonance.


Subject(s)
Magnetic Resonance Imaging , Models, Neurological , Neuronal Plasticity/physiology , Perception/physiology , Somatosensory Cortex , Female , Humans , Male , Somatosensory Cortex/diagnostic imaging , Somatosensory Cortex/physiology
15.
Neuroimage ; 184: 349-358, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30219292

ABSTRACT

Blood-brain barrier (BBB) breakdown has been hypothesized to play a key role in the onset and progression of Alzheimer's disease (AD). However, the question of whether AD itself contributes to loss of BBB integrity is still uncertain, as many in-vivo studies have failed to detect signs of AD-related BBB breakdown. We hypothesize AD-related BBB damage is subtle, and that these negative results arise from a lack of measurement sensitivity. With the aim of developing a more sensitive measure of BBB breakdown, we have designed a novel MRI scanning protocol to quantify the trans-BBB exchange of endogenous water. Using this method, we detect increased BBB water permeability in a rat model of AD that is associated with reduced expression of the tight junction protein occludin. BBB permeability to MRI contrast agent, assessed using dynamic contrast-enhanced (DCE)-MRI, did not differ between transgenic and wild-type animals and was uncorrelated with occludin expression. Our data supports the occurrence of AD-related BBB breakdown, and indicates that such BBB pathology is subtle and may be undetectable using existing 'tracer leakage' methods. Our validated water-exchange MRI method provides a new powerful tool with which to study BBB damage in-vivo.


Subject(s)
Alzheimer Disease/pathology , Blood-Brain Barrier/pathology , Magnetic Resonance Imaging/methods , Animals , Brain/pathology , Capillary Permeability/physiology , Rats , Rats, Transgenic , Water/analysis
16.
PLoS Biol ; 14(5): e1002451, 2016 05.
Article in English | MEDLINE | ID: mdl-27137944

ABSTRACT

Sleep plays a role in memory consolidation. This is demonstrated by improved performance and neural plasticity underlying that improvement after sleep. Targeted memory reactivation (TMR) allows the manipulation of sleep-dependent consolidation through intentionally biasing the replay of specific memories in sleep, but the underlying neural basis of these altered memories remains unclear. We use functional magnetic resonance imaging (fMRI) to show a change in the neural representation of a motor memory after targeted reactivation in slow-wave sleep (SWS). Participants learned two serial reaction time task (SRTT) sequences associated with different auditory tones (high or low pitch). During subsequent SWS, one sequence was reactivated by replaying the associated tones. Participants were retested on both sequences the following day during fMRI. As predicted, they showed faster reaction times for the cued sequence after targeted memory reactivation. Furthermore, increased activity in bilateral caudate nucleus and hippocampus for the cued relative to uncued sequence was associated with time in SWS, while increased cerebellar and cortical motor activity was related to time in rapid eye movement (REM) sleep. Functional connectivity between the caudate nucleus and hippocampus was also increased after targeted memory reactivation. These findings suggest that the offline performance gains associated with memory reactivation are supported by altered functional activity in key cognitive and motor networks, and that this consolidation is differentially mediated by both REM sleep and SWS.


Subject(s)
Brain/physiology , Learning/physiology , Sleep/physiology , Adolescent , Adult , Electroencephalography , Female , Humans , Magnetic Resonance Imaging , Male , Nontherapeutic Human Experimentation , Polysomnography , Reaction Time , Sleep, REM/physiology
17.
Neuroimage ; 176: 203-214, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29678758

ABSTRACT

Memory reactivation during sleep is critical for consolidation, but also extremely difficult to measure as it is subtle, distributed and temporally unpredictable. This article reports a novel method for detecting such reactivation in standard sleep recordings. During learning, participants produced a complex sequence of finger presses, with each finger cued by a distinct audio-visual stimulus. Auditory cues were then re-played during subsequent sleep to trigger neural reactivation through a method known as targeted memory reactivation (TMR). Next, we used electroencephalography data from the learning session to train a machine learning classifier, and then applied this classifier to sleep data to determine how successfully each tone had elicited memory reactivation. Neural reactivation was classified above chance in all participants when TMR was applied in SWS, and in 5 of the 14 participants to whom TMR was applied in N2. Classification success reduced across numerous repetitions of the tone cue, suggesting either a gradually reducing responsiveness to such cues or a plasticity-related change in the neural signature as a result of cueing. We believe this method will be valuable for future investigations of memory consolidation.


Subject(s)
Electroencephalography/methods , Learning/physiology , Memory Consolidation/physiology , Memory/physiology , Sleep , Adult , Female , Humans , Machine Learning , Male , Psychomotor Performance , Wavelet Analysis , Young Adult
18.
NMR Biomed ; 31(1)2018 Jan.
Article in English | MEDLINE | ID: mdl-29130590

ABSTRACT

γ-Aminobutyric acid (GABA) and glutamate (Glu), major neurotransmitters in the brain, are recycled through glutamine (Gln). All three metabolites can be measured by magnetic resonance spectroscopy in vivo, although GABA measurement at 3 T requires an extra editing acquisition, such as Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS). In a GABA-edited MEGA-PRESS spectrum, Glu and Gln co-edit with GABA, providing the possibility to measure all three in one acquisition. In this study, we investigated the reliability of the composite Glu + Gln (Glx) peak estimation and the possibility of Glu and Gln separation in GABA-edited MEGA-PRESS spectra. The data acquired in vivo were used to develop a quality assessment framework which identified MEGA-PRESS spectra in which Glu and Gln could be estimated reliably. Phantoms containing Glu, Gln, GABA and N-acetylaspartate (NAA) at different concentrations were scanned using GABA-edited MEGA-PRESS at 3 T. Fifty-six sets of spectra in five brain regions were acquired from 36 healthy volunteers. Based on the Glu/Gln ratio, data were classified as either within or outside the physiological range. A peak-by-peak quality assessment was performed on all data to investigate whether quality metrics can discriminate between these two classes of spectra. The quality metrics were as follows: the GABA signal-to-noise ratio, the NAA linewidth and the Glx Cramer-Rao lower bound (CRLB). The Glu and Gln concentrations were estimated with precision across all phantoms with a linear relationship between the measured and true concentrations: R1 = 0.95 for Glu and R1 = 0.91 for Gln. A quality assessment framework was set based on the criteria necessary for a good GABA-edited MEGA-PRESS spectrum. Simultaneous criteria of NAA linewidth <8 Hz and Glx CRLB <16% were defined as optimum features for reliable Glu and Gln quantification. Glu and Gln can be reliably quantified from GABA-edited MEGA-PRESS acquisitions. However, this reliability should be controlled using the quality assessment methods suggested in this work.


Subject(s)
Glutamic Acid/metabolism , Glutamine/metabolism , Magnetic Resonance Imaging , gamma-Aminobutyric Acid/metabolism , Adult , Biomarkers/metabolism , Female , Humans , Male , Middle Aged , Phantoms, Imaging , Young Adult
19.
Magn Reson Med ; 78(4): 1257-1266, 2017 10.
Article in English | MEDLINE | ID: mdl-27797108

ABSTRACT

PURPOSE: Glutathione (GSH) is an important intracellular antioxidant in the brain. A number of studies report its measurement by localized 1 H spectroscopy using PRESS and STEAM. This study evaluates the reliability and accuracy of GSH measurements from PRESS at 3 Tesla (T) and compares the results to those obtained with MEGA-PRESS. METHODS: Phantoms containing brain metabolites, identical except for variable GSH concentration between 0 and 24 mM, were scanned using PRESS (echo time (TE) = 35 ms) and MEGA-PRESS (optimized TE = 130 ms) at 3 T. Spectra of the anterior cingulate cortex and occipital cortex in seven healthy volunteers were also acquired. RESULTS: Phantom GSH concentrations from 0 to 3mM were unreliably quantified using PRESS, although at 4 mM and above there was a linear relationship between measured and true concentrations (R2 = 0.99). Using MEGA-PRESS, there was no signal detected at 0 mM GSH, plus a linear relationship (R2 = 0.99) over the full range from 0-24 mM. In brain, concentrations calculated from MEGA-PRESS and PRESS were significantly different in occipital cortex (P < 0.001). Moreover, only MEGA-PRESS reported significant differences in GSH between the two brain regions (P = 0.003). CONCLUSION: Due to uncertainties in GSH quantification raised by the study, the authors conclude that physiological concentrations (<4 mM) of GSH cannot be reliably quantified from PRESS (TE = 35 ms) spectra at 3 T. Magn Reson Med 78:1257-1266, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Subject(s)
Brain Chemistry/physiology , Brain/diagnostic imaging , Glutathione/analysis , Magnetic Resonance Imaging/methods , Adult , Brain/metabolism , Female , Glutathione/metabolism , Humans , Image Processing, Computer-Assisted , Male , Phantoms, Imaging , Signal Processing, Computer-Assisted , Young Adult
20.
PLoS Comput Biol ; 12(2): e1004740, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26914905

ABSTRACT

Neural oscillations occur within a wide frequency range with different brain regions exhibiting resonance-like characteristics at specific points in the spectrum. At the microscopic scale, single neurons possess intrinsic oscillatory properties, such that is not yet known whether cortical resonance is consequential to neural oscillations or an emergent property of the networks that interconnect them. Using a network model of loosely-coupled Wilson-Cowan oscillators to simulate a patch of cortical sheet, we demonstrate that the size of the activated network is inversely related to its resonance frequency. Further analysis of the parameter space indicated that the number of excitatory and inhibitory connections, as well as the average transmission delay between units, determined the resonance frequency. The model predicted that if an activated network within the visual cortex increased in size, the resonance frequency of the network would decrease. We tested this prediction experimentally using the steady-state visual evoked potential where we stimulated the visual cortex with different size stimuli at a range of driving frequencies. We demonstrate that the frequency corresponding to peak steady-state response inversely correlated with the size of the network. We conclude that although individual neurons possess resonance properties, oscillatory activity at the macroscopic level is strongly influenced by network interactions, and that the steady-state response can be used to investigate functional networks.


Subject(s)
Evoked Potentials, Visual/physiology , Models, Neurological , Nerve Net/physiology , Visual Cortex/physiology , Computational Biology , Computer Simulation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL