Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Respir Res ; 25(1): 144, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553718

ABSTRACT

BACKGROUND: The aim of this study was to develop a nomogram by combining chest computed tomography (CT) images and clinicopathological predictors to assess the survival outcomes of patients with primary pulmonary lymphoepithelial carcinoma (PLEC). METHODS: 113 patients with stage I-IV primary PLEC who underwent treatment were retrospectively reviewed. The Cox regression analysis was performed to determine the independent prognostic factors associated with patient's disease-free survival (DFS) and cancer-specific survival (CSS). Based on results from multivariate Cox regression analysis, the nomograms were constructed with pre-treatment CT features and clinicopathological information, which were then assessed with respect to calibration, discrimination and clinical usefulness. RESULTS: Multivariate Cox regression analysis revealed the independent prognostic factors for DFS were surgery resection and hilar and/or mediastinal lymphadenopathy, and that for CSS were age, smoking status, surgery resection, tumor site in lobe and necrosis. The concordance index (C­index) of nomogram for DFS and CSS were 0.777 (95% CI: 0.703-0.851) and 0.904 (95% CI: 0.847-0.961), respectively. The results of the time­dependent C­index were internally validated using a bootstrap resampling method for DFS and CSS also showed that the nomograms had a better discriminative ability. CONCLUSIONS: We developed nomograms based on clinicopathological and CT factors showing a good performance in predicting individual DFS and CSS probability among primary PLEC patients. This prognostic tool may be valuable for clinicians to more accurately drive treatment decisions and individualized survival assessment.


Subject(s)
Carcinoma , Nomograms , Humans , Retrospective Studies , Tomography, X-Ray Computed , Disease-Free Survival , Prognosis
2.
Cell Biol Int ; 48(4): 521-540, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38263578

ABSTRACT

The ion channel two-pore channel 2 (TPC2), localised on the membranes of acidic organelles such as endo-lysosomes and melanosomes, has been shown to play a role in pathologies including cancer, and it is differently expressed in primary versus metastatic melanoma cells. Whether TPC2 plays a pro- or anti-oncogenic role in different tumour conditions is a relevant open question which we have explored in melanoma at different stages of tumour progression. The behaviour of primary melanoma cell line B16F0 and its metastatic subline B16F10 were compared in response to TPC2 modulation by silencing (by small interfering RNA), knock-out (by CRISPR/Cas9) and overexpression (by mCherry-TPC2 transfected plasmid). TPC2 silencing increased cell migration, epithelial-to-mesenchymal transition and autophagy in the metastatic samples, but abated them in the silenced primary ones. Interestingly, while TPC2 inactivation failed to affect markers of proliferation in both samples, it strongly enhanced the migratory behaviour of the metastatic cells, again suggesting that in the more aggressive phenotype TPC2 plays a specific antimetastatic role. In line with this, overexpression of TPC2 in B16F10 cells resulted in phenotype rescue, that is, a decrease in migratory ability, thus collectively resuming traits of the B16F0 primary cell line. Our research shows a novel role of TPC2 in melanoma cells that is intriguingly different in initial versus late stages of cancer progression.


Subject(s)
Melanoma , Humans , Melanoma/metabolism , Two-Pore Channels , Lysosomes/metabolism , Cell Line , Autophagy/physiology , Calcium/metabolism
3.
Saudi Pharm J ; 32(3): 101961, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38313820

ABSTRACT

Background: Although national efforts are underway to document the genomic variability of the Saudi population relative to other populations, such variability remains largely unexplored. Genetic variability is known to impact the fate of cells and increase or decrease the risk of a variety of complex diseases including cancer forms. Therefore, the identification of variants associated with cancer susceptibility in Saudi population may protect individuals from cancer or aid in patient-tailored therapies. The endo-lysosomal ion transport genes responsible for cationic ion homeostasis within the cell. We screened 703 single-nucleotide polymorphisms (SNPs) of the endo-lysosomal ion transporter genes in the Saudi population and identified cancer-associated variants that have been reported in other populations. Methods: Utilizing previously derived local data of Whole-Exome Sequencing (WES), we examined SNPs of TPCN1, TPCN2, P2RX4, TRPM7, TRPV4, TRPV4, and TRPV6 genes. The SNPs were identified for those genes by our in-house database. We predicted the pathogenicity of these variants using in silico tools CADD, Polyphen-2, SIFT, PrimateAI, and FATHMM-XF. Then, we validated our findings by exploring the genetics database (VarSome, dbSNP NCB, OMIM, ClinVar, Ensembl, and GWAS Catalog) to further link cancer risk. Results: The WES database yielded 703 SNPs found in TPCN2, P2RX4, TRPM7, TRPV4, and TRPV6 genes in 1,144 subjects. The number of variants that were found to be common in our population was 150 SNPs. We identified 13 coding-region non-synonymous variants of the endo-lysosomal genes that were most common with a minor allele frequency (MAF) of ≥ 1 %. Twelve of these variants are rs2376558, rs3750965, rs61746574, rs35264875, rs3829241, rs72928978, rs25644, rs8042919, rs17881456, rs4987682, rs4987667, and rs4987657 that were classified as cancer-associated genes. Conclusion: Our study highlighted cancer-associated SNPs in the endo-lysosomal genes among Saudi individuals. The allelic frequencies on polymorphic variants confer susceptibility to complex diseases that are comparable to other populations. There is currently insufficient clinical data supporting the link between these SNPs and cancer risk in the Saudi population. Our data argues for initiating future cohort studies in which individuals with the identified SNPs are monitored and assessed for their likelihood of developing malignancies and therapy outcomes.

4.
Cancer Cell Int ; 23(1): 325, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104117

ABSTRACT

BACKGROUND: Melanoma, a severe form of skin cancer, poses significant health risks due to its aggressive nature and potential for metastasis. The role of two-pore channel 2 (TPC2) in the development and progression of melanoma remains poorly understood. This study aims to investigate the impact of TPC2 knockout (KO) on melanoma-derived tumors, focusing on tumour growth and related toxicity in the organism. METHODS: The study utilized CHL-1 and B16 melanoma cell lines with TPC2 KO to assess the changes in proliferation dynamics. Methods included real-time monitoring of cell proliferation using the xCELLigence system, in vivo tumour growth assays in mice, histopathological analyses, inflammation marker assessment, and quantitative PCR (qPCR) for gene expression analysis RESULTS: TPC2 KO was found to significantly alter the proliferation dynamics of CHL-1 and B16 melanoma cells. The in vivo studies demonstrated reduced tumor growth in TPC2 KO cell-derived tumors. However, a notable increase in tumor-related toxicity in affected organs, such as the liver and spleen, was observed, indicating a complex role of TPC2 in melanoma pathology. CONCLUSIONS: The loss of TPC2 function in melanoma cells leads to reduced tumour growth but exacerbates tumour-related toxicity in the organism. These findings highlight the dual role of TPC2 in melanoma progression and its potential as a therapeutic target. Further research is needed to fully understand the mechanisms underlying these effects and to explore TPC2 as a treatment target in melanoma.

5.
J Surg Oncol ; 128(4): 675-681, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37165979

ABSTRACT

BACKGROUND: Primary pulmonary lymphoepithelial carcinoma (PLEC) is a rare subtype of nonsmall cell lung cancer. This study aimed to investigate the clinicopathological and prognostic characteristics of resected primary PLEC. MATERIALS AND METHODS: In this retrospective study, 95 consecutive patients with primary PLEC, who received radical surgical resection treatment, were examined from October 2009 to January 2022. The clinicopathological features and their association with survival outcomes were analyzed. RESULTS: Primary PLEC predominated in relatively younger patients and nonsmokers, who lacked driver mutations and were always positive for immunohistochemical markers of the squamous cell lineage. Further, 21.1% of patients had abnormally elevated preoperative serum marker fragments of cytokeratin 19 (Cyfra21-1). The median follow-up time was 43.5 months. The 1-, 3-, and 5-year recurrence-free survival (RFS) rates were 96.5%, 81.8%, and 64.3%, respectively. The median RFS time was not reached. Cox univariate survival analysis showed that patients with positive lymph nodes had significantly worse RFS than those with negative ones (p = 0.017). The patients with open surgery experienced significantly worse RFS than those with video-assisted thoracoscopic surgery (p = 0.038). The multivariate survival analysis confirmed that only lymph node involvement (hazard ratio: 2.769; 95% confidence interval: 1.171-6.548, p = 0.020) was an independent prognostic factor. CONCLUSIONS: Primary PLEC is a rare type of lung cancer with a favorable outcome, more common in young and nonsmoking Asian populations. Driver gene mutations are rare. Regional lymph node metastasis is an independent prognostic factor for RFS after radical surgical resection.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Retrospective Studies , Carcinoma, Squamous Cell/surgery , Prognosis
6.
Int J Mol Sci ; 23(4)2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35216252

ABSTRACT

Mosaicism is the most important limitation for one-step gene editing in embryos by CRISPR/Cas9 because cuts and repairs sometimes take place after the first DNA replication of the zygote. To try to minimize the risk of mosaicism, in this study a reversible DNA replication inhibitor was used after the release of CRISPR/Cas9 in the cell. There is no previous information on the use of aphidicolin in porcine embryos, so the reversible inhibition of DNA replication and the effect on embryo development of different concentrations of this drug was first evaluated. The effect of incubation with aphidicolin was tested with CRISPR/Cas9 at different concentrations and different delivery methodologies. As a result, the reversible inhibition of DNA replication was observed, and it was concentration dependent. An optimal concentration of 0.5 µM was established and used for subsequent experiments. Following the use of this drug with CRISPR/Cas9, a halving of mosaicism was observed together with a detrimental effect on embryo development. In conclusion, the use of reversible inhibition of DNA replication offers a way to reduce mosaicism. Nevertheless, due to the reduction in embryo development, it would be necessary to reach a balance for its use to be feasible.


Subject(s)
Aphidicolin/pharmacology , CRISPR-Cas Systems/drug effects , Cell Nucleus/drug effects , DNA Replication/drug effects , Embryo, Mammalian/drug effects , Eukaryota/drug effects , Animals , Animals, Genetically Modified , Embryonic Development/drug effects , Gene Editing/methods , Mosaicism/drug effects , Swine , Zygote/drug effects
7.
Development ; 144(16): 2914-2924, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28694258

ABSTRACT

Activation of the egg by the sperm is the first, vital stage of embryogenesis. The sperm protein PLCζ has been proposed as the physiological agent that triggers the Ca2+ oscillations that normally initiate embryogenesis. Consistent with this, recombinant PLCζ induces Ca2+ oscillations in eggs and debilitating mutations in the PLCZ1 gene are associated with infertility in men. However, there has been no evidence that knockout of the gene encoding PLCζ abolishes the ability of sperm to induce Ca2+ oscillations in eggs. Here, we show that sperm derived from Plcz1-/- male mice fail to trigger Ca2+ oscillations in eggs, cause polyspermy and thus demonstrate that PLCζ is the physiological trigger of these Ca2+ oscillations. Remarkably, some eggs fertilized by PLCζ-null sperm can develop, albeit at greatly reduced efficiency, and after a significant time-delay. In addition, Plcz1-/- males are subfertile but not sterile, suggesting that in the absence of PLCζ, spontaneous egg activation can eventually occur via an alternative route. This is the first demonstration that in vivo fertilization without the normal physiological trigger of egg activation can result in offspring. PLCζ-null sperm now make it possible to resolve long-standing questions in fertilization biology, and to test the efficacy and safety of procedures used to treat human infertility.


Subject(s)
Calcium/metabolism , Embryonic Development/physiology , Phosphoinositide Phospholipase C/metabolism , Animals , CRISPR-Cas Systems/genetics , CRISPR-Cas Systems/physiology , Embryonic Development/genetics , Gene Editing , Male , Mammals , Mice , Mice, Mutant Strains , Phosphoinositide Phospholipase C/genetics , Spermatogenesis/genetics , Spermatogenesis/physiology
8.
EMBO J ; 34(13): 1743-58, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-25872774

ABSTRACT

The second messenger NAADP triggers Ca(2+) release from endo-lysosomes. Although two-pore channels (TPCs) have been proposed to be regulated by NAADP, recent studies have challenged this. By generating the first mouse line with demonstrable absence of both Tpcn1 and Tpcn2 expression (Tpcn1/2(-/-)), we show that the loss of endogenous TPCs abolished NAADP-dependent Ca(2+) responses as assessed by single-cell Ca(2+) imaging or patch-clamp of single endo-lysosomes. In contrast, currents stimulated by PI(3,5)P2 were only partially dependent on TPCs. In Tpcn1/2(-/-) cells, NAADP sensitivity was restored by re-expressing wild-type TPCs, but not by mutant versions with impaired Ca(2+)-permeability, nor by TRPML1. Another mouse line formerly reported as TPC-null likely expresses truncated TPCs, but we now show that these truncated proteins still support NAADP-induced Ca(2+) release. High-affinity [(32)P]NAADP binding still occurs in Tpcn1/2(-/-) tissue, suggesting that NAADP regulation is conferred by an accessory protein. Altogether, our data establish TPCs as Ca(2+)-permeable channels indispensable for NAADP signalling.


Subject(s)
Calcium Channels/genetics , Calcium/metabolism , NADP/analogs & derivatives , Animals , Calcium Channels/metabolism , Calcium Signaling/drug effects , Calcium Signaling/genetics , Cells, Cultured , Evoked Potentials/drug effects , Gene Expression/physiology , Hydrogen-Ion Concentration , Lysosomes/drug effects , Lysosomes/physiology , Mice , Mice, Knockout , NADP/metabolism , NADP/pharmacology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Signal Transduction/drug effects
9.
Mol Reprod Dev ; 86(1): 4-19, 2019 01.
Article in English | MEDLINE | ID: mdl-30411426

ABSTRACT

More than 15 years have elapsed since the identification of phospholipase C ζ1 (PLCζ) from a genomic search for mouse testis/sperm-specific PLCs. This molecule was proposed to represent the sperm factor responsible for the initiation of calcium (Ca2+ ) oscillations required for egg activation and embryo development in mammals. Supporting evidence for this role emerged from studies documenting its expression in all mammals and other vertebrate species, the physiological Ca2+ rises induced by injection of its messenger RNA into mammalian and nonmammalian eggs, and the lack of expression in infertile males that fail intracytoplasmic sperm injection. In the last year, genetic animal models have added support to its role as the long sought-after sperm factor. In this review, we highlight the findings that demonstrated the role of Ca2+ as the universal signal of egg activation and the experimental buildup that culminated with the identification of PLCζ as the soluble sperm factor. We also discuss the structural-functional properties that make PLCζ especially suited to evoke oscillations in eggs. Lastly, we examine unresolved aspects of the function and regulation of PLCζ and whether or not it is the only sperm factor in mammalian sperm.


Subject(s)
Calcium Signaling , Embryo, Mammalian/enzymology , Embryonic Development , Phosphoinositide Phospholipase C/metabolism , Sperm-Ovum Interactions , Spermatozoa/enzymology , Animals , Female , Humans , Infertility, Male/enzymology , Male , Mice , Sperm Injections, Intracytoplasmic
10.
Dev Biol ; 425(2): 109-129, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28390800

ABSTRACT

We recently demonstrated a critical role for two-pore channel type 2 (TPC2)-mediated Ca2+ release during the differentiation of slow (skeletal) muscle cells (SMC) in intact zebrafish embryos, via the introduction of a translational-blocking morpholino antisense oligonucleotide (MO). Here, we extend our study and demonstrate that knockdown of TPC2 with a non-overlapping splice-blocking MO, knockout of TPC2 (via the generation of a tpcn2dhkz1a mutant line of zebrafish using CRISPR/Cas9 gene-editing), or the pharmacological inhibition of TPC2 action with bafilomycin A1 or trans-ned-19, also lead to a significant attenuation of SMC differentiation, characterized by a disruption of SMC myofibrillogenesis and gross morphological changes in the trunk musculature. When the morphants were injected with tpcn2-mRNA or were treated with IP3/BM or caffeine (agonists of the inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR), respectively), many aspects of myofibrillogenesis and myotomal patterning (and in the case of the pharmacological treatments, the Ca2+ signals generated in the SMCs), were rescued. STED super-resolution microscopy revealed a close physical relationship between clusters of RyR in the terminal cisternae of the sarcoplasmic reticulum (SR), and TPC2 in lysosomes, with a mean estimated separation of ~52-87nm. Our data therefore add to the increasing body of evidence, which indicate that localized Ca2+ release via TPC2 might trigger the generation of more global Ca2+ release from the SR via Ca2+-induced Ca2+ release.


Subject(s)
Body Patterning , Calcium Channels/metabolism , Calcium/metabolism , Embryo, Nonmammalian/metabolism , Kinesins/metabolism , Muscle Development , Muscle Fibers, Slow-Twitch/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Zebrafish/metabolism , Animals , Base Sequence , Behavior, Animal/drug effects , Body Patterning/drug effects , CRISPR-Cas Systems/genetics , Caffeine/pharmacology , Calcium Signaling/drug effects , Cell Death/drug effects , Cells, Cultured , Embryo, Nonmammalian/drug effects , Gene Knockdown Techniques , Gene Knockout Techniques , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Macrolides/pharmacology , Models, Biological , Morpholinos/pharmacology , Motor Activity/drug effects , Muscle Cells/cytology , Muscle Cells/drug effects , Muscle Cells/metabolism , Muscle Development/drug effects , Muscle Fibers, Slow-Twitch/cytology , Muscle Fibers, Slow-Twitch/drug effects , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcomeres/drug effects , Sarcomeres/metabolism
11.
Physiol Genomics ; 50(8): 605-614, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29750602

ABSTRACT

Type 2 diabetes is a complex disorder affected by multiple genes and the environment. Our laboratory has shown that in response to a glucose challenge, two-pore channel 2 ( Tpcn2) knockout mice exhibit a decreased insulin response but normal glucose clearance, suggesting they have improved insulin sensitivity compared with wild-type mice. We tested the hypothesis that improved insulin sensitivity in Tpcn2 knockout mice would protect against the negative effects of a high fat diet. Male and female Tpcn2 knockout (KO), heterozygous (Het), and wild-type (WT) mice were fed a low-fat (LF) or high-fat (HF) diet for 24 wk. HF diet significantly increases body weight in WT mice relative to those on the LF diet; this HF diet-induced increase in body weight is blunted in the Het and KO mice. Despite the protection against diet-induced weight gain, however, Tpcn2 KO mice are not protected against HF-diet-induced changes in glucose or insulin area under the curve during glucose tolerance tests in female mice, while HF diet has no significant effect on glucose tolerance in the male mice, regardless of genotype. Glucose disappearance during an insulin tolerance test is augmented in male KO mice, consistent with our previous findings suggesting enhanced insulin sensitivity in these mice. Male KO mice exhibit increased fasting plasma total cholesterol and triglyceride concentrations relative to WT mice on the LF diet, but this difference disappears in HF diet-fed mice where there is increased cholesterol and triglycerides across all genotypes. These data demonstrate that knockout of Tpcn2 may increase insulin action in male, but not female, mice. In addition, both male and female KO mice are protected against diet-induced weight gain, but this protection is likely independent from glucose tolerance, insulin sensitivity, and plasma lipid levels.


Subject(s)
Calcium Channels/genetics , Diet, High-Fat/adverse effects , Insulin Resistance/genetics , Obesity/genetics , Weight Gain/genetics , Animals , Calcium Channels/metabolism , Cholesterol/blood , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Female , Glucose Tolerance Test , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Obesity/etiology , Obesity/metabolism , Sex Factors , Triglycerides/blood
12.
J Biol Chem ; 292(32): 13243-13257, 2017 08 11.
Article in English | MEDLINE | ID: mdl-28539361

ABSTRACT

Nicotinic acid adenine dinucleotide phosphate (NAADP) and cyclic ADP-ribose (cADPR) are Ca2+-mobilizing messengers important for modulating cardiac excitation-contraction coupling and pathophysiology. CD38, which belongs to the ADP-ribosyl cyclase family, catalyzes synthesis of both NAADP and cADPR in vitro However, it remains unclear whether this is the main enzyme for their production under physiological conditions. Here we show that membrane fractions from WT but not CD38-/- mouse hearts supported NAADP and cADPR synthesis. Membrane permeabilization of cardiac myocytes with saponin and/or Triton X-100 increased NAADP synthesis, indicating that intracellular CD38 contributes to NAADP production. The permeabilization also permitted immunostaining of CD38, with a striated pattern in WT myocytes, whereas CD38-/- myocytes and nonpermeabilized WT myocytes showed little or no staining, without striation. A component of ß-adrenoreceptor signaling in the heart involves NAADP and lysosomes. Accordingly, in the presence of isoproterenol, Ca2+ transients and contraction amplitudes were smaller in CD38-/- myocytes than in the WT. In addition, suppressing lysosomal function with bafilomycin A1 reduced the isoproterenol-induced increase in Ca2+ transients in cardiac myocytes from WT but not CD38-/- mice. Whole hearts isolated from CD38-/- mice and exposed to isoproterenol showed reduced arrhythmias. SAN4825, an ADP-ribosyl cyclase inhibitor that reduces cADPR and NAADP synthesis in mouse membrane fractions, was shown to bind to CD38 in docking simulations and reduced the isoproterenol-induced arrhythmias in WT hearts. These observations support generation of NAADP and cADPR by intracellular CD38, which contributes to effects of ß-adrenoreceptor stimulation to increase both Ca2+ transients and the tendency to disturb heart rhythm.


Subject(s)
ADP-ribosyl Cyclase 1/metabolism , Calcium Signaling , Cyclic ADP-Ribose/metabolism , Membrane Glycoproteins/metabolism , Myocytes, Cardiac/metabolism , NADP/analogs & derivatives , Sarcoplasmic Reticulum/metabolism , ADP-ribosyl Cyclase 1/antagonists & inhibitors , Adrenergic beta-Agonists/pharmacology , Animals , Anti-Arrhythmia Agents/chemistry , Anti-Arrhythmia Agents/metabolism , Anti-Arrhythmia Agents/pharmacology , Calcium Signaling/drug effects , Cell Membrane Permeability/drug effects , Cells, Cultured , Detergents/pharmacology , Enzyme Inhibitors/pharmacology , Heart/drug effects , In Vitro Techniques , Male , Membrane Glycoproteins/antagonists & inhibitors , Mice, Inbred C57BL , Mice, Knockout , Molecular Docking Simulation , Myocardial Contraction/drug effects , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , NADP/metabolism , Protein Transport/drug effects , Rabbits , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/enzymology , Single-Cell Analysis
13.
Proc Natl Acad Sci U S A ; 111(44): E4706-15, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25331892

ABSTRACT

Vascular endothelial growth factor (VEGF) and its receptors VEGFR1/VEGFR2 play major roles in controlling angiogenesis, including vascularization of solid tumors. Here we describe a specific Ca(2+) signaling pathway linked to the VEGFR2 receptor subtype, controlling the critical angiogenic responses of endothelial cells (ECs) to VEGF. Key steps of this pathway are the involvement of the potent Ca(2+) mobilizing messenger, nicotinic acid adenine-dinucleotide phosphate (NAADP), and the specific engagement of the two-pore channel TPC2 subtype on acidic intracellular Ca(2+) stores, resulting in Ca(2+) release and angiogenic responses. Targeting this intracellular pathway pharmacologically using the NAADP antagonist Ned-19 or genetically using Tpcn2(-/-) mice was found to inhibit angiogenic responses to VEGF in vitro and in vivo. In human umbilical vein endothelial cells (HUVECs) Ned-19 abolished VEGF-induced Ca(2+) release, impairing phosphorylation of ERK1/2, Akt, eNOS, JNK, cell proliferation, cell migration, and capillary-like tube formation. Interestingly, Tpcn2 shRNA treatment abolished VEGF-induced Ca(2+) release and capillary-like tube formation. Importantly, in vivo VEGF-induced vessel formation in matrigel plugs in mice was abolished by Ned-19 and, most notably, failed to occur in Tpcn2(-/-) mice, but was unaffected in Tpcn1(-/-) animals. These results demonstrate that a VEGFR2/NAADP/TPC2/Ca(2+) signaling pathway is critical for VEGF-induced angiogenesis in vitro and in vivo. Given that VEGF can elicit both pro- and antiangiogenic responses depending upon the balance of signal transduction pathways activated, targeting specific VEGFR2 downstream signaling pathways could modify this balance, potentially leading to more finely tailored therapeutic strategies.


Subject(s)
Calcium Channels/metabolism , Calcium Signaling/physiology , Human Umbilical Vein Endothelial Cells/metabolism , Neovascularization, Physiologic/physiology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Animals , Calcium Channels/genetics , Calcium Signaling/drug effects , Carbolines/pharmacology , Human Umbilical Vein Endothelial Cells/cytology , Humans , Mice , Mice, Knockout , NADP/analogs & derivatives , NADP/antagonists & inhibitors , NADP/genetics , NADP/metabolism , Neovascularization, Physiologic/drug effects , Piperazines/pharmacology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics
14.
J Physiol ; 594(11): 3061-77, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26757341

ABSTRACT

KEY POINTS: Two-pore channels (TPCs) were identified as a novel family of endolysosome-targeted calcium release channels gated by nicotinic acid adenine dinucleotide phosphate, as also as intracellular Na(+) channels able to control endolysosomal fusion, a key process in autophagic flux. Autophagy, an evolutionarily ancient response to cellular stress, has been implicated in the pathogenesis of a wide range of cardiovascular pathologies, including heart failure. We report direct evidence indicating that TPCs are involved in regulating autophagy in cardiomyocytes, and that TPC knockout mice show alterations in the cardiac lysosomal system. TPC downregulation implies a decrease in the viability of cardiomyocytes under starvation conditions. In cardiac tissues from both humans and rats, TPC transcripts and protein levels were higher in females than in males, and correlated negatively with markers of autophagy. We conclude that the endolysosomal channels TPC1 and TPC2 are essential for appropriate basal and induced autophagic flux in cardiomyocytes, and also that they are differentially expressed in male and female hearts. ABSTRACT: Autophagy participates in physiological and pathological remodelling of the heart. The endolysosomal two-pore channels (TPCs), TPC1 and TPC2, have been implicated in the regulation of autophagy. The present study aimed to investigate the role of TPC1 and TPC2 in basal and induced cardiac autophagic activity. In cultured cardiomyocytes, starvation induced a significant increase in TPC1 and TPC2 transcripts and protein levels that paralleled the increase in autophagy identified by increased LC3-II and decreased p62 levels. Small interfering RNA depletion of TPC2 alone or together with TPC1 increased both LC3II and p62 levels under basal conditions and in response to serum starvation, suggesting that, under conditions of severe energy depletion (serum plus glucose starvation), changes in the autophagic flux (as assessed by use of bafilomycin A1) occurred either when TPC1 or TPC2 were downregulated. The knockdown of TPCs diminished cardiomyocyte viability under starvation and simulated ischaemia. Electron micrographs of hearts from TPC1/2 double knockout mice showed that cardiomyocytes contained large numbers of immature lysosomes with diameters significantly smaller than those of wild-type mice. In cardiac tissues from humans and rats, TPC1 and TPC2 transcripts and protein levels were higher in females than in males. Furthermore, transcript levels of TPCs correlated negatively with p62 levels in heart tissues. TPC1 and TPC2 are essential for appropriate basal and induced autophagic flux in cardiomyocytes (i.e. there is a negative effect on cell viability under stress conditions in their absence) and they are differentially expressed in male and female human and murine hearts, where they correlate with markers of autophagy.


Subject(s)
Autophagy/physiology , Calcium Channels/physiology , Lysosomes/physiology , Myocytes, Cardiac/physiology , Sex Characteristics , Aged , Animals , Animals, Newborn , Atrial Appendage/physiology , Cells, Cultured , Female , Humans , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Rats , Rats, Sprague-Dawley
15.
J Biol Chem ; 290(50): 30087-98, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26438825

ABSTRACT

Ca(2+)-permeable type 2 two-pore channels (TPC2) are lysosomal proteins required for nicotinic acid adenine dinucleotide phosphate (NAADP)-evoked Ca(2+) release in many diverse cell types. Here, we investigate the importance of TPC2 proteins for the physiology and pathophysiology of the heart. NAADP-AM failed to enhance Ca(2+) responses in cardiac myocytes from Tpcn2(-/-) mice, unlike myocytes from wild-type (WT) mice. Ca(2+)/calmodulin-dependent protein kinase II inhibitors suppressed actions of NAADP in myocytes. Ca(2+) transients and contractions accompanying action potentials were increased by isoproterenol in myocytes from WT mice, but these effects of ß-adrenoreceptor stimulation were reduced in myocytes from Tpcn2(-/-) mice. Increases in amplitude of L-type Ca(2+) currents evoked by isoproterenol remained unchanged in myocytes from Tpcn2(-/-) mice showing no loss of ß-adrenoceptors or coupling mechanisms. Whole hearts from Tpcn2(-/-) mice also showed reduced inotropic effects of isoproterenol and a reduced tendency for arrhythmias following acute ß-adrenoreceptor stimulation. Hearts from Tpcn2(-/-) mice chronically exposed to isoproterenol showed less cardiac hypertrophy and increased threshold for arrhythmogenesis compared with WT controls. Electron microscopy showed that lysosomes form close contacts with the sarcoplasmic reticulum (separation ∼ 25 nm). We propose that Ca(2+)-signaling nanodomains between lysosomes and sarcoplasmic reticulum dependent on NAADP and TPC2 comprise an important element in ß-adrenoreceptor signal transduction in cardiac myocytes. In summary, our observations define a role for NAADP and TPC2 at lysosomal/sarcoplasmic reticulum junctions as unexpected but major contributors in the acute actions of ß-adrenergic signaling in the heart and also in stress pathways linking chronic stimulation of ß-adrenoceptors to hypertrophy and associated arrhythmias.


Subject(s)
Calcium Channels/physiology , Lysosomes/metabolism , Myocardium/metabolism , NADP/analogs & derivatives , Receptors, Adrenergic, beta/metabolism , Sarcoplasmic Reticulum/metabolism , Signal Transduction , Animals , Calcium Channels/genetics , Guinea Pigs , Male , Mice , Mice, Knockout , NADP/physiology
16.
J Biol Chem ; 290(6): 3377-89, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25480788

ABSTRACT

Postnatal skeletal muscle mass is regulated by the balance between anabolic protein synthesis and catabolic protein degradation, and muscle atrophy occurs when protein homeostasis is disrupted. Autophagy has emerged as critical in clearing dysfunctional organelles and thus in regulating protein turnover. Here we show that endolysosomal two-pore channel subtype 2 (TPC2) contributes to autophagy signaling and protein homeostasis in skeletal muscle. Muscles derived from Tpcn2(-/-) mice exhibit an atrophic phenotype with exacerbated autophagy under starvation. Compared with wild types, animals lacking TPC2 demonstrated an enhanced autophagy flux characterized by increased accumulation of autophagosomes upon combined stress induction by starvation and colchicine treatment. In addition, deletion of TPC2 in muscle caused aberrant lysosomal pH homeostasis and reduced lysosomal protease activity. Association between mammalian target of rapamycin and TPC2 was detected in skeletal muscle, allowing for appropriate adjustments to cellular metabolic states and subsequent execution of autophagy. TPC2 therefore impacts mammalian target of rapamycin reactivation during the process of autophagy and contributes to maintenance of muscle homeostasis.


Subject(s)
Autophagy , Calcium Channels/metabolism , Muscle, Skeletal/metabolism , Signal Transduction , Animals , Calcium Channels/genetics , Homeostasis , Hydrogen-Ion Concentration , Lysosomes/metabolism , Lysosomes/ultrastructure , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/pathology , Peptide Hydrolases/metabolism , Phagosomes/metabolism , Phagosomes/ultrastructure , Stress, Physiological , TOR Serine-Threonine Kinases/metabolism
17.
J Biol Chem ; 290(35): 21376-92, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26152717

ABSTRACT

Pancreatic ß cells are electrically excitable and respond to elevated glucose concentrations with bursts of Ca(2+) action potentials due to the activation of voltage-dependent Ca(2+) channels (VDCCs), which leads to the exocytosis of insulin granules. We have examined the possible role of nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated Ca(2+) release from intracellular stores during stimulus-secretion coupling in primary mouse pancreatic ß cells. NAADP-regulated Ca(2+) release channels, likely two-pore channels (TPCs), have recently been shown to be a major mechanism for mobilizing Ca(2+) from the endolysosomal system, resulting in localized Ca(2+) signals. We show here that NAADP-mediated Ca(2+) release from endolysosomal Ca(2+) stores activates inward membrane currents and depolarizes the ß cell to the threshold for VDCC activation and thereby contributes to glucose-evoked depolarization of the membrane potential during stimulus-response coupling. Selective pharmacological inhibition of NAADP-evoked Ca(2+) release or genetic ablation of endolysosomal TPC1 or TPC2 channels attenuates glucose- and sulfonylurea-induced membrane currents, depolarization, cytoplasmic Ca(2+) signals, and insulin secretion. Our findings implicate NAADP-evoked Ca(2+) release from acidic Ca(2+) storage organelles in stimulus-secretion coupling in ß cells.


Subject(s)
Calcium Channels/metabolism , Endosomes/metabolism , Insulin-Secreting Cells/metabolism , NADP/analogs & derivatives , Animals , Calcium/metabolism , Calcium Channels/genetics , Cells, Cultured , Glucose/metabolism , Insulin/metabolism , Insulin-Secreting Cells/cytology , Male , Membrane Potentials , Mice , Mice, Knockout , NADP/metabolism
18.
Nature ; 459(7246): 596-600, 2009 May 28.
Article in English | MEDLINE | ID: mdl-19387438

ABSTRACT

Ca(2+) mobilization from intracellular stores represents an important cell signalling process that is regulated, in mammalian cells, by inositol-1,4,5-trisphosphate (InsP(3)), cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate (NAADP). InsP(3) and cyclic ADP ribose cause the release of Ca(2+) from sarcoplasmic/endoplasmic reticulum stores by the activation of InsP(3) and ryanodine receptors (InsP(3)Rs and RyRs). In contrast, the nature of the intracellular stores targeted by NAADP and the molecular identity of the NAADP receptors remain controversial, although evidence indicates that NAADP mobilizes Ca(2+) from lysosome-related acidic compartments. Here we show that two-pore channels (TPCs) comprise a family of NAADP receptors, with human TPC1 (also known as TPCN1) and chicken TPC3 (TPCN3) being expressed on endosomal membranes, and human TPC2 (TPCN2) on lysosomal membranes when expressed in HEK293 cells. Membranes enriched with TPC2 show high affinity NAADP binding, and TPC2 underpins NAADP-induced Ca(2+) release from lysosome-related stores that is subsequently amplified by Ca(2+)-induced Ca(2+) release by InsP(3)Rs. Responses to NAADP were abolished by disrupting the lysosomal proton gradient and by ablating TPC2 expression, but were only attenuated by depleting endoplasmic reticulum Ca(2+) stores or by blocking InsP(3)Rs. Thus, TPCs form NAADP receptors that release Ca(2+) from acidic organelles, which can trigger further Ca(2+) signals via sarcoplasmic/endoplasmic reticulum. TPCs therefore provide new insights into the regulation and organization of Ca(2+) signals in animal cells, and will advance our understanding of the physiological role of NAADP.


Subject(s)
Calcium Channels/metabolism , Calcium Signaling , Calcium/metabolism , NADP/analogs & derivatives , Organelles/metabolism , Animals , Calcium Channels/genetics , Calcium Signaling/drug effects , Cell Line , Chickens , Humans , Hydrogen-Ion Concentration , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Mice , Mice, Knockout , Molecular Sequence Data , NADP/metabolism , NADP/pharmacology , Organelles/drug effects , Protein Binding
19.
J Biol Chem ; 287(4): 2308-15, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22117077

ABSTRACT

Nicotinic acid adenine dinucleotide phosphate (NAADP) is a messenger that regulates calcium release from intracellular acidic stores. Recent studies have identified two-pore channels (TPCs) as endolysosomal channels that are regulated by NAADP; however, the nature of the NAADP receptor binding site is unknown. To further study NAADP binding sites, we have synthesized and characterized [(32)P-5-azido]nicotinic acid adenine dinucleotide phosphate ([(32)P-5N(3)]NAADP) as a photoaffinity probe. Photolysis of sea urchin egg homogenates preincubated with [(32)P-5N(3)]NAADP resulted in specific labeling of 45-, 40-, and 30-kDa proteins, which was prevented by inclusion of nanomolar concentrations of unlabeled NAADP or 5N(3)-NAADP, but not by micromolar concentrations of structurally related nucleotides such as NAD, nicotinic acid adenine dinucleotide, nicotinamide mononucleotide, nicotinic acid, or nicotinamide. [(32)P-5N(3)]NAADP binding was saturable and displayed high affinity (K(d) ∼10 nM) in both binding and photolabeling experiments. [(32)P-5N(3)]NAADP photolabeling was irreversible in a high K(+) buffer, a hallmark feature of NAADP binding in the egg system. The proteins photolabeled by [(32)P-5N(3)]NAADP have molecular masses smaller than the sea urchin TPCs, and antibodies to TPCs do not detect any immunoreactivity that comigrates with either the 45-kDa or the 40-kDa photolabeled proteins. Interestingly, antibodies to TPC1 and TPC3 were able to immunoprecipitate a small fraction of the 45- and 40-kDa photolabeled proteins, suggesting that these proteins associate with TPCs. These data suggest that high affinity NAADP binding sites are distinct from TPCs.


Subject(s)
Calcium Channels/metabolism , NADP/analogs & derivatives , Ovum/metabolism , Strongylocentrotus purpuratus/metabolism , Animals , Binding Sites , NADP/metabolism , Photoaffinity Labels/chemistry , Protein Binding
20.
J Biol Chem ; 286(43): 37058-62, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-21903581

ABSTRACT

Two-pore channels (TPCs) have been recently identified as NAADP-regulated Ca(2+) release channels, which are localized on the endolysosomal system. TPCs have a 12-transmembrane domain (TMD) structure and are evolutionary intermediates between the 24-TMD α-subunits of Na(+) or Ca(2+) channels and the transient receptor potential channel superfamily, which have six TMDs in a single subunit and form tetramers with 24 TMDs as active channels. Based on this relationship, it is predicted that TPCs dimerize to form functional channels, but the dimerization of human TPCs has so far not been studied. Using co-immunoprecipitation studies and a mass spectroscopic analysis of the immunocomplex, we show the presence of homo- and heteromeric complexes for human TPC1 and TPC2. Despite their largely distinct localization, we identified a discrete number of endosomes that coexpressed TPC1 and TPC2. Homo- and heteromerization were confirmed by a FRET study, showing that both proteins interacted in a rotational (N- to C-terminal/head-to-tail) symmetry. This is the first report describing the presence of homomultimeric TPC1 channels and the first study showing that TPCs are capable of forming heteromers.


Subject(s)
Calcium Channels/metabolism , Protein Multimerization/physiology , Calcium/metabolism , Calcium Channels/genetics , Endosomes/metabolism , HEK293 Cells , Humans , NADP/analogs & derivatives , NADP/metabolism , Protein Structure, Quaternary , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL