Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Pathol ; 264(2): 129-131, 2024 10.
Article in English | MEDLINE | ID: mdl-39072755

ABSTRACT

In a recent issue of The Journal of Pathology, Chen and colleagues established novel patient-derived ex vivo models of NTRK fusion-positive soft tissue sarcoma to characterize resistance mechanisms against targeted therapy with tyrosine kinase inhibitors. Prolonged exposure to escalating concentrations of the tyrosine kinase inhibitor, entrectinib, ultimately led to the occurrence of resistant clones that harbored an inactivating mutation in the NF2 gene, not previously described in this context, accompanied by increased PI3K/AKT/mTOR and Ras/Raf/MEK/ERK signaling. Finally, an inhibitor screen identified, among others, MEK and mTOR inhibitors as potential combination agents. © 2024 The Pathological Society of Great Britain and Ireland.


Subject(s)
Drug Resistance, Neoplasm , Protein Kinase Inhibitors , Humans , Drug Resistance, Neoplasm/genetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Neurofibromin 2/genetics , Oncogene Proteins, Fusion/genetics , Benzamides/therapeutic use , Benzamides/pharmacology , Receptor, trkA/genetics , Receptor, trkA/metabolism , Signal Transduction/genetics , Indazoles/therapeutic use , Indazoles/pharmacology , Mutation , Sarcoma/genetics , Sarcoma/drug therapy , Sarcoma/pathology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
2.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38854109

ABSTRACT

Meningiomas are the most common primary brain tumors in adults. Although generally benign, a subset of meningiomas is of higher grade, shows aggressive growth behavior and recurs even after multiple surgeries. Around half of all meningiomas harbor inactivating mutations in NF2. While benign low-grade NF2 mutant meningiomas exhibit few genetic events in addition to NF2 inactivation, aggressive high-grade NF2 mutant meningiomas frequently harbor a highly aberrant genome. We and others have previously shown that NF2 inactivation leads to YAP1 activation and that YAP1 acts as the pivotal oncogenic driver in benign NF2 mutant meningiomas. Using bulk and single-cell RNA-Seq data from a large cohort of human meningiomas, we show that aggressive NF2 mutant meningiomas harbor decreased levels YAP1 activity compared to their benign counterparts. Decreased expression levels of YAP target genes are significantly associated with an increased risk of recurrence. We then identify the increased expression of the YAP1 competitor VGLL4 as well as the YAP1 upstream regulators FAT3/4 as a potential mechanism for the downregulation of YAP activity in aggressive NF2 mutant meningiomas. High expression of these genes is significantly associated with an increased risk of recurrence. In vitro, overexpression of VGLL4 resulted in the downregulation of YAP activity in benign NF2 mutant meningioma cells, confirming the direct link between VGLL4 expression and decreased levels of YAP activity observed in aggressive NF2 mutant meningiomas. Our results shed new insight on the biology of benign and aggressive NF2 mutant meningiomas and may have important implications for the efficacy of therapies targeting oncogenic YAP1 activity in NF2 mutant meningiomas.

3.
Neurooncol Adv ; 6(1): vdae148, 2024.
Article in English | MEDLINE | ID: mdl-39380691

ABSTRACT

Background: Meningiomas are the most common primary central nervous system tumors in adults. Although generally benign, a subset is of higher grade and ultimately fatal. Around half of all meningiomas harbor inactivating mutations in NF2, leading to deregulation of oncogenic YAP1 activity. While benign NF2 mutant meningiomas exhibit few genetic events in addition to NF2 inactivation, aggressive high-grade NF2 mutant meningiomas frequently harbor a highly aberrant genome. It is unclear if NF2 mutant meningiomas of different grades are equally reliant on YAP activity. Methods: We analyzed bulk and single-cell RNA-Seq data from a large cohort of human meningiomas for the expression of YAP1 target genes and Hippo effectors as well as in vitro cell line experiments. Results: Aggressive NF2 mutant meningiomas harbor decreased expression levels of YAP1 target genes and increased expression levels of the YAP1 antagonist VGLL4 and the upstream regulators FAT3/4 compared to their benign counterparts. Decreased expression of YAP1 target genes as well as high expression of VGLL4 and FAT3/4 is significantly associated with an increased risk of recurrence. In vitro, overexpression of VGLL4 resulted in the downregulation of YAP activity in benign NF2 mutant meningioma cells, confirming the direct link between VGLL4 expression and decreased levels of YAP activity observed in aggressive NF2 mutant meningiomas. Conclusions: Our results shed new insight into the biology of benign and aggressive NF2 mutant meningiomas and may have important implications for the efficacy of therapies targeting oncogenic YAP1 activity in NF2 mutant meningiomas.

4.
Cell Rep ; 43(10): 114829, 2024 Oct 22.
Article in English | MEDLINE | ID: mdl-39365700

ABSTRACT

Pediatric-type high-grade gliomas frequently harbor gene fusions involving receptor tyrosine kinase genes, including neurotrophic tyrosine kinase receptor (NTRK) fusions. Clinically, these tumors show high initial response rates to tyrosine kinase inhibition but ultimately recur due to the accumulation of additional resistance-conferring mutations. Here, we develop a series of genetically engineered mouse models of treatment-naive and -experienced NTRK1/2/3 fusion-driven gliomas. All tested NTRK fusions are oncogenic in vivo. The NTRK variant, N-terminal fusion partners, and resistance-associated point mutations all influence tumor histology and aggressiveness. Additional tumor suppressor losses greatly enhance tumor aggressiveness. Treatment with TRK kinase inhibitors significantly extends the survival of NTRK fusion-driven glioma mice, but fails to fully eradicate tumors, leading to recurrence upon treatment discontinuation. Finally, we show that ERK activation promotes resistance to TRK kinase inhibition and identify MEK inhibition as a potential combination therapy. These models will be invaluable tools to study therapy resistance of NTRK fusion tumors.


Subject(s)
Disease Models, Animal , Glioma , MAP Kinase Signaling System , Protein Kinase Inhibitors , Receptor, trkA , Animals , Glioma/genetics , Glioma/pathology , Glioma/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mice , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Receptor, trkA/metabolism , Receptor, trkA/genetics , Receptor, trkA/antagonists & inhibitors , Humans , Drug Resistance, Neoplasm/genetics , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/genetics , Receptor, trkC/genetics , Receptor, trkC/metabolism , Receptor, trkC/antagonists & inhibitors , Receptor, trkB/metabolism , Receptor, trkB/genetics
5.
bioRxiv ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38558981

ABSTRACT

Pediatric-type high-grade gliomas frequently harbor gene fusions involving receptor tyrosine kinase genes, including neurotrophic tyrosine kinase receptor (NTRK) fusions. Clinically, these tumors show high initial response rates to tyrosine kinase inhibition but ultimately recur due to the accumulation of additional resistance-conferring mutations. Here, we developed a series of genetically engineered mouse models of treatment-naïve and -experienced NTRK1/2/3 fusion-driven gliomas. Both the TRK kinase domain and the N-terminal fusion partners influenced tumor histology and aggressiveness. Treatment with TRK kinase inhibitors significantly extended survival of NTRK fusion-driven glioma mice in a fusion- and inhibitor-dependent manner, but tumors ultimately recurred due to the presence of treatment-resistant persister cells. Finally, we show that ERK activation promotes resistance to TRK kinase inhibition and identify MEK inhibition as a potential combination therapy. These models will be invaluable tools for preclinical testing of novel inhibitors and to study the cellular responses of NTRK fusion-driven gliomas to therapy.

SELECTION OF CITATIONS
SEARCH DETAIL