Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Breast Cancer Res Treat ; 169(2): 381-390, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29392581

ABSTRACT

BACKGROUND: Triple-negative breast cancer (TNBC) subtypes are clinically aggressive and cannot be treated with targeted therapeutics commonly used in other breast cancer subtypes. The claudin-low (CL) molecular subtype of TNBC has high rates of metastases, chemoresistance and recurrence. There exists an urgent need to identify novel therapeutic targets in TNBC; however, existing models utilized in target discovery research are limited. Patient-derived xenograft (PDX) models have emerged as superior models for target discovery experiments because they recapitulate features of patient tumors that are limited by cell-line derived xenograft methods. METHODS: We utilize immunohistochemistry, qRT-PCR and Western Blot to visualize tumor architecture, cellular composition, genomic and protein expressions of a new CL-TNBC PDX model (TU-BcX-2O0). We utilize tissue decellularization techniques to examine extracellular matrix composition of TU-BcX-2O0. RESULTS: Our laboratory successfully established a TNBC PDX tumor, TU-BCX-2O0, which represents a CL-TNBC subtype and maintains this phenotype throughout subsequent passaging. We dissected TU-BCx-2O0 to examine aspects of this complex tumor that can be targeted by developing therapeutics, including the whole and intact breast tumor, specific cell populations within the tumor, and the extracellular matrix. CONCLUSIONS: Here, we characterize a claudin-low TNBC patient-derived xenograft model that can be utilized for therapeutic research studies.


Subject(s)
Cell Proliferation/genetics , Claudins/genetics , Neoplasm Recurrence, Local/genetics , Triple Negative Breast Neoplasms/genetics , Animals , Cell Line, Tumor , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Mice , Neoplasm Recurrence, Local/pathology , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
2.
Cells Tissues Organs ; 203(3): 183-193, 2017.
Article in English | MEDLINE | ID: mdl-28125805

ABSTRACT

A significant number of patients undergo mastectomies and breast reconstructions every year using many surgical-based techniques to reconstruct the nipple-areolar complex (NAC). Described herein is a tissue engineering approach that may permit a human NAC onlay graft during breast reconstruction procedures. By applying decellularization, which is the removal of cellular components from tissue, to an intact whole donor NAC, the extracellular matrix (ECM) structure of the NAC is preserved. This creates a biologically derived scaffold for cells to repopulate and regenerate the NAC. A detergent-based decellularization method was used to derive whole NAC scaffolds from nonhuman primate rhesus macaque NAC tissue. Using both histological and quantitative analyses for the native and decellularized tissues, the derived ECM graft was assessed. The bioactivity of the scaffold was evaluated following cell culture with bone marrow-derived mesenchymal stem cells (BMSCs). The data presented here demonstrate that scaffolds are devoid of cells and retain ECM integrity and a high degree of bioactivity. The content of collagen and glycosaminoglycans were not significantly altered by the decellularization process, whereas the elastin content was significantly decreased. The proliferation and apoptosis of seeded BMSCs were found to be approximately 65 and <1.5%, respectively. This study characterizes the successful decellularization of NAC tissue as compared to native NACs based on structural protein composition, lubricating protein retention, the maintenance of adhesion molecules, and bioactivity when reseeded with cells. These histological and quantitative analyses provide the foundation for a novel approach to NAC reconstruction.


Subject(s)
Nipples/physiology , Plastic Surgery Procedures/methods , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Cell Nucleus/metabolism , DNA/isolation & purification , Extracellular Matrix/metabolism , Female , Humans , Macaca mulatta , Male , Stem Cells/cytology
3.
Front Mol Biosci ; 9: 847505, 2022.
Article in English | MEDLINE | ID: mdl-35755802

ABSTRACT

Liver kinase B1 (LKB1) is a potent tumor suppressor that regulates cellular energy balance and metabolism as an upstream kinase of the AMP-activated protein kinase (AMPK) pathway. LKB1 regulates cancer cell invasion and metastasis in multiple cancer types, including breast cancer. In this study, we evaluated LKB1's role as a regulator of the tumor microenvironment (TME). This was achieved by seeding the MDA-MB-231-LKB1 overexpressing cell line onto adipose and tumor scaffolds, followed by the evaluation of tumor matrix-induced tumorigenesis and metastasis. Results demonstrated that the presence of tumor matrix enhanced tumorigenesis in both MDA-MB-231 and MDA-MB-231-LKB1 cell lines. Metastasis was increased in both MDA-MB-231 and -LKB1 cells seeded on the tumor scaffold. Endpoint analysis of tumor and adipose scaffolds revealed LKB1-mediated tumor microenvironment remodeling as evident through altered matrix protein production. The proteomic analysis determined that LKB1 overexpression preferentially decreased all major and minor fibril collagens (collagens I, III, V, and XI). In addition, proteins observed to be absent in tumor scaffolds in the LKB1 overexpressing cell line included those associated with the adipose matrix (COL6A2) and regulators of adipogenesis (IL17RB and IGFBP4), suggesting a role for LKB1 in tumor-mediated adipogenesis. Histological analysis of MDA-MB-231-LKB1-seeded tumors demonstrated decreased total fibril collagen and indicated decreased stromal cell presence. In accordance with this, in vitro condition medium studies demonstrated that the MDA-MB-231-LKB1 secretome inhibited adipogenesis of adipose-derived stem cells. Taken together, these data demonstrate a role for LKB1 in regulating the tumor microenvironment through fibril matrix remodeling and suppression of adipogenesis.

4.
Sci Rep ; 11(1): 15085, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34301975

ABSTRACT

Many of the > 3.5 million breast cancer survivors in the US have undergone breast reconstruction following mastectomy. Patients report that nipple-areolar complex (NAC) reconstruction is psychologically important, yet current reconstruction techniques commonly result in inadequate shape, symmetry, and nipple projection. Our team has developed an allogeneic acellular graft for NAC reconstruction (dcl-NAC) designed to be easy to engraft, lasting, and aesthetically pleasing. Here, dcl-NAC safety and host-mediated re-cellularization was assessed in a 6-week study in rhesus macaque non-human primates (NHPs). Human-derived dcl-NACs (n = 30) were engrafted on the dorsum of two adult male NHPs with each animal's own nipples as controls (n = 4). Weight, complete blood counts, and metabolites were collected weekly. Grafts were removed at weeks 1, 3, or 6 post-engraftment for histology. The primary analysis evaluated health, re-epithelialization, and re-vascularization. Secondary analysis evaluated re-innervation. Weight, complete blood counts, and metabolites remained mostly within normal ranges. A new epidermal layer was observed to completely cover the dcl-NAC surface at week 6 (13-100% coverage, median 93.3%) with new vasculature comparable to controls at week 3 (p = 0.10). Nerves were identified in 75% of dcl-NACs (n = 9/12) at week 6. These data suggest that dcl-NAC is safe and supports host-mediated re-cellularization.


Subject(s)
Biological Products/therapeutic use , Nipples/surgery , Surgical Flaps/surgery , Transplants/surgery , Acellular Dermis , Animals , Breast Neoplasms/surgery , Female , Humans , Macaca mulatta , Male , Mammaplasty/methods , Mastectomy/methods , Models, Animal , Primates
5.
Tissue Eng Part A ; 26(15-16): 872-885, 2020 08.
Article in English | MEDLINE | ID: mdl-31950890

ABSTRACT

There are more than 3 million breast cancer survivors living in the United States of which a significant number have undergone mastectomy followed by breast and nipple-areolar complex (NAC) reconstruction. Current strategies for NAC reconstruction are dependent on nonliving or nonpermanent techniques, including tattooing, nipple prosthetics, or surgical nipple-like structures. Described herein is a tissue engineering approach demonstrating the feasibility of an allogeneic acellular graft for nipple reconstruction. Nonhuman primate (NHP)-derived NAC tissues were decellularized and their extracellular matrix components analyzed by both proteomic and histological analyses. Decellularized NHP nipple tissue showed the removal of intact cells and greatly diminished profiles for intracellular proteins, as compared with intact NHP nipple tissue. We further evaluated the biocompatibility of decellularized grafts and their potential to support host-mediated neovascularization against commercially available acellular dermal grafts by performing in vivo studies in a murine model. A follow-up NHP pilot study evaluated the host-mediated neovascularization and re-epithelialization of onlay engrafted decellularized NAC grafts. The murine model revealed greater neovascularization in the decellularized NAC than in the commercially available control grafts, with no observed biocompatibility issues. The in vivo NHP model confirmed that the decellularized NAC grafts encourage neovascularization as well as re-epithelialization. These results support the concept that a biologically derived acellular nipple graft is a feasible approach for nipple reconstruction, supporting neovascularization in the absence of adverse systemic responses. Impact statement Currently, women in the United States most often undergo a mastectomy, followed by reconstruction, after being diagnosed with breast cancer. These breast cancer survivors are often left with nipple-areolar complex (NAC) reconstructions that are subsatisfactory, nonliving, and/or nonpermanent. Utilizing an acellular biologically derived whole NAC graft would allow these patients a living and permanent tissue engineering solution to nipple reconstruction.


Subject(s)
Biological Products , Breast Neoplasms , Mammaplasty , Nipples/transplantation , Animals , Female , Macaca mulatta , Mastectomy , Mice , Pilot Projects , Proteomics , Plastic Surgery Procedures
6.
J Tissue Eng Regen Med ; 12(2): e786-e806, 2018 02.
Article in English | MEDLINE | ID: mdl-27943597

ABSTRACT

Effective re-endothelialization is critical for the use of decellularized scaffolds for ex vivo lung engineering. Current approaches yield insufficiently re-endothelialized scaffolds that haemorrhage and become thrombogenic upon implantation. Herein, gravity-driven seeding coupled with bioreactor culture facilitated widespread distribution and engraftment of endothelial cells throughout rat lung scaffolds. Initially, human umbilical vein endothelial cells were seeded into the pulmonary artery by either gravity-driven, variable flow perfusion seeding or pump-driven, pulsatile flow perfusion seeding. Gravity seeding evenly distributed cells and supported cell survival and re-lining of the vascular walls while perfusion pump-driven seeding led to increased cell fragmentation and death. Using gravity seeding, rat pulmonary artery endothelial cells and rat pulmonary vein endothelial cells attached in intermediate and large vessels, while rat pulmonary microvascular endothelial cells deposited mostly in microvessels. Combination seeding of these cells led to positive vascular endothelial cadherin staining. In addition, combination seeding improved barrier function as assessed by serum albumin extravasation; however, leakage was observed in the distal portions of the re-endothelialized tissue suggesting that recellularization of the alveoli is necessary to complete barrier function of the capillary-alveolar network. Overall, these data indicate that vascular recellularization of rat lung scaffolds is achieved through gravity seeding. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Endothelial Cells/cytology , Gravitation , Lung/cytology , Tissue Scaffolds/chemistry , Animals , Apoptosis , Bioreactors , Cell Count , Cell Proliferation , Cell Shape , Cell Size , Cell Survival , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Humans , Kinetics , Lung/blood supply , Male , Neovascularization, Physiologic , Perfusion , Pulmonary Artery/cytology , Pulmonary Veins/cytology , Rats, Sprague-Dawley
7.
Biomaterials ; 187: 93-104, 2018 12.
Article in English | MEDLINE | ID: mdl-30312852

ABSTRACT

Whole organ tissue engineering is a promising approach to address organ shortages in many applications, including lung transplantation for patients with chronic pulmonary disease. Engineered lungs may be derived from animal sources after removing cellular content, exposing the extracellular matrix to serve as a scaffold for recellularization with human cells. However, the use of xenogeneic tissue sources in human transplantation raises concerns due to the presence of the antigenic Gal epitope. In the present study, lungs from wild type or α-Gal knockout pigs were harvested, decellularized, and implanted subcutaneously in a non-human primate model to evaluate the host immune response. The decellularized porcine implants were compared to a sham surgery control, as well as native porcine and decellularized macaque lung implants. The results demonstrated differential profiles of circulating and infiltrating immune cell subsets and histological outcomes depending on the implanted tissue source. Upon implantation, the decellularized α-Gal knockout lung constructs performed similarly to the decellularized wild type lung constructs. However, upon re-implantation into a chronic exposure model, the decellularized wild type lung constructs resulted in a greater proportion of infiltrating CD45+ cells, including CD3+ and CD8+ cytotoxic T-cells, likely mediated by an increase in production of Gal-specific antibodies. The results suggest that removal of the Gal epitope can potentially reduce adverse inflammatory reactions associated with chronic exposure to engineered organs containing xenogeneic components.


Subject(s)
Galactosyltransferases/genetics , Lung Diseases/therapy , Lung/cytology , Tissue Scaffolds , Adaptive Immunity , Animals , Biocompatible Materials , Galactosyltransferases/immunology , Gene Knockout Techniques , Humans , Immunity, Humoral , Lung Diseases/immunology , Macaca mulatta , Swine , Tissue Engineering , Transplantation , Transplantation, Heterologous
8.
Article in English | MEDLINE | ID: mdl-25870857

ABSTRACT

With the advent of whole organ decellularization, extracellular matrix scaffolds suitable for organ engineering were generated from numerous tissues, including the heart, lung, liver, kidney, and pancreas, for use as alternatives to traditional organ transplantation. Biomedical researchers now face the challenge of adequately and efficiently recellularizing these organ scaffolds. Herein, an overview of whole organ decellularization and a thorough review of the current literature for whole organ recellularization are presented. The cell types, delivery methods, and bioreactors employed for recellularization are discussed along with commercial and clinical considerations, such as immunogenicity, biocompatibility, and Food and Drug Administartion regulation.

9.
J Vis Exp ; (82): e50825, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24378384

ABSTRACT

There are an insufficient number of lungs available to meet current and future organ transplantation needs. Bioartificial tissue regeneration is an attractive alternative to classic organ transplantation. This technology utilizes an organ's natural biological extracellular matrix (ECM) as a scaffold onto which autologous or stem/progenitor cells may be seeded and cultured in such a way that facilitates regeneration of the original tissue. The natural ECM is isolated by a process called decellularization. Decellularization is accomplished by treating tissues with a series of detergents, salts, and enzymes to achieve effective removal of cellular material while leaving the ECM intact. Studies conducted utilizing decellularization and subsequent recellularization of rodent lungs demonstrated marginal success in generating pulmonary-like tissue which is capable of gas exchange in vivo. While offering essential proof-of-concept, rodent models are not directly translatable to human use. Nonhuman primates (NHP) offer a more suitable model in which to investigate the use of bioartificial organ production for eventual clinical use. The protocols for achieving complete decellularization of lungs acquired from the NHP rhesus macaque are presented. The resulting acellular lungs can be seeded with a variety of cells including mesenchymal stem cells and endothelial cells. The manuscript also describes the development of a bioreactor system in which cell-seeded macaque lungs can be cultured under conditions of mechanical stretch and strain provided by negative pressure ventilation as well as pulsatile perfusion through the vasculature; these forces are known to direct differentiation along pulmonary and endothelial lineages, respectively. Representative results of decellularization and cell seeding are provided.


Subject(s)
Adult Stem Cells/cytology , Adult Stem Cells/transplantation , Bioreactors , Endothelial Cells/cytology , Lung/physiology , Regeneration/physiology , Tissue Engineering/methods , Animals , Cell Separation/methods , Lung/cytology , Macaca mulatta , Stem Cell Transplantation/methods , Tissue Engineering/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL