Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 267
Filter
Add more filters

Uruguay Oncology Collection
Publication year range
1.
Cell ; 185(1): 169-183.e19, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34963055

ABSTRACT

Non-small cell lung cancers (NSCLCs) harboring KEAP1 mutations are often resistant to immunotherapy. Here, we show that KEAP1 targets EMSY for ubiquitin-mediated degradation to regulate homologous recombination repair (HRR) and anti-tumor immunity. Loss of KEAP1 in NSCLC induces stabilization of EMSY, producing a BRCAness phenotype, i.e., HRR defects and sensitivity to PARP inhibitors. Defective HRR contributes to a high tumor mutational burden that, in turn, is expected to prompt an innate immune response. Notably, EMSY accumulation suppresses the type I interferon response and impairs innate immune signaling, fostering cancer immune evasion. Activation of the type I interferon response in the tumor microenvironment using a STING agonist results in the engagement of innate and adaptive immune signaling and impairs the growth of KEAP1-mutant tumors. Our results suggest that targeting PARP and STING pathways, individually or in combination, represents a therapeutic strategy in NSCLC patients harboring alterations in KEAP1.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , Interferon Type I/metabolism , Lung Neoplasms/immunology , Neoplasm Proteins/metabolism , Nuclear Proteins/metabolism , Recombinational DNA Repair/genetics , Repressor Proteins/metabolism , Tumor Escape/genetics , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Female , HEK293 Cells , Humans , Immunity, Innate/genetics , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mutation , Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Repressor Proteins/genetics , Signal Transduction/genetics , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
2.
Cell ; 178(2): 316-329.e18, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31257023

ABSTRACT

Approximately 30% of human lung cancers acquire mutations in either Keap1 or Nfe2l2, resulting in the stabilization of Nrf2, the Nfe2l2 gene product, which controls oxidative homeostasis. Here, we show that heme triggers the degradation of Bach1, a pro-metastatic transcription factor, by promoting its interaction with the ubiquitin ligase Fbxo22. Nrf2 accumulation in lung cancers causes the stabilization of Bach1 by inducing Ho1, the enzyme catabolizing heme. In mouse models of lung cancers, loss of Keap1 or Fbxo22 induces metastasis in a Bach1-dependent manner. Pharmacological inhibition of Ho1 suppresses metastasis in a Fbxo22-dependent manner. Human metastatic lung cancer display high levels of Ho1 and Bach1. Bach1 transcriptional signature is associated with poor survival and metastasis in lung cancer patients. We propose that Nrf2 activates a metastatic program by inhibiting the heme- and Fbxo22-mediated degradation of Bach1, and that Ho1 inhibitors represent an effective therapeutic strategy to prevent lung cancer metastasis.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Lung Neoplasms/pathology , NF-E2-Related Factor 2/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/antagonists & inhibitors , Basic-Leucine Zipper Transcription Factors/genetics , Cell Line, Tumor , Cell Movement , F-Box Proteins/antagonists & inhibitors , F-Box Proteins/genetics , F-Box Proteins/metabolism , Female , Heme Oxygenase-1/antagonists & inhibitors , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Humans , Kaplan-Meier Estimate , Kelch-Like ECH-Associated Protein 1/antagonists & inhibitors , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/mortality , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/genetics , Neoplasm Metastasis , RNA Interference , RNA, Small Interfering/metabolism , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Transcriptional Activation
3.
Cell ; 150(6): 1107-20, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22980975

ABSTRACT

Lung adenocarcinoma, the most common subtype of non-small cell lung cancer, is responsible for more than 500,000 deaths per year worldwide. Here, we report exome and genome sequences of 183 lung adenocarcinoma tumor/normal DNA pairs. These analyses revealed a mean exonic somatic mutation rate of 12.0 events/megabase and identified the majority of genes previously reported as significantly mutated in lung adenocarcinoma. In addition, we identified statistically recurrent somatic mutations in the splicing factor gene U2AF1 and truncating mutations affecting RBM10 and ARID1A. Analysis of nucleotide context-specific mutation signatures grouped the sample set into distinct clusters that correlated with smoking history and alterations of reported lung adenocarcinoma genes. Whole-genome sequence analysis revealed frequent structural rearrangements, including in-frame exonic alterations within EGFR and SIK2 kinases. The candidate genes identified in this study are attractive targets for biological characterization and therapeutic targeting of lung adenocarcinoma.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Genes, Neoplasm , High-Throughput Nucleotide Sequencing , Lung Neoplasms/genetics , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/pathology , Cohort Studies , Exome , Female , Genome-Wide Association Study , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Mutation , Mutation Rate
4.
Proc Natl Acad Sci U S A ; 121(29): e2405231121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38990952

ABSTRACT

We report that ~1.8% of all mesothelioma patients and 4.9% of those younger than 55, carry rare germline variants of the BRCA1 associated RING domain 1 (BARD1) gene that were predicted to be damaging by computational analyses. We conducted functional assays, essential for accurate interpretation of missense variants, in primary fibroblasts that we established in tissue culture from a patient carrying the heterozygous BARD1V523A mutation. We found that these cells had genomic instability, reduced DNA repair, and impaired apoptosis. Investigating the underlying signaling pathways, we found that BARD1 forms a trimeric protein complex with p53 and SERCA2 that regulates calcium signaling and apoptosis. We validated these findings in BARD1-silenced primary human mesothelial cells exposed to asbestos. Our study elucidated mechanisms of BARD1 activity and revealed that heterozygous germline BARD1 mutations favor the development of mesothelioma and increase the susceptibility to asbestos carcinogenesis. These mesotheliomas are significantly less aggressive compared to mesotheliomas in asbestos workers.


Subject(s)
Calcium Signaling , DNA Repair , Genetic Predisposition to Disease , Germ-Line Mutation , Mesothelioma , Tumor Suppressor Proteins , Ubiquitin-Protein Ligases , Humans , DNA Repair/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Mesothelioma/genetics , Calcium Signaling/genetics , Female , Male , Middle Aged , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Apoptosis/genetics , Fibroblasts/metabolism , Asbestos/toxicity , Genomic Instability
5.
CA Cancer J Clin ; 69(5): 402-429, 2019 09.
Article in English | MEDLINE | ID: mdl-31283845

ABSTRACT

Mesothelioma affects mostly older individuals who have been occupationally exposed to asbestos. The global mesothelioma incidence and mortality rates are unknown, because data are not available from developing countries that continue to use large amounts of asbestos. The incidence rate of mesothelioma has decreased in Australia, the United States, and Western Europe, where the use of asbestos was banned or strictly regulated in the 1970s and 1980s, demonstrating the value of these preventive measures. However, in these same countries, the overall number of deaths from mesothelioma has not decreased as the size of the population and the percentage of old people have increased. Moreover, hotspots of mesothelioma may occur when carcinogenic fibers that are present in the environment are disturbed as rural areas are being developed. Novel immunohistochemical and molecular markers have improved the accuracy of diagnosis; however, about 14% (high-resource countries) to 50% (developing countries) of mesothelioma diagnoses are incorrect, resulting in inadequate treatment and complicating epidemiological studies. The discovery that germline BRCA1-asssociated protein 1 (BAP1) mutations cause mesothelioma and other cancers (BAP1 cancer syndrome) elucidated some of the key pathogenic mechanisms, and treatments targeting these molecular mechanisms and/or modulating the immune response are being tested. The role of surgery in pleural mesothelioma is controversial as it is difficult to predict who will benefit from aggressive management, even when local therapies are added to existing or novel systemic treatments. Treatment outcomes are improving, however, for peritoneal mesothelioma. Multidisciplinary international collaboration will be necessary to improve prevention, early detection, and treatment.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor/analysis , Mesothelioma/therapy , Pleural Neoplasms/therapy , Pneumonectomy/methods , Asbestos/adverse effects , Australia/epidemiology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinogenesis/chemically induced , Carcinogenesis/genetics , Carcinogenesis/pathology , Combined Modality Therapy/methods , Diagnostic Errors , Europe/epidemiology , Genetic Predisposition to Disease , Germ-Line Mutation , Global Burden of Disease , Humans , Incidence , Inhalation Exposure/adverse effects , International Cooperation , Mesothelioma/diagnosis , Mesothelioma/epidemiology , Mesothelioma/etiology , Molecular Targeted Therapy/methods , Occupational Exposure/adverse effects , Pleura/drug effects , Pleura/pathology , Pleura/surgery , Pleural Neoplasms/diagnosis , Pleural Neoplasms/epidemiology , Pleural Neoplasms/etiology , Prognosis , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , United States/epidemiology
6.
Proc Natl Acad Sci U S A ; 120(39): e2307999120, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37729199

ABSTRACT

Asbestos is the main cause of malignant mesothelioma. Previous studies have linked asbestos-induced mesothelioma to the release of HMGB1 from the nucleus to the cytoplasm, and from the cytoplasm to the extracellular space. In the cytoplasm, HMGB1 induces autophagy impairing asbestos-induced cell death. Extracellularly, HMGB1 stimulates the secretion of TNFα. Jointly, these two cytokines kick-start a chronic inflammatory process that over time promotes mesothelioma development. Whether the main source of extracellular HMGB1 were the mesothelial cells, the inflammatory cells, or both was unsolved. This information is critical to identify the targets and design preventive/therapeutic strategies to interfere with asbestos-induced mesothelioma. To address this issue, we developed the conditional mesothelial HMGB1-knockout (Hmgb1ΔpMeso) and the conditional myelomonocytic-lineage HMGB1-knockout (Hmgb1ΔMylc) mouse models. We establish here that HMGB1 is mainly produced and released by the mesothelial cells during the early phases of inflammation following asbestos exposure. The release of HMGB1 from mesothelial cells leads to atypical mesothelial hyperplasia, and in some animals, this evolves over the years into mesothelioma. We found that Hmgb1ΔpMeso, whose mesothelial cells cannot produce HMGB1, show a greatly reduced inflammatory response to asbestos, and their mesothelial cells express and secrete significantly reduced levels of TNFα. Moreover, the tissue microenvironment in areas of asbestos deposits displays an increased fraction of M1-polarized macrophages compared to M2 macrophages. Supporting the biological significance of these findings, Hmgb1ΔpMeso mice showed a delayed and reduced incidence of mesothelioma and an increased mesothelioma-specific survival. Altogether, our study provides a biological explanation for HMGB1 as a driver of asbestos-induced mesothelioma.


Subject(s)
Asbestos , HMGB1 Protein , Mesothelioma, Malignant , Mesothelioma , Animals , Mice , Tumor Necrosis Factor-alpha/genetics , HMGB1 Protein/genetics , Mesothelioma/chemically induced , Mesothelioma/genetics , Asbestos/toxicity , Inflammation , Tumor Microenvironment
7.
Proc Natl Acad Sci U S A ; 120(4): e2217840120, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36656861

ABSTRACT

BAP1 is a powerful tumor suppressor gene characterized by haplo insufficiency. Individuals carrying germline BAP1 mutations often develop mesothelioma, an aggressive malignancy of the serosal layers covering the lungs, pericardium, and abdominal cavity. Intriguingly, mesotheliomas developing in carriers of germline BAP1 mutations are less aggressive, and these patients have significantly improved survival. We investigated the apparent paradox of a tumor suppressor gene that, when mutated, causes less aggressive mesotheliomas. We discovered that mesothelioma biopsies with biallelic BAP1 mutations showed loss of nuclear HIF-1α staining. We demonstrated that during hypoxia, BAP1 binds, deubiquitylates, and stabilizes HIF-1α, the master regulator of the hypoxia response and tumor cell invasion. Moreover, primary cells from individuals carrying germline BAP1 mutations and primary cells in which BAP1 was silenced using siRNA had reduced HIF-1α protein levels in hypoxia. Computational modeling and co-immunoprecipitation experiments revealed that mutations of BAP1 residues I675, F678, I679, and L691 -encompassing the C-terminal domain-nuclear localization signal- to A, abolished the interaction with HIF-1α. We found that BAP1 binds to the N-terminal region of HIF-1α, where HIF-1α binds DNA and dimerizes with HIF-1ß forming the heterodimeric transactivating complex HIF. Our data identify BAP1 as a key positive regulator of HIF-1α in hypoxia. We propose that the significant reduction of HIF-1α activity in mesothelioma cells carrying biallelic BAP1 mutations, accompanied by the significant reduction of HIF-1α activity in hypoxic tissues containing germline BAP1 mutations, contributes to the reduced aggressiveness and improved survival of mesotheliomas developing in carriers of germline BAP1 mutations.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit , Mesothelioma, Malignant , Mesothelioma , Ubiquitin Thiolesterase , Humans , Heterozygote , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mesothelioma/genetics , Mesothelioma/metabolism , Mesothelioma, Malignant/genetics , Mesothelioma, Malignant/complications , Mutation , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism
8.
Am J Respir Crit Care Med ; 209(12): 1463-1476, 2024 06 15.
Article in English | MEDLINE | ID: mdl-38358857

ABSTRACT

Rationale: Acute cellular rejection (ACR) after lung transplant is a leading risk factor for chronic lung allograft dysfunction. Prior studies have demonstrated dynamic microbial changes occurring within the allograft and gut that influence local adaptive and innate immune responses. However, the lung microbiome's overall impact on ACR risk remains poorly understood. Objectives: To evaluate whether temporal changes in microbial signatures were associated with the development of ACR. Methods: We performed cross-sectional and longitudinal analyses (joint modeling of longitudinal and time-to-event data and trajectory comparisons) of 16S rRNA gene sequencing results derived from lung transplant recipient lower airway samples collected at multiple time points. Measurements and Main Results: Among 103 lung transplant recipients, 25 (24.3%) developed ACR. In comparing samples acquired 1 month after transplant, subjects who never developed ACR demonstrated lower airway enrichment with several oral commensals (e.g., Prevotella and Veillonella spp.) than those with current or future (beyond 1 mo) ACR. However, a subgroup analysis of those who developed ACR beyond 1 month revealed delayed enrichment with oral commensals occurring at the time of ACR diagnosis compared with baseline, when enrichment with more traditionally pathogenic taxa was present. In longitudinal models, dynamic changes in α-diversity (characterized by an initial decrease and a subsequent increase) and in the taxonomic trajectories of numerous oral commensals were more commonly observed in subjects with ACR. Conclusions: Dynamic changes in the lower airway microbiota are associated with the development of ACR, supporting its potential role as a useful biomarker or in ACR pathogenesis.


Subject(s)
Graft Rejection , Lung Transplantation , Humans , Lung Transplantation/adverse effects , Male , Graft Rejection/microbiology , Female , Middle Aged , Longitudinal Studies , Cross-Sectional Studies , Adult , Microbiota , RNA, Ribosomal, 16S/genetics , Lung/microbiology , Aged , Acute Disease
9.
Lancet ; 402(10408): 1158-1169, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37598688

ABSTRACT

BACKGROUND: Cross-species immunological incompatibilities have hampered pig-to-human xenotransplantation, but porcine genome engineering recently enabled the first successful experiments. However, little is known about the immune response after the transplantation of pig kidneys to human recipients. We aimed to precisely characterise the early immune responses to the xenotransplantation using a multimodal deep phenotyping approach. METHODS: We did a complete phenotyping of two pig kidney xenografts transplanted to decedent humans. We used a multimodal strategy combining morphological evaluation, immunophenotyping (IgM, IgG, C4d, CD68, CD15, NKp46, CD3, CD20, and von Willebrand factor), gene expression profiling, and whole-transcriptome digital spatial profiling and cell deconvolution. Xenografts before implantation, wild-type pig kidney autografts, as well as wild-type, non-transplanted pig kidneys with and without ischaemia-reperfusion were used as controls. FINDINGS: The data collected from xenografts suggested early signs of antibody-mediated rejection, characterised by microvascular inflammation with immune deposits, endothelial cell activation, and positive xenoreactive crossmatches. Capillary inflammation was mainly composed of intravascular CD68+ and CD15+ innate immune cells, as well as NKp46+ cells. Both xenografts showed increased expression of genes biologically related to a humoral response, including monocyte and macrophage activation, natural killer cell burden, endothelial activation, complement activation, and T-cell development. Whole-transcriptome digital spatial profiling showed that antibody-mediated injury was mainly located in the glomeruli of the xenografts, with significant enrichment of transcripts associated with monocytes, macrophages, neutrophils, and natural killer cells. This phenotype was not observed in control pig kidney autografts or in ischaemia-reperfusion models. INTERPRETATION: Despite favourable short-term outcomes and absence of hyperacute injuries, our findings suggest that antibody-mediated rejection in pig-to-human kidney xenografts might be occurring. Our results suggest specific therapeutic targets towards the humoral arm of rejection to improve xenotransplantation results. FUNDING: OrganX and MSD Avenir.


Subject(s)
Graft Rejection , Kidney , Animals , Swine , Humans , Transplantation, Heterologous , Antibodies , Immunity , Inflammation , Ischemia
10.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Article in English | MEDLINE | ID: mdl-34815344

ABSTRACT

Carriers of heterozygous germline BAP1 mutations (BAP1+/-) are affected by the "BAP1 cancer syndrome." Although they can develop almost any cancer type, they are unusually susceptible to asbestos carcinogenesis and mesothelioma. Here we investigate why among all carcinogens, BAP1 mutations cooperate with asbestos. Asbestos carcinogenesis and mesothelioma have been linked to a chronic inflammatory process promoted by the extracellular release of the high-mobility group box 1 protein (HMGB1). We report that BAP1+/- cells secrete increased amounts of HMGB1, and that BAP1+/- carriers have detectable serum levels of acetylated HMGB1 that further increase when they develop mesothelioma. We linked these findings to our discovery that BAP1 forms a trimeric protein complex with HMGB1 and with histone deacetylase 1 (HDAC1) that modulates HMGB1 acetylation and its release. Reduced BAP1 levels caused increased ubiquitylation and degradation of HDAC1, leading to increased acetylation of HMGB1 and its active secretion that in turn promoted mesothelial cell transformation.


Subject(s)
Asbestos , HMGB1 Protein/chemistry , Histone Deacetylase 1/chemistry , Tumor Suppressor Proteins/chemistry , Ubiquitin Thiolesterase/chemistry , Animals , Biomarkers, Tumor/metabolism , Carcinogenesis , Cell Nucleus/metabolism , Female , Gene-Environment Interaction , Germ-Line Mutation , HMGB1 Protein/genetics , Heterozygote , Histone Deacetylase 1/genetics , Incidence , Inflammation , Male , Mesothelioma/metabolism , Mice , Mutation , Prognosis , Protein Binding , Tumor Suppressor Proteins/metabolism , Ubiquitin/chemistry , Ubiquitin Thiolesterase/metabolism
11.
Mod Pathol ; 36(12): 100326, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37678674

ABSTRACT

Recent statistics on lung cancer, including the steady decline of advanced diseases and the dramatically increasing detection of early-stage diseases and indeterminate pulmonary nodules, mark the significance of a comprehensive understanding of early lung carcinogenesis. Lung adenocarcinoma (ADC) is the most common histologic subtype of lung cancer, and atypical adenomatous hyperplasia is the only recognized preneoplasia to ADC, which may progress to adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) and eventually to invasive ADC. Although molecular evolution during early lung carcinogenesis has been explored in recent years, the progress has been significantly hindered, largely due to insufficient materials from ADC precursors. Here, we employed state-of-the-art deep learning and artificial intelligence techniques to robustly segment and recognize cells on routinely used hematoxylin and eosin histopathology images and extracted 9 biology-relevant pathomic features to decode lung preneoplasia evolution. We analyzed 3 distinct cohorts (Japan, China, and United States) covering 98 patients, 162 slides, and 669 regions of interest, including 143 normal, 129 atypical adenomatous hyperplasia, 94 AIS, 98 MIA, and 205 ADC. Extracted pathomic features revealed progressive increase of atypical epithelial cells and progressive decrease of lymphocytic cells from normal to AAH, AIS, MIA, and ADC, consistent with the results from tissue-consuming and expensive molecular/immune profiling. Furthermore, pathomics analysis manifested progressively increasing cellular intratumor heterogeneity along with the evolution from normal lung to invasive ADC. These findings demonstrated the feasibility and substantial potential of pathomics in studying lung cancer carcinogenesis directly from the low-cost routine hematoxylin and eosin staining.


Subject(s)
Adenocarcinoma in Situ , Adenocarcinoma , Lung Neoplasms , Precancerous Conditions , Humans , Hyperplasia/pathology , Artificial Intelligence , Eosine Yellowish-(YS) , Hematoxylin , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Adenocarcinoma in Situ/genetics , Adenocarcinoma in Situ/pathology , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Evolution, Molecular , Carcinogenesis/pathology
12.
Nature ; 546(7659): 549-553, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28614305

ABSTRACT

BRCA1-associated protein 1 (BAP1) is a potent tumour suppressor gene that modulates environmental carcinogenesis. All carriers of inherited heterozygous germline BAP1-inactivating mutations (BAP1+/-) developed one and often several BAP1-/- malignancies in their lifetime, mostly malignant mesothelioma, uveal melanoma, and so on. Moreover, BAP1-acquired biallelic mutations are frequent in human cancers. BAP1 tumour suppressor activity has been attributed to its nuclear localization, where it helps to maintain genome integrity. The possible activity of BAP1 in the cytoplasm is unknown. Cells with reduced levels of BAP1 exhibit chromosomal abnormalities and decreased DNA repair by homologous recombination, indicating that BAP1 dosage is critical. Cells with extensive DNA damage should die and not grow into malignancies. Here we discover that BAP1 localizes at the endoplasmic reticulum. Here, it binds, deubiquitylates, and stabilizes type 3 inositol-1,4,5-trisphosphate receptor (IP3R3), modulating calcium (Ca2+) release from the endoplasmic reticulum into the cytosol and mitochondria, promoting apoptosis. Reduced levels of BAP1 in BAP1+/- carriers cause reduction both of IP3R3 levels and of Ca2+ flux, preventing BAP1+/- cells that accumulate DNA damage from executing apoptosis. A higher fraction of cells exposed to either ionizing or ultraviolet radiation, or to asbestos, survive genotoxic stress, resulting in a higher rate of cellular transformation. We propose that the high incidence of cancers in BAP1+/- carriers results from the combined reduced nuclear and cytoplasmic activities of BAP1. Our data provide a mechanistic rationale for the powerful ability of BAP1 to regulate gene-environment interaction in human carcinogenesis.


Subject(s)
Calcium/metabolism , Cell Transformation, Neoplastic , Cytoplasm/metabolism , Endoplasmic Reticulum/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Mitochondria/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Apoptosis/genetics , Asbestos/toxicity , Calcium Signaling , Cell Nucleus/metabolism , Cell Survival , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/radiation effects , Cells, Cultured , DNA Damage , Epithelium , Fibroblasts , Gene-Environment Interaction , Humans , Protein Binding , Protein Stability , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics , Ubiquitin/metabolism , Ubiquitin Thiolesterase/deficiency , Ubiquitin Thiolesterase/genetics
13.
Proc Natl Acad Sci U S A ; 117(41): 25543-25552, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32999071

ABSTRACT

Asbestos causes malignant transformation of primary human mesothelial cells (HM), leading to mesothelioma. The mechanisms of asbestos carcinogenesis remain enigmatic, as exposure to asbestos induces HM death. However, some asbestos-exposed HM escape cell death, accumulate DNA damage, and may become transformed. We previously demonstrated that, upon asbestos exposure, HM and reactive macrophages releases the high mobility group box 1 (HMGB1) protein that becomes detectable in the tissues near asbestos deposits where HMGB1 triggers chronic inflammation. HMGB1 is also detectable in the sera of asbestos-exposed individuals and mice. Searching for additional biomarkers, we found higher levels of the autophagy marker ATG5 in sera from asbestos-exposed individuals compared to unexposed controls. As we investigated the mechanisms underlying this finding, we discovered that the release of HMGB1 upon asbestos exposure promoted autophagy, allowing a higher fraction of HM to survive asbestos exposure. HMGB1 silencing inhibited autophagy and increased asbestos-induced HM death, thereby decreasing asbestos-induced HM transformation. We demonstrate that autophagy was induced by the cytoplasmic and extracellular fractions of HMGB1 via the engagement of the RAGE receptor and Beclin 1 pathway, while nuclear HMGB1 did not participate in this process. We validated our findings in a novel unique mesothelial conditional HMGB1-knockout (HMGB1-cKO) mouse model. Compared to HMGB1 wild-type mice, mesothelial cells from HMGB1-cKO mice showed significantly reduced autophagy and increased cell death. Autophagy inhibitors chloroquine and desmethylclomipramine increased cell death and reduced asbestos-driven foci formation. In summary, HMGB1 released upon asbestos exposure induces autophagy, promoting HM survival and malignant transformation.


Subject(s)
Asbestos/adverse effects , Autophagy/drug effects , Cell Transformation, Neoplastic/chemically induced , HMGB1 Protein/metabolism , Mesothelioma/metabolism , Adult , Aged , Animals , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/metabolism , Humans , Male , Mice , Mice, Knockout , Middle Aged , Occupational Exposure
14.
Proc Natl Acad Sci U S A ; 117(52): 33466-33473, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33318203

ABSTRACT

Rare biallelic BLM gene mutations cause Bloom syndrome. Whether BLM heterozygous germline mutations (BLM+/-) cause human cancer remains unclear. We sequenced the germline DNA of 155 mesothelioma patients (33 familial and 122 sporadic). We found 2 deleterious germline BLM+/- mutations within 2 of 33 families with multiple cases of mesothelioma, one from Turkey (c.569_570del; p.R191Kfs*4) and one from the United States (c.968A>G; p.K323R). Some of the relatives who inherited these mutations developed mesothelioma, while none with nonmutated BLM were affected. Furthermore, among 122 patients with sporadic mesothelioma treated at the US National Cancer Institute, 5 carried pathogenic germline BLM+/- mutations. Therefore, 7 of 155 apparently unrelated mesothelioma patients carried BLM+/- mutations, significantly higher (P = 6.7E-10) than the expected frequency in a general, unrelated population from the gnomAD database, and 2 of 7 carried the same missense pathogenic mutation c.968A>G (P = 0.0017 given a 0.00039 allele frequency). Experiments in primary mesothelial cells from Blm+/- mice and in primary human mesothelial cells in which we silenced BLM revealed that reduced BLM levels promote genomic instability while protecting from cell death and promoted TNF-α release. Blm+/- mice injected intraperitoneally with asbestos had higher levels of proinflammatory M1 macrophages and of TNF-α, IL-1ß, IL-3, IL-10, and IL-12 in the peritoneal lavage, findings linked to asbestos carcinogenesis. Blm+/- mice exposed to asbestos had a significantly shorter survival and higher incidence of mesothelioma compared to controls. We propose that germline BLM+/- mutations increase the susceptibility to asbestos carcinogenesis, enhancing the risk of developing mesothelioma.


Subject(s)
Asbestosis/genetics , Genetic Predisposition to Disease , Germ-Line Mutation/genetics , Mesothelioma/genetics , RecQ Helicases/genetics , Adult , Aged , Animals , Asbestos, Crocidolite , Family , Female , Genomic Instability , Heterozygote , Humans , Incidence , Inflammation/pathology , Male , Mice , Middle Aged
15.
J Cell Physiol ; 236(5): 3406-3419, 2021 05.
Article in English | MEDLINE | ID: mdl-33107103

ABSTRACT

High-mobility group box 1 (HMGB1) was initially recognized as a ubiquitous nuclear protein involved in maintaining the nucleosome integrity and facilitating gene transcription. HMGB1 has since been reevaluated to be a prototypical damage-associated molecular pattern (DAMP) protein, and together with its exogenous counterpart, pathogen-associated molecular pattern (PAMP), completes the body's alarmin system against disturbances in homeostasis. HMGB1 can be released into the extracellular matrix (ECM) by either granulocytes or necrotic cells to serve as a chemotaxis/cytokine during infection, endotoxemia, hypoxia, ischemia-reperfusion events, and cancer. Different isoforms of HMGB1 present with distinctive physiological functions in ECM-fully-reduced HMGB1 (all thiol) acts as the initial damage signal to recruit circulating myeloid cells, disulfide HMGB1 behaves as a cytokine to activate macrophages and neutrophils, and both signals are turned off when HMGB1 is terminally oxidized into the final sulfonate form. Targeting HMGB1 constitutes a favorable therapeutic strategy for inflammation and inflammatory diseases. Antagonists such as ethyl pyruvate inhibit HMGB1 by interfering with its cytoplasmic exportation, while others such as glycyrrhizin directly bind to HMGB1 and render it unavailable for its receptors. The fact that a mixture of different HMGB1 isoforms is present in the ECM poses a challenge in pinpointing the exact role of an individual antagonist. A more discriminative probe for HMGB1 may be necessary to advance our knowledge of HMGB1, HMGB1 antagonists, and inflammatory-related diseases.


Subject(s)
Endotoxemia/metabolism , HMGB1 Protein/metabolism , Inflammation/metabolism , Macrophages/metabolism , Alarmins/metabolism , Animals , Cytokines/metabolism , Humans
16.
Int J Mol Sci ; 22(21)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34769499

ABSTRACT

Chemoresistance is a hallmark of malignant pleural mesothelioma (MPM) management and the expression of ALDH1A3 is responsible for the survival and activity of MPM chemoresistant cell subpopulations (ALDHbright cells). We enriched mesothelioma ALDHbright cells to near homogeneity by FACS sorting and an Aldefluor assay and performed unbiased Affymetrix gene expression profiling. Viability and ELISA assays were used to rule out significant apoptosis in the sorted cell subpopulations and to assess target engagement by butein. Statistical analysis of the results, pathway enrichment and promoter enrichment were employed for the generation of the data. Q-RTPCR was used to validate a subset of the identified, modulated mRNAs In this work, we started from the observation that the mRNA levels of the ALDH1A3 isoform could prognostically stratify MPM patients. Thus, we purified MPM ALDHbright cells from NCI-H2595 cells and interrogated their gene expression (GES) profile. We analyzed the GES of the purified cells at both a steady state and upon treatment with butein (a multifunctional tetrahydroxy-chalcone), which abates the ALDHbright cell number, thereby exerting chemo-sensitizing effects in vitro and in vivo. We identified 924 genes modulated in a statistically significant manner as a function of ALDH status and of the response to the inhibitor. Pathway and promoter enrichment identified the molecular determinant of high ALDH status and how butein treatment altered the molecular portrait of those chemoresistant cell subpopulations. Further, we unraveled an eighteen-gene signature with high prognostic significance for MPM patients, and showed that most of the identified prognostic contributors escaped the analysis of unfractionated samples. This work proves that digging into the unexplored field of intra-tumor heterogeneity (ITH) by working at the cell subpopulation level may provide findings of prognostic relevance, in addition to mechanistic insights into tumor resistance to therapy.


Subject(s)
Aldehyde Oxidoreductases/metabolism , DNA Repair , Mesothelioma, Malignant/pathology , NF-kappa B/metabolism , Cell Line, Tumor , Clonal Evolution , Drug Resistance, Neoplasm , Flow Cytometry/methods , Humans , Mesothelioma, Malignant/drug therapy , Mesothelioma, Malignant/genetics , Mesothelioma, Malignant/metabolism , Prognosis , Survival Rate
17.
J Cell Biochem ; 121(8-9): 3986-3999, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31803961

ABSTRACT

The intramural the National Cancer Institute (NCI) and more recently the University of Texas Southwestern Medical Center with many different collaborators comprised a complex, multi-disciplinary team that collaborated to generated large, comprehensively annotated, cell-line related research resources which includes associated clinical, and molecular characterization data. This material has been shared in an anonymized fashion to accelerate progress in overcoming lung cancer, the leading cause of cancer death across the world. However, this cell line collection also includes a range of other cancers derived from patient-donated specimens that have been remarkably valuable for other types of cancer and disease research. A comprehensive analysis conducted by the NCI Center for Research Strategy of the 278 cell lines reported in the original Journal of Cellular Biochemistry Supplement, documents that these cell lines and related products have since been used in more than 14 000 grants, and 33 207 published scientific reports. This has resulted in over 1.2 million citations using at least one cell line. Many publications involve the use of more than one cell line, to understand the value of the resource collectively rather than individually; this method has resulted in 2.9 million citations. In addition, these cell lines have been linked to 422 clinical trials and cited by 4700 patents through publications. For lung cancer alone, the cell lines have been used in the research cited in the development of over 70 National Comprehensive Cancer Network clinical guidelines. Finally, it must be underscored again, that patient altruism enabled the availability of this invaluable research resource.

18.
Am J Ind Med ; 63(2): 105-114, 2020 02.
Article in English | MEDLINE | ID: mdl-31743489

ABSTRACT

The burden and prognosis of malignant mesothelioma in the United States have remained largely unchanged for decades, with approximately 3200 new cases and 2400 deaths reported annually. To address care and research gaps contributing to poor outcomes, in March of 2019 the Mesothelioma Applied Research Foundation convened a workshop on the potential usefulness and feasibility of a national mesothelioma registry. The workshop included formal presentations by subject matter experts and a moderated group discussion. Workshop participants identified top priorities for a registry to be (a) connecting patients with high-quality care and clinical trials soon after diagnosis, and (b) making useful data and biospecimens available to researchers in a timely manner. Existing databases that capture mesothelioma cases are limited by factors such as delays in reporting, deidentification, and lack of exposure information critical to understanding as yet unrecognized causes of disease. National disease registries for amyotrophic lateral sclerosis (ALS) in the United States and for mesothelioma in other countries, provide examples of how a registry could be structured to meet the needs of patients and the scientific community. Small-scale pilot initiatives should be undertaken to validate methods for rapid case identification, develop procedures to facilitate patient access to guidelines-based standard care and investigational therapies, and explore approaches to data sharing with researchers. Ultimately, federal coordination and funding will be critical to the success of a National Mesothelioma Registry in improving mesothelioma outcomes and preventing future cases of this devastating disease.


Subject(s)
Mesothelioma, Malignant/epidemiology , Occupational Diseases/epidemiology , Registries , Feasibility Studies , Humans , Population Surveillance , Prognosis , United States/epidemiology
19.
Proc Natl Acad Sci U S A ; 113(18): 5071-6, 2016 May 03.
Article in English | MEDLINE | ID: mdl-27071132

ABSTRACT

Chronic lymphocytic leukemia (CLL) is the most common human leukemia, and transgenic mouse studies indicate that activation of the T-cell leukemia/lymphoma 1 (TCL1) oncogene is a contributing event in the pathogenesis of the aggressive form of this disease. While studying the regulation of TCL1 expression, we identified the microRNA cluster miR-4521/3676 and discovered that these two microRNAs are associated with tRNA sequences and that this region can produce two small RNAs, members of a recently identified class of small noncoding RNAs, tRNA-derived small RNAs (tsRNAs). We further proved that miR-3676 and miR-4521 are tsRNAs using Northern blot analysis. We found that, like ts-3676, ts-4521 is down-regulated and mutated in CLL. Analysis of lung cancer samples revealed that both ts-3676 and ts-4521 are down-regulated and mutated in patient tumor samples. Because tsRNAs are similar in nature to piRNAs [P-element-induced wimpy testis (Piwi)-interacting small RNAs], we investigated whether ts-3676 and ts-4521 can interact with Piwi proteins and found these two tsRNAs in complexes containing Piwi-like protein 2 (PIWIL2). To determine whether other tsRNAs are involved in cancer, we generated a custom microarray chip containing 120 tsRNAs 16 bp or more in size. Microarray hybridization experiments revealed tsRNA signatures in CLL and lung cancer, indicating that, like microRNAs, tsRNAs may have an oncogenic and/or tumor-suppressor function in hematopoietic malignancies and solid tumors. Thus, our results show that tsRNAs are dysregulated in human cancer.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Lung Neoplasms/genetics , Multigene Family/genetics , RNA, Neoplasm/genetics , RNA, Small Untranslated/genetics , RNA, Transfer/genetics , Gene Expression Regulation, Neoplastic/genetics , Genetic Markers/genetics , Genetic Predisposition to Disease/genetics , Humans
20.
Proc Natl Acad Sci U S A ; 113(47): 13432-13437, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27834213

ABSTRACT

We used a custom-made comparative genomic hybridization array (aCGH; average probe interval 254 bp) to screen 33 malignant mesothelioma (MM) biopsies for somatic copy number loss throughout the 3p21 region (10.7 Mb) that harbors 251 genes, including BRCA1 (breast cancer 1)-associated protein 1 (BAP1), the most commonly mutated gene in MM. We identified frequent minute biallelic deletions (<3 kb) in 46 of 251 genes: four were cancer-associated genes: SETD2 (SET domain-containing protein 2) (7 of 33), BAP1 (8 of 33), PBRM1 (polybromo 1) (3 of 33), and SMARCC1 (switch/sucrose nonfermentable- SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily c, member 1) (2 of 33). These four genes were further investigated by targeted next-generation sequencing (tNGS), which revealed sequence-level mutations causing biallelic inactivation. Combined high-density aCGH and tNGS revealed biallelic gene inactivation in SETD2 (9 of 33, 27%), BAP1 (16 of 33, 48%), PBRM1 (5 of 33, 15%), and SMARCC1 (2 of 33, 6%). The incidence of genetic alterations detected is much higher than reported in the literature because minute deletions are not detected by NGS or commercial aCGH. Many of these minute deletions were not contiguous, but rather alternated with segments showing oscillating copy number changes along the 3p21 region. In summary, we found that in MM: (i) multiple minute simultaneous biallelic deletions are frequent in chromosome 3p21, where they occur as distinct events involving multiple genes; (ii) in addition to BAP1, mutations of SETD2, PBRM1, and SMARCC1 are frequent in MM; and (iii) our results suggest that high-density aCGH combined with tNGS provides a more precise estimate of the frequency and types of genes inactivated in human cancer than approaches based exclusively on NGS strategy.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 3/genetics , Comparative Genomic Hybridization , High-Throughput Nucleotide Sequencing , Lung Neoplasms/genetics , Mesothelioma/genetics , Alleles , Cell Line, Tumor , DNA Copy Number Variations/genetics , Gene Expression Regulation, Neoplastic , Gene Silencing , Genome, Human , Humans , Mesothelioma, Malignant , Multigene Family , Mutation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL