Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Microvasc Res ; 153: 104667, 2024 05.
Article in English | MEDLINE | ID: mdl-38307406

ABSTRACT

Extracellular signal-regulated kinase (Erk)-5 is a key mediator of endothelial cell homeostasis, and its inhibition causes loss of critical endothelial markers leading to endothelial dysfunction (ED). Circulating oxidized low-density lipoprotein (oxLDL) has been identified as an underlying cause of ED and atherosclerosis in metabolic disorders. Silymarin (Sym), a flavonolignan, possesses various pharmacological activities however its preventive mechanism in ED warrants further investigation. Here, we have examined the effects of Sym in regulating the expression of Erk-5 and ameliorating ED using in vitro and in vivo models. Primary human umbilical vein endothelial cells (pHUVECs) viability was measured by MTT assay; mRNA and protein expression by RT-qPCR and Western blotting; tube-formation assay was performed to examine endothelialness. In in-vivo experiments, normal chow-fed mice (control) or high-fat diet (HFD)-fed mice were administered Sym or Erk-5 inhibitor (BIX02189) and body weight, blood glucose, plasma-LDL, oxLDL levels, and expression of EC markers in the aorta were examined. Sym (5 µg/ml) maintained the viability and tube-formation ability of oxLDL exposed pHUVECs. Sym increased the expression of Erk-5, vWF, and eNOS and decreased ICAM-1 at transcription and translation levels in oxLDL-exposed pHUVECs. In HFD-fed mice, Sym reduced the body weight, blood glucose, LDL-cholesterol, and oxLDL levels, and increased the levels of vWF and eNOS along with Erk-5 and decreased the level of ICAM-1 in the aorta. These data suggest that Sym could be a potent anti-atherosclerotic agent that could elevate Erk-5 level in the ECs and prevent ED caused by oxidized LDL during HFD-induced obesity in mice.


Subject(s)
Atherosclerosis , Silymarin , Humans , Animals , Mice , Intercellular Adhesion Molecule-1 , Signal Transduction , Cells, Cultured , Silymarin/adverse effects , Blood Glucose , von Willebrand Factor , Lipoproteins, LDL/toxicity , Lipoproteins, LDL/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Atherosclerosis/chemically induced , Body Weight
2.
Mol Divers ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38796796

ABSTRACT

In the realm of synthetic organic chemistry, by using a one-pot sequential combination of MCR, it is possible to manufacture chemical commodities (fine chemicals, agrochemicals, and pharmaceutical substances) that enhance our quality of life while generating less waste materials and increasing economic advantages. With this motivation, using a "one-pot" method with multiple components, we present a relatively simple way to make stereoselective substitute 2H-indazole analogues for this study. Firstly, functionalised 3-bromo-4-((methylthio)methyl) derivatives were produced using DMSO as both a carbon source and a solvent, in conjunction with TMSOTf as the Lewis acid promoter. These derivatives were then utilised in the synthesis of 2-H-indazole derivatives with an up to 80% yield using t-Bu3PHBF4 as the ligand and Cs2CO3 as the base, in the presence of a Pd catalyst at 100°C in an airtight tube. The phenyl ring is endowed with an electron-releasing group situated at position C-6, which efficiently synthesises several 2-H-indazol derivatives with cost-efficient and noteworthy yields by using this method. A comparative analysis of a number of halogen derivatives was also undertaken, using a variety of solvents that were classified according to their halogen group. To confirm the structures of the synthesised target compounds, spectrometric analysis (1H NMR, 13C NMR, and LCMS) was performed.

3.
J Neuroinflammation ; 20(1): 131, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37254147

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is a disabling autoimmune demyelinating disorder affecting young people and causing significant disability. In the last decade, different microRNA (miRNA) expression patterns have been associated to several treatment response therapies such as interferon and glatiramer acetate. Nowadays, there is increasing interest in the potential role of miRNA as treatment response biomarkers to the most recent oral and intravenous treatments. In this study, we aimed to evaluate serum miRNAs as biomarkers of No Evidence of Disease Activity (NEDA-3) at 2 years in patients with relapsing remitting MS (RRMS) treated with fingolimod. MAIN BODY: A Discovery cohort of 31 RRMS patients treated with fingolimod were identified from the CLIMB study and classified as No Evidence of Disease Activity (NEDA-3) or Evidence of Disease Activity (EDA-3) after 2 years on treatment. Levels of miRNA expression were measured at 6 months using human serum miRNA panels and compared in EDA-3 and NEDA-3 groups using the Wilcoxon rank sum test. A set of differentially expressed miRNA was further validated in an independent cohort of 22 fingolimod-treated patients. We found that 548a-3p serum levels were higher levels in fingolimod-treated patients classified as NEDA-3, compared to the EDA-3 group in both the Discovery (n = 31; p = 0.04) and Validation (n = 22; p = 0.03) cohorts 6 months after treatment initiation; miR-548a-3p provided an AUC of 0.882 discriminating patients with NEDA-3 at 2 years in the Validation cohort. CONCLUSION: Our results show differences in miR-548a-3p expression at 6 months after fingolimod start in patients with MS with NEDA-3 at 2 years. These results provide class III evidence of the use of miR-548a-3p as biomarker of NEDA-3 in patients with fingolimod.


Subject(s)
Autoimmune Diseases , MicroRNAs , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Adolescent , Fingolimod Hydrochloride/therapeutic use , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Biomarkers
4.
Arch Microbiol ; 205(4): 107, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36881156

ABSTRACT

Indiscriminate use of antibiotics to treat microbial pathogens has caused emergence of multiple drug resistant strains. Most infectious diseases are caused by microbes that are capable of intercommunication using signaling molecules, which is known as quorum sensing (QS). Such pathogens express their pathogenicity through various QS-regulated virulence factors. Interference of QS could lead to decisive results in controlling such pathogenicity. Hence, QS inhibition has become an attractive new approach for the development of novel drugs. Many quorum sensing inhibitors (QSIs) of diverse origins have been reported. It is imperative that more such anti-QS compounds be found and studied, as they have significant effect on microbial pathogenicity. This review attempts to give a brief account of QS mechanism, its inhibition and describes some compounds with anti-QS potential. Also discussed is the possibility of emergence of quorum sensing resistance.


Subject(s)
Anti-Bacterial Agents , Quorum Sensing , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics
5.
Br J Neurosurg ; 37(5): 1315-1318, 2023 Oct.
Article in English | MEDLINE | ID: mdl-33393846

ABSTRACT

Bariatric surgery is an effective treatment for patients with idiopathic intracranial hypertension (IIH), a condition that is associated with skull base defects. A 55-year-old woman presented with symptoms of intractable nausea and vomiting, followed by headache and confusion two weeks after an elective laparoscopic vertical sleeve gastrectomy procedure. She had a presumed diagnosis of IIH and a remote history of CSF oto/rhinorrhea treated with a lumbar peritoneal (LP) shunt. Computed tomography (CT) scan of the head revealed tension pneumocephalus with midline shift and dehiscence of the tegmen. The patient underwent emergent craniotomy for decompression of the air-filled temporal lobe, clamping of the LP shunt, and repair of the skull base defect. Caution should be exercised in obese patients with a history of CSF leak secondary to a middle fossa skull base defect when being evaluated for bariatric surgery.


Subject(s)
Bariatric Surgery , Cerebrospinal Fluid Rhinorrhea , Pneumocephalus , Pseudotumor Cerebri , Female , Humans , Middle Aged , Pneumocephalus/diagnostic imaging , Pneumocephalus/etiology , Pneumocephalus/surgery , Cerebrospinal Fluid Rhinorrhea/etiology , Tomography, X-Ray Computed/adverse effects , Treatment Outcome , Bariatric Surgery/adverse effects
6.
Mol Divers ; 26(4): 2189-2209, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34591234

ABSTRACT

Papain-like protease (nsp-3; non-structural protein) of novel corona virus is an ideal target for developing drugs as it plays multiple important functions for viral growth and replication. For instance, role of nsp-3 has been recognized in cleavage of viral polyprotein; furthermore, in infected host it weakens the immune system via downregulating the production of type I interferon. This downregulation is promoted by removal of ubiquitin-like interferon-stimulated gene 15 protein (ISG15) from interferon-responsive factor 3 (IRF3) protein. Among known inhibitors of SARS-CoV-PLpro GRL0617 is by far the most effective inhibitor. As PLpro of SARS-CoV2 is having more than 80% similarity with SARS-CoV-PLpro, GRL0617 is reported to be effective even against SARS-CoV2. Owing to this similarity, certain key amino acids remain the same/conserved in both proteins. Among conserved amino acids Tyr268 for SARS-CoV2 and Tyr269 for SARS-CoV produce important hydrophobic interactions with aromatic rings of GRL0617. Here, in this study antibacterial compounds were collected from ZINC database, and they were filtered to select compounds that are having similar structural features as GRL0617. This filtered library of compound was then docked with SARS-CoV and CoV2-PLpro. Five hits were noted that were able to interact with Tyr268 (SARS-CoV2) and Tyr269 (SARS-CoV). Further, best hit 2-(2-((benzofuran-2-carboxamido)methyl)-5-methoxy-1H-indol-1-yl)acetic acid (ZINC44459905) was studied using molecular dynamic simulation where stability of protein-ligand complex as well as stability of produced interactions was noted.


Subject(s)
COVID-19 Drug Treatment , Coronavirus Papain-Like Proteases , Drug Repositioning , SARS-CoV-2 , Amino Acids , Aniline Compounds/pharmacology , Anti-Bacterial Agents , Benzamides/pharmacology , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Naphthalenes/pharmacology , RNA, Viral , SARS-CoV-2/drug effects , Ubiquitins/chemistry , Ubiquitins/metabolism
7.
Mol Divers ; 26(1): 309-329, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33825097

ABSTRACT

The non-structural protein (nsp)-3 of SARS-CoV2 coronavirus is sought to be an essential target protein which is also named as papain-like protease (PLpro). This protease cleaves the viral polyprotein, but importantly in human host it also removes ubiquitin-like interferon-stimulated gene 15 protein (ISG15) from interferon responsive factor 3 (IRF3) protein which ultimately downregulates the production of type I interferon leading to weakening of immune response. GRL0617 is the most potent known inhibitor for PLpro that was initially developed for SARS outbreak of 2003. The PLpro of SARS-CoV and CoV2 share 83% sequence identity but interestingly have several identical conserved amino acids that suggests GRL0617 to be an effective inhibitor for PLpro of SARS-CoV2. GRL0617 is a naphthalene-based molecule and interacts with Tyr268 of SARS-CoV2-PLpro (and Tyr269 of SARS-CoV-PLpro). To identify PLpro inhibitors, we prepared a library of secondary metabolites from fungi with aromatic nature and docked them with PLpro of SARS-CoV and SARS-CoV2. We found six hits which interacts with Tyr268 of SARS-CoV2-PLpro (and Tyr269 of SARS-CoV-PLpro). More surprisingly the top hit, Fonsecin, has naphthalene moiety in its structure, which recruits Tyr268 of SARS-CoV2-PLpro (and Tyr269 of SARS-CoV-PLpro) and has binding energy at par with control (GRL0617). Molecular dynamics (MD) simulation showed Fonsecin to interact with Tyr268 of SARS-CoV2-PLpro more efficiently than control (GRL0617) and interacting with a greater number of amino acids in the binding cleft of PLpro.


Subject(s)
COVID-19 Drug Treatment , Molecular Dynamics Simulation , Aniline Compounds , Benzamides , Fungi/metabolism , Humans , Molecular Docking Simulation , Naphthalenes , Papain/chemistry , Papain/metabolism , Peptide Hydrolases/metabolism , RNA, Viral , SARS-CoV-2
8.
Molecules ; 27(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36296666

ABSTRACT

Ladybird beetles (Coleoptera: Coccinellidae) possess strong chemical defences that are secreted in response to stress and are also found on the coating of eggs, which are rich in alkaloids that are responsible for their toxicity to other species. Recent studies have shown that alkaloids from several species of ladybird beetle can target nicotinic acetylcholine receptors (nAChRs) acting as receptor antagonists. Here, we have explored the actions of (-)-adaline, found in the 2-spot (Adalia bipunctata) and 10-spot (Adalia decempunctata) ladybirds, on both mammalian (α1ß1γδ, α7, α4ß2, α3ß4) and insect nAChRs using patch-clamp of TE671 cells and locust brain neurons natively expressing nAChRs, as well as two-electrode voltage clamp of Xenopus laevis oocytes recombinantly expressing nAChRs. All nAChR subtypes were antagonised by (-)-adaline in a time-dependent, voltage-dependent and non-competitive manner with the lowest IC50s at rat α3ß4 (0.10 µM) and locust neuron (1.28 µM) nAChRs, at a holding potential of -75 mV. The data imply that (-)-adaline acts as an open channel blocker of nAChRs.


Subject(s)
Alkaloids , Coleoptera , Receptors, Nicotinic , Animals , Rats , Piperidines , Nicotinic Antagonists , Xenopus laevis , Mammals
9.
J Cardiovasc Pharmacol ; 78(5): e729-e737, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34173812

ABSTRACT

ABSTRACT: Foam cell formation is an important event in atherosclerosis. Fisetin, a bioflavonoid, has been identified to possess anti-inflammatory, antilipidemic, and anticancerous properties; however, its role as a lipid homeostasis regulator in macrophages, specifically in the presence of metabolic stressors such as oxidized low-density lipoprotein (oxLDL) is not well understood. In this study, we have investigated the role of fisetin in preventing oxLDL-induced macrophage foam cell formation. U937-derived macrophages were stimulated with oxLDL with or without fisetin for varied time points, and various parameters were assessed including cell viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay; reactive oxygen species (ROS) by dichlorofluorescin diacetate assay; lipid accumulation by Oil Red O staining; and expression of NLR family pyrin domain containing 3 (NLRP3), sterol regulatory element-binding protein (SREBP)-1, and associated downstream proteins 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) and fatty acid synthase (FAS) by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunoblotting. Functionality of FAS enzyme was determined using enzyme activity assay. Docking studies were performed to determine the in silico interaction between NLRP3 and fisetin. The results showed that fisetin up to the dose of 10 µM did not alter cell viability but at the same dose could decrease the accumulation of lipids in macrophages and prevented foam cell formation. Fisetin could also ameliorate and reduce oxLDL-induced upregulation of SREBP-1 and thereby the expression of its downstream lipid synthesis genes HMGCR and FAS and inhibited ROS-induced NLRP3 inflammasome activation. In conclusion, fisetin could inhibit foam cell formation by blocking oxLDL-induced ROS formation and subsequent NLRP3 activation, thereby inhibiting SREBP-1 and its downstream genes including FAS and HMGCR.


Subject(s)
Flavonols/pharmacology , Foam Cells/drug effects , Hypolipidemic Agents/pharmacology , Lipoproteins, LDL/toxicity , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Foam Cells/metabolism , Foam Cells/pathology , Gene Expression Regulation, Enzymologic , Humans , Hydroxymethylglutaryl CoA Reductases/genetics , Hydroxymethylglutaryl CoA Reductases/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , U937 Cells
10.
Am J Physiol Renal Physiol ; 318(5): F1100-F1112, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32116018

ABSTRACT

In the early proximal tubule, Na+-glucose cotransporter 2 (SGLT2) mediates the bulk of renal glucose reabsorption. Gene deletion in mice (Sglt2-/-) was used to determine the role of SGLT2 in acute kidney injury induced by bilateral ischemia-reperfusion (IR). In Sglt2-/- and littermate wild-type mice, plasma creatinine increased similarly on day 1 after IR. This was associated with an equal increase in both genotypes in the urinary kidney injury molecule-1-to-creatinine ratio, a tubular injury marker, and similarly reduced urine osmolality and increased plasma osmolality, indicating impaired urine concentration. In both IR groups, FITC-sinistrin glomerular filtration rate was equally reduced on day 14, and plasma creatinine was similarly and incompletely restored on day 23. In Sglt2-/- mice subjected to IR, fractional urinary glucose excretion was increased on day 1 but reduced and associated with normal renal Na+-glucose cotransporter 1 (Sglt1) mRNA expression on day 23, suggesting temporary SGLT1 suppression. In wild-type mice subjected to IR, renal Sglt1 mRNA was likewise normal on day 23, whereas Sglt2 mRNA was reduced by 57%. In both genotypes, IR equally reduced urine osmolality and renal mRNA expression of the Na+-K+-2Cl- cotransporter and renin on day 23, suggesting thick ascending limb dysfunction, and similarly increased renal mRNA expression of markers of injury, inflammation, oxidative stress, and fibrosis (kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, monocyte chemoattractant protein-1, transforming growth factor-ß1, NADPH oxidase-2, and collagen type 1). This was associated with equal increases in kidney histological damage scores and similar degree of capillary loss in both genotypes. The data indicate that genetic deletion of SGLT2 did not protect the kidneys in the initial injury phase or the subsequent recovery phase in a mouse model of IR-induced acute kidney injury.


Subject(s)
Acute Kidney Injury/metabolism , Blood Glucose/metabolism , Kidney/metabolism , Reperfusion Injury/metabolism , Sodium-Glucose Transporter 2/deficiency , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Acute Kidney Injury/physiopathology , Animals , Biomarkers/blood , Disease Models, Animal , Glomerular Filtration Rate , Kidney/pathology , Mice, Inbred C57BL , Mice, Knockout , Renal Elimination , Renal Reabsorption , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Reperfusion Injury/physiopathology , Sodium-Glucose Transporter 2/genetics , Time Factors
11.
Am J Physiol Renal Physiol ; 319(4): F712-F728, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32893663

ABSTRACT

Inhibitors of proximal tubular Na+-glucose cotransporter 2 (SGLT2) are natriuretic, and they lower blood pressure. There are reports that the activities of SGLT2 and Na+-H+ exchanger 3 (NHE3) are coordinated. If so, then part of the natriuretic response to an SGLT2 inhibitor is mediated by suppressing NHE3. To examine this further, we compared the effects of an SGLT2 inhibitor, empagliflozin, on urine composition and systolic blood pressure (SBP) in nondiabetic mice with tubule-specific NHE3 knockdown (NHE3-ko) and wild-type (WT) littermates. A single dose of empagliflozin, titrated to cause minimal glucosuria, increased urinary excretion of Na+ and bicarbonate and raised urine pH in WT mice but not in NHE3-ko mice. Chronic empagliflozin treatment tended to lower SBP despite higher renal renin mRNA expression and lowered the ratio of SBP to renin mRNA, indicating volume loss. This effect of empagliflozin depended on tubular NHE3. In diabetic Akita mice, chronic empagliflozin enhanced phosphorylation of NHE3 (S552/S605), changes previously linked to lesser NHE3-mediated reabsorption. Chronic empagliflozin also increased expression of genes involved with renal gluconeogenesis, bicarbonate regeneration, and ammonium formation. While this could reflect compensatory responses to acidification of proximal tubular cells resulting from reduced NHE3 activity, these effects were at least in part independent of tubular NHE3 and potentially indicated metabolic adaptations to urinary glucose loss. Moreover, empagliflozin increased luminal α-ketoglutarate, which may serve to stimulate compensatory distal NaCl reabsorption, while cogenerated and excreted ammonium balances urine losses of this "potential bicarbonate." The data implicate NHE3 as a determinant of the natriuretic effect of empagliflozin.


Subject(s)
Benzhydryl Compounds/pharmacology , Diabetes Mellitus/drug therapy , Glucosides/pharmacology , Kidney Tubules, Proximal/drug effects , Natriuresis/drug effects , Natriuretic Agents/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2/metabolism , Sodium-Hydrogen Exchanger 3/metabolism , Acid-Base Equilibrium/drug effects , Animals , Blood Glucose/metabolism , Blood Pressure/drug effects , Diabetes Mellitus/metabolism , Diabetes Mellitus/physiopathology , Disease Models, Animal , Glycosuria/metabolism , Glycosuria/physiopathology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/physiopathology , Male , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Sodium-Hydrogen Exchanger 3/deficiency , Sodium-Hydrogen Exchanger 3/genetics
12.
Mol Biol Rep ; 47(10): 8113-8131, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32990905

ABSTRACT

Peptide Nucleic Acid (PNA) serves as an artificial functional analog of DNA. Being immune to enzymatic degradation and possessing strong affinity towards DNA and RNA, it is an ideal candidate for many medical and biotechnological applications that are of antisense and antigene in nature. PNAs are anticipated to have its application in DNA and RNA detection as well as quantification, to serve as antibacterial and antiviral agents, and silencing gene for developing anticancer strategies. Although, their restricted entry in both eukaryotic and prokaryotic cells limit their applications. In addition, aggregation of PNA in storage containers reduces the quality and quantity of functional PNA that makes it inadequate for their mass production and storage. To overcome these limitations, researchers have modified PNA either by the addition of diverse functional groups at various loci on its backbone, or by synthesizing chimeras with other moieties associated with various delivery agents that aids their entry into the cell. Here, this review article summarizes few of the structural modifications that are performed with PNA, methods used to improve their cellular uptake and shedding light on the applications of PNA in various prospects in biological sciences.


Subject(s)
DNA/analysis , Peptide Nucleic Acids/chemistry , RNA/analysis , DNA/chemistry , RNA/chemistry
13.
Pestic Biochem Physiol ; 166: 104561, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32448416

ABSTRACT

The harlequin ladybird, Harmonia axyridis (H. axyridis), possesses a strong chemical defence that has contributed to its invasive success. Ladybird beetle defensive chemicals, secreted in response to stress and also found on the coating of laid eggs, are rich in alkaloids that are thought to be responsible for this beetle's toxicity to other species. Recent studies have shown that alkaloids from several species of ladybird beetle can target nicotinic acetylcholine receptors (nAChRs) acting as receptor antagonists, hence we have explored the actions of alkaloids of the ladybird H. axyridis on both mammalian and insect nAChRs. Electrophysiological studies on native and functionally expressed recombinant nAChRs were used to establish whether an alkaloid extract from H. axyridis (HAE) targeted nAChRs and whether any selectivity exists for insect over mammalian receptors of this type. HAE was found to be an inhibitor of all nAChRs tested with the voltage-dependence of inhibition and the effect on ACh EC50 differing between nAChR subtypes. Our finding that an HAE fraction consisting almost entirely of harmonine had a strong inhibitory effect points to this alkaloid as a key component of nAChR inhibitory actions. Comparison of HAE inhibition between the mammalian and insect nAChRs investigated indicates some preference for the insect nAChR supporting the view that investigation of ladybird alkaloids shows promise as a method for identifying natural product leads for future insecticide development.


Subject(s)
Alkaloids , Coleoptera , Receptors, Nicotinic , Alkenes , Animals , Plant Extracts
14.
J Clin Monit Comput ; 34(5): 1043-1049, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31673945

ABSTRACT

NIV therapy is used to provide positive pressure ventilation for patients. There are protocols describing what ventilator settings to use to initialize NIV; however, the guidelines for titrating ventilator settings are less specific. We developed an advisory system to recommend NIV ventilator setting titration and recorded respiratory therapist agreement rates at the bedside. We developed an algorithm (NIV advisor) to recommend when to change the non-invasive ventilator settings of IPAP, EPAP, and FiO2 based on patient respiratory parameters. The algorithm utilized a multi-target approach; oxygenation, ventilation, and patient effort. The NIV advisor recommended ventilator settings to move the patient's respiratory parameters in a preferred target range. We implemented a pilot study evaluating the usability of the NIV advisor on 10 patients receiving critical care with non-invasive ventilation (NIV). Respiratory therapists were asked their agreement on recommendations from the NIV advisor at the patient's bedside. Bedside respiratory therapists agreed with 91% of the ventilator setting recommendations from the NIV advisor. The POB and VT values were the respiratory parameters that were most often out of the preferred target range. The IPAP ventilator setting was the setting most often considered in need of changing by the NIV advisor. The respiratory therapists agreed with the majority of the recommendations from the NIV advisor. We consider the IPAP recommendations informative in providing the respiratory therapist assistance in targeting preferred POB and Vt values, as these values were frequently out of the target ranges. This pilot implementation was unable to produce the results required to determine the value of the EPAP recommendations. The FiO2 recommendations from the NIV advisor were treated as ancillary information behind the IPAP recommendations.


Subject(s)
Decision Support Systems, Clinical , Noninvasive Ventilation , Respiratory Insufficiency , Humans , Pilot Projects , Ventilators, Mechanical
15.
J Clin Monit Comput ; 34(5): 1035-1042, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31664660

ABSTRACT

Patient-ventilator asynchrony is associated with intolerance to noninvasive ventilation (NIV) and worsened outcomes. Our goal was to develop a tool to determine a patient needs for  intervention by a practitioner due to the presence of patient-ventilator asynchrony. We postulated that a clinician can determine when a patient needs corrective intervention due to the perceived severity of patient-ventilator asynchrony. We hypothesized a new measure, patient breathing variability, would indicate when corrective intervention is suggested by a bedside practitioner due to the perceived severity of patient-ventilator asynchrony. With IRB approval data was collected on 78 NIV patients. A panel of experts reviewed retrospective data from a development set of 10 NIV patients to categorize them into one of the three categories. The three categories were; "No to mild asynchrony-no intervention needed", "moderate asynchrony-non-emergent corrective intervention required", and "severe asynchrony-immediate intervention required". A stepwise regression with a F-test forward selection criterion was used to develop a positive linear logic model predicting the expert panel's categorizations of the need for corrective intervention. The model was incorporated into a software tool for clinical implementation. The tool was implemented prospectively on 68 NIV patients simultaneous to a bedside practitioner scoring the need for corrective intervention due to the perceived severity of patient-ventilator asynchrony. The categories from the tool and the practitioner were compared with the rate of agreement, sensitivity, specificity, and receiver operator characteristic analyses. The rate of agreement in categorizing the suggested need for clinical intervention due to the perceived presence of patient-ventilator asynchrony between the tool and experienced bedside practitioners was 95% with a Kappa score of 0.85 (p < 0.001). Further analysis found a specificity of 84% and sensitivity of 99%. The tool appears to accurately match the suggested need for corrective intervention by a bedside practitioner. Application of the tool allows for continuous, real time, and non-invasive monitoring of patients receiving NIV, and may enable early corrective interventions to ameliorate potential patient-ventilator asynchrony.


Subject(s)
Noninvasive Ventilation , Humans , Respiration , Respiration, Artificial , Retrospective Studies , Ventilators, Mechanical
16.
Am J Physiol Renal Physiol ; 316(6): F1201-F1210, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30995111

ABSTRACT

Renal Na+-glucose cotransporter SGLT1 mediates glucose reabsorption in the late proximal tubule, a hypoxia-sensitive tubular segment that enters the outer medulla. Gene deletion in mice (Sglt1-/-) was used to determine the role of the cotransporter in acute kidney injury induced by ischemia-reperfusion (IR), including the initial injury and subsequent recovery phase. On days 1 and 16 after IR, absolute and fractional urinary glucose excretion remained greater in Sglt1-/- mice versus wild-type (WT) littermates, consistent with a sustained contribution of SGLT1 to tubular glucose reabsorption in WT mice. Absence of SGLT1 did not affect the initial kidney impairment versus WT mice, as indicated by similar increases on day 1 in plasma concentrations of creatinine and urinary excretion of the tubular injury marker kidney injury molecule-1 as well as a similar rise in plasma osmolality and fall in urine osmolality as indicators of impaired urine concentration. Recovery of kidney function on days 14/16, however, was improved in Sglt1-/- versus WT mice, as indicated by lower plasma creatinine, higher glomerula filtration rate (by FITC-sinistrin in awake mice), and more completely restored urine and plasma osmolality. This was associated with a reduced tubular injury score in the cortex and outer medulla, better preserved renal mRNA expression of tubular transporters (Sglt2 and Na+-K+-2Cl- cotransporter Nkcc2), and a lesser rise in renal mRNA expression of markers of injury, inflammation, and fibrosis [kidney injury molecule-1, chemokine (C-C motif) ligand 2, fibronectin 1, and collagen type I-α1] in Sglt1-/- versus WT mice. These results suggest that SGLT1 activity in the late proximal tubule may have deleterious effects during recovery of IR-induced acute kidney injury and identify SGLT1 as a potential therapeutic target.


Subject(s)
Acute Kidney Injury/metabolism , Glomerular Filtration Rate , Glucose/metabolism , Kidney Tubules, Proximal/metabolism , Renal Reabsorption , Reperfusion Injury/metabolism , Sodium-Glucose Transporter 1/deficiency , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Acute Kidney Injury/physiopathology , Animals , Disease Models, Animal , Gene Deletion , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/physiopathology , Male , Mice, Inbred C57BL , Mice, Knockout , Recovery of Function , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Reperfusion Injury/physiopathology , Sodium-Glucose Transporter 1/genetics , Sodium-Glucose Transporter 2/genetics , Sodium-Glucose Transporter 2/metabolism , Solute Carrier Family 12, Member 1/genetics , Solute Carrier Family 12, Member 1/metabolism , Time Factors
17.
Am J Physiol Renal Physiol ; 317(1): F207-F217, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31091127

ABSTRACT

Na+-glucose cotransporter (SGLT)1 mediates glucose reabsorption in late proximal tubules. SGLT1 also mediates macula densa (MD) sensing of an increase in luminal glucose, which increases nitric oxide (NO) synthase 1 (MD-NOS1)-mediated NO formation and potentially glomerular filtratrion rate (GFR). Here, the contribution of SGLT1 was tested by gene knockout (-/-) in type 1 diabetic Akita mice. A low-glucose diet was used to prevent intestinal malabsorption in Sglt1-/- mice and minimize the contribution of intestinal SGLT1. Hyperglycemia was modestly reduced in Sglt1-/- versus littermate wild-type Akita mice (480 vs. 550 mg/dl), associated with reduced diabetes-induced increases in GFR, kidney weight, glomerular size, and albuminuria. Blunted hyperfiltration was confirmed in streptozotocin-induced diabetic Sglt1-/- mice, associated with similar hyperglycemia versus wild-type mice (350 vs. 385 mg/dl). Absence of SGLT1 attenuated upregulation of MD-NOS1 protein expression in diabetic Akita mice and in response to SGLT2 inhibition in nondiabetic mice. During SGLT2 inhibition in Akita mice, Sglt1-/- mice had likewise reduced blood glucose (200 vs. 300 mg/dl), associated with lesser MD-NOS1 expression, GFR, kidney weight, glomerular size, and albuminuria. Absence of Sglt1 in Akita mice increased systolic blood pressure, associated with suppressed renal renin mRNA expression. This may reflect fluid retention due to blunted hyperfiltration. SGLT2 inhibition prevented the blood pressure increase in Sglt1-/- Akita mice, possibly due to additive glucosuric/diuretic effects. The data indicate that SGLT1 contributes to diabetic hyperfiltration and limits diabetic hypertension. Potential mechanisms include its role in glucose-driven upregulation of MD-NOS1 expression. This pathway may increase GFR to maintain volume balance when enhanced MD glucose delivery indicates upstream saturation of SGLTs and thus hyperreabsorption.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Type 1/enzymology , Diabetic Nephropathies/enzymology , Glomerular Filtration Rate , Kidney/enzymology , Nitric Oxide Synthase Type I/metabolism , Sodium-Glucose Transporter 1/deficiency , Albuminuria/enzymology , Albuminuria/genetics , Albuminuria/physiopathology , Animals , Biomarkers/blood , Blood Glucose/drug effects , Blood Pressure , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/physiopathology , Diabetic Nephropathies/blood , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/physiopathology , Glomerular Filtration Rate/drug effects , Kidney/drug effects , Kidney/physiopathology , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Nitric Oxide Synthase Type I/genetics , Renal Reabsorption , Renin/blood , Renin/genetics , Signal Transduction , Sodium-Glucose Transporter 1/genetics , Sodium-Glucose Transporter 2 , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Up-Regulation
18.
Am J Physiol Renal Physiol ; 316(1): F173-F185, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30427222

ABSTRACT

Inhibitors of the Na+-glucose cotransporter SGLT2 enhance urinary glucose and urate excretion and lower plasma urate levels. The mechanisms remain unclear, but a role for enhanced glucose in the tubular fluid, which may interact with tubular urate transporters, such as the glucose transporter GLUT9 or the urate transporter URAT1, has been proposed. Studies were performed in nondiabetic mice treated with the SGLT2 inhibitor canagliflozin and in gene-targeted mice lacking the urate transporter Glut9 in the tubule or in mice with whole body knockout of Sglt2, Sglt1, or Urat1. Renal urate handling was assessed by analysis of urate in spontaneous plasma and urine samples and normalization to creatinine concentrations or by renal clearance studies with assessment of glomerular filtration rate by FITC-sinistrin. The experiments confirmed the contribution of URAT1 and GLUT9 to renal urate reabsorption, showing a greater contribution of the latter and additive effects. Genetic and pharmacological inhibition of SGLT2 enhanced fractional renal urate excretion (FE-urate), indicating that a direct effect of the SGLT2 inhibitor on urate transporters is not absolutely necessary. Consistent with a proposed role of increased luminal glucose delivery, the absence of Sglt1, which by itself had no effect on FE-urate, enhanced the glycosuric and uricosuric effects of the SGLT2 inhibitor. The SGLT2 inhibitor enhanced renal mRNA expression of Glut9 in wild-type mice, but tubular GLUT9 seemed dispensable for the increase in FE-urate in response to canagliflozin. First evidence is presented that URAT1 is required for the acute uricosuric effect of the SGLT2 inhibitor in mice.


Subject(s)
Canagliflozin/pharmacology , Glucose Transport Proteins, Facilitative/metabolism , Kidney Tubules, Proximal/drug effects , Organic Anion Transporters/metabolism , Renal Elimination/drug effects , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2/drug effects , Uric Acid/urine , Uricosuric Agents/pharmacology , Animals , Genotype , Glucose Transport Proteins, Facilitative/deficiency , Glucose Transport Proteins, Facilitative/genetics , Kidney Tubules, Proximal/metabolism , Mice, Inbred C57BL , Mice, Knockout , Organic Anion Transporters/deficiency , Organic Anion Transporters/genetics , Phenotype , Renal Reabsorption/drug effects , Sodium-Glucose Transporter 2/deficiency , Sodium-Glucose Transporter 2/genetics , Sodium-Glucose Transporter 2/metabolism
19.
Am J Physiol Renal Physiol ; 317(2): F419-F434, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31166707

ABSTRACT

Na+/H+ exchanger isoform 3 (NHE3) contributes to Na+/bicarbonate reabsorption and ammonium secretion in early proximal tubules. To determine its role in the diabetic kidney, type 1 diabetic Akita mice with tubular NHE3 knockdown [Pax8-Cre; NHE3-knockout (KO) mice] were generated. NHE3-KO mice had higher urine pH, more bicarbonaturia, and compensating increases in renal mRNA expression for genes associated with generation of ammonium, bicarbonate, and glucose (phosphoenolpyruvate carboxykinase) in proximal tubules and H+ and ammonia secretion and glycolysis in distal tubules. This left blood pH and bicarbonate unaffected in nondiabetic and diabetic NHE3-KO versus wild-type mice but was associated with renal upregulation of proinflammatory markers. Higher renal phosphoenolpyruvate carboxykinase expression in NHE3-KO mice was associated with lower Na+-glucose cotransporter (SGLT)2 and higher SGLT1 expression, indicating a downward tubular shift in Na+ and glucose reabsorption. NHE3-KO was associated with lesser kidney weight and glomerular filtration rate (GFR) independent of diabetes and prevented diabetes-associated albuminuria. NHE3-KO, however, did not attenuate hyperglycemia or prevent diabetes from increasing kidney weight and GFR. Higher renal gluconeogenesis may explain similar hyperglycemia despite lower SGLT2 expression and higher glucosuria in diabetic NHE3-KO versus wild-type mice; stronger SGLT1 engagement could have affected kidney weight and GFR responses. Chronic kidney disease in humans is associated with reduced urinary excretion of metabolites of branched-chain amino acids and the tricarboxylic acid cycle, a pattern mimicked in diabetic wild-type mice. This pattern was reversed in nondiabetic NHE3-KO mice, possibly reflecting branched-chain amino acids use for ammoniagenesis and tricarboxylic acid cycle upregulation to support formation of ammonia, bicarbonate, and glucose in proximal tubule. NHE3-KO, however, did not prevent the diabetes-induced urinary downregulation in these metabolites.


Subject(s)
Acid-Base Equilibrium , Diabetes Mellitus, Type 1/metabolism , Diabetic Nephropathies/metabolism , Kidney Tubules/metabolism , Renal Reabsorption , Sodium-Hydrogen Exchanger 3/deficiency , Sodium/urine , Acid-Base Equilibrium/genetics , Amino Acids, Branched-Chain/urine , Ammonia/urine , Animals , Bicarbonates/urine , Biomarkers/urine , Blood Glucose/metabolism , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/physiopathology , Diabetes Mellitus, Type 1/urine , Diabetic Nephropathies/genetics , Diabetic Nephropathies/physiopathology , Diabetic Nephropathies/urine , Disease Models, Animal , Energy Metabolism/genetics , Gene Expression Regulation , Gene Knockdown Techniques , Hydrogen-Ion Concentration , Kidney Tubules/physiopathology , Male , Metabolomics/methods , Mice, Inbred C57BL , Mice, Knockout , Sodium-Glucose Transporter 1/genetics , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 2/genetics , Sodium-Glucose Transporter 2/metabolism , Sodium-Hydrogen Exchanger 3/genetics
20.
Am J Physiol Renal Physiol ; 315(2): F386-F394, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29412698

ABSTRACT

The sodium-glucose cotransporter SGLT2 inhibitor empagliflozin (plasma protein binding ~88%) may reach its target in the brush border of the early proximal tubule by glomerular filtration and tubular secretion. Here we determined whether empagliflozin is secreted by renal tubules in mice and whether genetic knockout of the basolateral organic anion transporter 3 ( Oat3-/-) affects its tubular secretion or glucosuric effect. Renal clearance studies in wild-type (WT) mice showed that tubular secretion accounted for 50-70% of empagliflozin urinary excretion. Immunostaining indicated that SGLT2 and OAT3 localization partially overlapped in proximal tubule S1 and S2 segments. Glucosuria in metabolic cage studies was reduced in Oat3-/- vs. WT mice for acute empagliflozin doses of 1, 3, and 10 mg/kg, whereas 30 mg/kg induced similar maximal glucosuria in both genotypes. Chronic application of empagliflozin (~25 mg·kg-1 ·day-1) in Oat3-/- mice was associated with lower urinary glucose-to-creatinine ratios despite maintaining slightly higher blood glucose levels than WT. On a whole kidney level, renal secretion of empagliflozin was largely unchanged in Oat3-/- mice. However, the absence of OAT3 attenuated the influence of empagliflozin on fractional glucose excretion; higher levels of plasma or filtered empagliflozin were needed to induce similar increases in fractional renal glucose excretion. We conclude that empagliflozin is excreted into the urine to similar extent by glomerular filtration and tubular secretion. The latter can occur largely independent of OAT3. However, OAT3 increases the glucosuric effect of empagliflozin, which may relate to the partial overlap of its localization with SGLT2 and thus OAT3-mediated tubular secretion of empagliflozin in the early proximal tubule.


Subject(s)
Benzhydryl Compounds/pharmacology , Blood Glucose/drug effects , Glucosides/pharmacology , Glycosuria/metabolism , Kidney Tubules, Proximal/drug effects , Organic Anion Transporters, Sodium-Independent/metabolism , Renal Elimination , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2/drug effects , Animals , Benzhydryl Compounds/pharmacokinetics , Benzhydryl Compounds/urine , Blood Glucose/metabolism , Glomerular Filtration Rate , Glucosides/pharmacokinetics , Glucosides/urine , Glycosuria/genetics , Glycosuria/prevention & control , Kidney Tubules, Proximal/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Organic Anion Transport Protein 1/genetics , Organic Anion Transport Protein 1/metabolism , Organic Anion Transporters, Sodium-Independent/deficiency , Organic Anion Transporters, Sodium-Independent/genetics , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacokinetics , Sodium-Glucose Transporter 2 Inhibitors/urine
SELECTION OF CITATIONS
SEARCH DETAIL