ABSTRACT
Somatic mutations in the nucleophosmin (NPM1) gene occur in approximately 30% of de novo acute myeloid leukemias (AMLs) and are relatively enriched in normal karyotype AMLs. Earlier World Health Organization (WHO) classification schema recognized NPM1-mutated AMLs as a unique subtype of AML, while the latest WHO and International Consensus Classification (ICC) now consider NPM1 mutations as AML-defining, albeit at different blast count thresholds. NPM1 mutational load correlates closely with disease status, particularly in the post-therapy setting, and therefore high sensitivity-based methods for detection of the mutant allele have proven useful for minimal/measurable residual disease (MRD) monitoring. MRD status has been conventionally measured by either multiparameter flow cytometry (MFC) and/or molecular diagnostic techniques, although recent data suggest that MFC data may be potentially more challenging to interpret in this AML subtype. Of note, MRD status does not predict patient outcome in all cases, and therefore a deeper understanding of the biological significance of MRD may be required. Recent studies have confirmed that NPM1-mutated cells rely on overexpression of HOX/MEIS1, which is dependent on the presence of the aberrant cytoplasmic localization of mutant NPM1 protein (NPM1c); this biology may explain the promising response to novel agents, including menin inhibitors and second-generation XPO1 inhibitors. In this review, these and other recent developments around NPM1-mutated AML, in addition to open questions warranting further investigation, will be discussed.
Subject(s)
Leukemia, Myeloid, Acute , Nucleophosmin , Humans , Alleles , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Mutation , Nuclear Proteins/geneticsABSTRACT
BACKGROUND: An unmet medical need remains for an effective dengue tetravalent vaccine that can be administered irrespective of previous dengue exposure. TAK-003, a dengue tetravalent vaccine, has demonstrated efficacy in an ongoing phase 3 trial in children and adolescents living in dengue-endemic areas, with an acceptable safety profile in both dengue-naive and dengue-exposed individuals. METHODS: Safety findings are presented herein from an integrated analysis of data for healthy 4-60-year-olds from two phase 2 and three phase 3 double-blind, placebo-controlled clinical trials of TAK-003 (TAK-003, n = 14 627; placebo, n = 7167). Safety evaluation included analyses of postinjection reactogenicity, unsolicited adverse events (AEs), serious AEs (SAEs), and deaths. Subgroup analyses were performed by age group, baseline serostatus, and gender. RESULTS: The most common local and systemic AEs were injection site pain (43% for TAK-003 and 26% for placebo) and headache (34% and 30%, respectively). Injection site AEs were mostly mild and resolved within 1-3 days. Unsolicited AEs and AEs leading to discontinuation occurred with similar frequency across both groups, while SAEs were fewer for TAK-003 recipients (6% vs 8% for placebo). Four of the 5 vaccine-related SAEs (which included hypersensitivity, dengue fever, and dengue hemorrhagic fever) occurred in the placebo group. No deaths were considered vaccine-related. Subgroup analyses showed no differences in safety by baseline serostatus or by gender, albeit analysis by age indicated greater local reactogenicity rates for adolescents (46% for TAK-003 and 28% for placebo) and adults (56% and 19%, respectively) than for children (37% and 25%, respectively). CONCLUSIONS: No important safety risks were identified, and TAK-003 was well tolerated irrespective of age, gender, or baseline dengue serostatus in recipients aged 4-60 years.
Subject(s)
Dengue Vaccines , Dengue , Adolescent , Adult , Child , Child, Preschool , Humans , Middle Aged , Young Adult , Antibodies, Viral , Double-Blind Method , Vaccines, AttenuatedABSTRACT
The authors discuss a case of CD19-negative diffuse large B-cell lymphoma with central nervous system relapse following CD19-directed CAR T-cell treatment. Absence of CD19 expression by the tumour cells presented a challenge for flow cytometry evaluation.
Subject(s)
Immunotherapy, Adoptive , Lymphoma, Large B-Cell, Diffuse , Antigens, CD19 , Central Nervous System/pathology , Humans , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/therapy , T-Lymphocytes/pathologyABSTRACT
Classic Hodgkin lymphoma (cHL) is a tumor composed of rare, atypical, germinal center-derived B cells (Hodgkin Reed-Sternberg [HRS] cells) embedded within a robust but ineffective inflammatory milieu. The cHL tumor microenvironment (TME) is compartmentalized into "niches" rich in programmed cell death-1 ligand (PD-L1)-positive HRS cells and tumor-associated macrophages (TAMs), which associate with PD-1-positive T cells to suppress antitumor immunity via PD-L1/PD-1 signaling. Despite the exquisite sensitivity of cHL to PD-1 checkpoint blockade, most patients eventually relapse and need therapeutic alternatives. Using multiplex immunofluorescence microscopy with digital image analysis, we found that cHL is highly enriched for non-T-regulatory, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)-positive T cells (compared with reactive lymphoid tissues) that outnumber PD-1-positive and lymphocyte-activating gene-3 (LAG-3)-positive T cells. In addition, T cells touching HRS cells are more frequently positive for CTLA-4 than for PD-1 or LAG-3. We further found that HRS cells, and a subset of TAMs, are positive for the CTLA-4 ligand CD86 and that the fractions of T cells and TAMs that are CTLA-4-positive and CD86-positive, respectively, are greater within a 75 µm HRS cell niche relative to areas outside this region (CTLA-4, 38% vs 18% [P = .0001]; CD86, 38% vs 24% [P = .0007]). Importantly, CTLA-4-positive cells are present, and focally contact HRS cells, in recurrent cHL tumors following a variety of therapies, including PD-1 blockade. These results implicate CTLA-4:CD86 interactions as a component of the immunologically privileged niche surrounding HRS cells and raise the possibility that patients with cHL refractory to PD-1 blockade may benefit from CTLA-4 blockade.
Subject(s)
CTLA-4 Antigen/metabolism , Hodgkin Disease/metabolism , Neoplasm Proteins/metabolism , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes/metabolism , Tumor Microenvironment , B7-H1 Antigen/metabolism , Female , Hodgkin Disease/pathology , Humans , Macrophages/metabolism , Macrophages/pathology , Male , Reed-Sternberg Cells/metabolism , Reed-Sternberg Cells/pathology , T-Lymphocytes/pathologyABSTRACT
Autologous stem cell transplantation (ASCT) remains the standard of care for patients with relapsed/refractory (RR) classical Hodgkin lymphoma (cHL) who respond to salvage chemotherapy. However, relapse after ASCT remains a frequent cause of treatment failure, with poor subsequent prognosis. Because cHL is uniquely vulnerable to programmed cell death-1 (PD-1) blockade, PD-1 blockade given as consolidation after ASCT could improve ASCT outcomes. We therefore conducted a multicohort phase 2 study of pembrolizumab in patients with RR cHL after ASCT, hypothesizing that it would improve the progression-free survival (PFS) at 18 months after ASCT (primary end point) from 60% to 80%. Pembrolizumab was administered at 200 mg IV every 3 weeks for up to 8 cycles, starting within 21 days of post-ASCT discharge. Thirty patients were treated on this study. The median age was 33 years, and 90% were high-risk by clinical criteria. Seventy-seven percent completed all 8 cycles. Toxicity was manageable, with 30% of patients experiencing at least 1 grade 3 or higher adverse event (AE), and 40% at least 1 grade 2 or higher immune-related AE. Two patients were lost to follow-up in complete remission at 12 months. The PFS at 18 months for the 28 evaluable patients was 82%, meeting the primary end point. The 18-month overall survival was 100%. In conclusion, pembrolizumab was successfully administered as post-ASCT consolidation in patients with RR cHL, and resulted in a promising PFS in a high-risk patient cohort, supporting the testing of this strategy in a randomized trial. This trial was registered at www.clinicaltrials.gov as #NCT02362997.
Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Hodgkin Disease/drug therapy , Adult , Aged , Consolidation Chemotherapy/methods , Disease-Free Survival , Female , Hematopoietic Stem Cell Transplantation , Hodgkin Disease/mortality , Hodgkin Disease/surgery , Humans , Male , Middle Aged , Programmed Cell Death 1 Receptor/immunology , Salvage Therapy/methods , Transplantation, AutologousABSTRACT
Ancillary testing during the initial workup of acute myeloid leukemia (AML) is largely performed using aspirated materials. We utilized multiplex immunofluorescence (MIF) imaging with digital image analysis to perform an in situ analysis of the microenvironment in NPM1-mutated AML using diagnostic bone marrow biopsy tissues (N = 17) and correlated these findings with diagnostic next-generation sequencing (NGS, N = 17), flow cytometry (FC, N = 14), and first remission (CR1) NPM1-specific molecular MRD (n = 16) data. The total CD3-positive T-cell percentages correlated positively between FC and MIF (r = 0.53, p = 0.05), but were significantly lower by MIF (1.62% vs. 3.4%, p = 0.009). The percentage of mutant NPM1-positive (NPM1c+) cells ranged from 9.7 to 90.8% (median 45.4%) and did not correlate with the NPM1 mutant allele fraction by NGS (p > 0.05). The percentage of CD34+/NPM1c+ cells ranged from 0 to 1.8% (median 0.07%). The percentage of NPM1c+ cells correlated inversely (34% vs. 62%, p = 0.03), while the percentages of CD3-/NPM1c- cells (64% vs. 35%, p = 0.03), and specifically CD3-/CD4-/NPM1c- cells (26% vs. 13%, p = 0.04), correlated positively with subsequent MRD. Discordances between MIF and FC/NGS data suggest that aspirate materials are likely an imperfect reflection of the core biopsy tissue. Furthermore, increased numbers of NPM1 wild-type cells within the microenvironment at diagnosis correlate with the subsequent presence of MRD.
Subject(s)
Bone Marrow/pathology , Image Interpretation, Computer-Assisted/methods , Leukemia, Myeloid, Acute/pathology , Tumor Microenvironment , Adult , Aged , Female , Fluorescent Antibody Technique/methods , Humans , Leukemia, Myeloid, Acute/genetics , Male , Middle Aged , Nuclear Proteins/genetics , Nucleophosmin , PrognosisABSTRACT
SARS-CoV-2, the etiologic agent of COVID-19, is a global pandemic with substantial mortality dominated by acute respiratory distress syndrome. We systematically evaluated lungs of 68 autopsies from 3 institutions in heavily hit areas (2 USA, 1 Italy). Detailed evaluation of several compartments (airways, alveolar walls, airspaces, and vasculature) was performed to determine the range of histologic features. The cohort consisted of 47 males and 21 females with a median age of 73 years (range 30-96). Co-morbidities were present in most patients with 60% reporting at least three conditions. Tracheobronchitis was frequently present, independent from intubation or superimposed pneumonia. Diffuse alveolar damage (DAD) was seen in 87% of cases. Later phases of DAD were less frequent and correlated with longer duration of disease. Large vessel thrombi were seen in 42% of cases but platelet (CD61 positive) and/or fibrin microthrombi were present at least focally in 84%. Ultrastructurally, small vessels showed basal membrane reduplication and significant endothelial swelling with cytoplasmic vacuolization. In a subset of cases, virus was detected using different tools (immunohistochemistry for SARS-CoV-2 viral spike protein, RNA in situ hybridization, lung viral culture, and electron microscopy). Virus was seen in airway epithelium and type 2 pneumocytes. IHC or in situ detection, as well as viable form (lung culture positive) was associated with the presence of hyaline membranes, usually within 2 weeks but up to 4 weeks after initial diagnosis. COVID-19 pneumonia is a heterogeneous disease (tracheobronchitis, DAD, and vascular injury), but with consistent features in three centers. The pulmonary vasculature, with capillary microthrombi and inflammation, as well as macrothrombi, is commonly involved. Viral infection in areas of ongoing active injury contributes to persistent and temporally heterogeneous lung damage.
Subject(s)
Coronavirus Infections/pathology , Coronavirus Infections/virology , Lung/pathology , Lung/virology , Pneumonia, Viral/pathology , Adult , Aged , Aged, 80 and over , Autopsy , Betacoronavirus , COVID-19 , Cohort Studies , Female , Humans , Italy , Male , Middle Aged , New York City , Pandemics , Pneumonia, Viral/virology , Retrospective Studies , SARS-CoV-2ABSTRACT
Acute myeloid leukemia (AML) with mutated NPM1 is a newly recognized separate entity in the revised 2016 World Health Organization classification and is associated with a favorable prognosis. Although previous studies have evaluated NPM1 in a binary fashion, little is known about the significance of its mutant allele burden at diagnosis, nor has the effect of comutations (other than FLT3) been extensively evaluated. We retrospectively used targeted sequencing data from 109 patients with de novo AML with mutated NPM1 to evaluate the potential significance of NPM1 variant allele frequency (VAF), comutations, and clinical parameters with regard to patient outcomes. We observed that high NPM1 VAF (uppermost quartile) correlated with shortened overall survival (median, 12.1 months vs not reached; P < .0001) as well as event-free survival (median, 7.5 vs 65.44 months; P < .0001) compared with the other NPM1-mutated cases. In both univariate and multivariable analyses, high NPM1 VAF had a particularly adverse prognostic effect in the subset of patients treated with stem-cell transplantation in first remission (P = .0004) and in patients with mutated DNMT3A (P < .0001). Our findings indicate that the prognostic effect of NPM1 mutation in de novo AML may be influenced by the relative abundance of the mutated allele.
Subject(s)
Gene Frequency , Leukemia, Myeloid, Acute/genetics , Mutation , Nuclear Proteins/genetics , Adolescent , Adult , Aged , Aged, 80 and over , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , Disease-Free Survival , Female , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/therapy , Male , Middle Aged , Mutation Accumulation , Nucleophosmin , Prognosis , Retrospective Studies , Stem Cell Transplantation , Survival Analysis , Young AdultABSTRACT
Acute leukemias of ambiguous lineage (ALAL) comprise acute undifferentiated leukemias (AUL) and mixed-phenotype acute leukemias (MPAL). In the revised fourth edition of the World Health Organization (WHO) classification provided further refinements to the diagnostic criteria for ALAL. Molecular characterization of MPALs using comprehensive next-generation sequencing (NGS) has provided insights into their underlying biology and enabled a deeper understanding of ALAL classification. This review addresses the various components of pathologic assessment to establish a diagnosis of ALAL, and to further subclassify individual cases as AUL or MPAL, with an emphasis on the most up-to-date revisions to diagnostic criteria. In addition, key issues related to the detection of minimal residual disease (MRD) in ALALs and MPALs, and recently uncovered novel molecular diagnostic findings that may be helpful in better distinguishing various types of MPALs from each other, and from their "non-mixed" phenotypic correlates, are also discussed.
Subject(s)
Leukemia, Biphenotypic, Acute/classification , Leukemia, Biphenotypic, Acute/diagnosis , Leukemia, Biphenotypic, Acute/genetics , Leukemia, Biphenotypic, Acute/immunology , Humans , ImmunophenotypingABSTRACT
Acute myeloid leukemia (AML) with mutated NPM1 is a newly recognized separate entity in the revised 2016 WHO classification, and is associated with a favorable prognosis. While previous studies have evaluated NPM1 in a binary fashion, we recently demonstrated a significant independent negative prognostic effect of high NPM1 mutant allele burden (VAF) at diagnosis in a cohort of de novo AML patients. Although the importance of minimal residual disease (MRD) monitoring in NPM1-mutated AML has been well characterized, the potential relationship between diagnostic allele burden and MRD is unknown. We retrospectively evaluated for MRD at first remission (CR1). We used either next-generation sequencing (NGS) [n = 71], and/or immunohistochemistry (IHC) for mutant NPM1 (NPM1c) [n = 60], in a subset of patients from our recently examined cohort. We identified a statistically significant positive correlation between the VAF at diagnosis, and at CR1 (Spearman r = 0.4, P = .006), and enrichment for MRD in high diagnostic VAF patients (P = .05), as previously defined. IHC-positivity also correlated significantly with a higher median diagnostic NPM1 VAF (0.42 vs 0.39, P = .02), and with the VAF at CR1 (Spearman r = 0.7, P = .003). In multivariable analyses, both high diagnostic VAF (P = .003) and MRD (P = .02) were independent predictors of shorter event-free survival (EFS). Our findings suggest a relationship between the NPM1 mutant allele burden at diagnosis, and the presence of MRD at first remission. Our findings support IHC as a potentially useful adjunctive tool for disease monitoring.
Subject(s)
Leukemia, Myeloid, Acute/genetics , Neoplasm, Residual/genetics , Nuclear Proteins/genetics , Remission Induction , Adult , Aged , Aged, 80 and over , Alleles , Female , Gene Frequency , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/therapy , Male , Middle Aged , Mutation , Neoplasm, Residual/mortality , Nucleophosmin , Prognosis , Recurrence , Survival AnalysisSubject(s)
Dengue Vaccines , Dengue Virus , Dengue , Humans , Vaccines, Attenuated , Antibodies, ViralABSTRACT
Characterizing the tumor immune microenvironment enables the identification of new prognostic and predictive biomarkers, the development of novel therapeutic targets and strategies, and the possibility to guide first-line treatment algorithms. Although the driving elements within the tumor microenvironment of individual primary organ sites differ, many of the salient features remain the same. The presence of a robust antitumor milieu characterized by an abundance of CD8+ cytotoxic T-cells, Th1 helper cells, and associated cytokines often indicates a degree of tumor containment by the immune system and can even lead to tumor elimination. Some of these features have been combined into an 'Immunoscore', which has been shown to complement the prognostic ability of the current TNM staging for early stage colorectal carcinomas. Features of the immune microenvironment are also potential therapeutic targets, and immune checkpoint inhibitors targeting the PD-1/PD-L1 axis are especially promising. FDA-approved indications for anti-PD-1/PD-L1 are rapidly expanding across numerous tumor types and, in certain cases, are accompanied by companion or complimentary PD-L1 immunohistochemical diagnostics. Pathologists have direct visual access to tumor tissue and in-depth knowledge of the histological variations between and within tumor types and thus are poised to drive forward our understanding of the tumor microenvironment. This review summarizes the key components of the tumor microenvironment, presents an overview of and the challenges with PD-L1 antibodies and assays, and addresses newer candidate biomarkers, such as CD8+ cell density and mutational load. Characteristics of the local immune contexture and current pathology-related practices for specific tumor types are also addressed. In the future, characterization of the host antitumor immune response using multiplexed and multimodality biomarkers may help predict which patients will respond to immune-based therapies.
Subject(s)
Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/immunology , Tumor Microenvironment/immunology , Biomarkers, Tumor , Humans , Neoplasm Staging , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , PrognosisABSTRACT
T cell dyscrasias that demonstrate a proclivity for the subcutaneous fat include atypical lymphocytic lobular panniculitis, lupus profundus, and primary subcutaneous T cell lymphoma, including subcutaneous panniculitis-like T cell lymphoma (SPTCL). We encountered two patients who developed fever and indurated abdominal erythema at their peginterferon alfa-2a injection sites. Biopsies showed an atypical CD8 positive, granzyme positive, CD5 negative, MXA negative lymphocytic lobular panniculitis, diagnostic of SPTCL. Peginterferon alfa-2a was held in both patients. One patient received chemotherapy with an excellent response, while the other continued to have progressive disease. Peginterferon alfa-2a is known to significantly elevate serum MXA, which may induce high levels of MXA expression at the injection site, creating a microenvironment for the development of lupus profundus, which may eventuate into SPTCL. In summation, a potential risk of peginterferon alfa-2a injections is the development of SPTCL potentially arising in a background of an exogenous interferon triggered lymphocytic panniculitis.
Subject(s)
Interferon-alpha , Lymphoma, T-Cell , Panniculitis , Polyethylene Glycols , Recombinant Proteins , Humans , Polyethylene Glycols/adverse effects , Polyethylene Glycols/administration & dosage , Interferon-alpha/adverse effects , Interferon-alpha/administration & dosage , Recombinant Proteins/adverse effects , Recombinant Proteins/administration & dosage , Panniculitis/chemically induced , Panniculitis/diagnosis , Panniculitis/pathology , Panniculitis/etiology , Female , Lymphoma, T-Cell/diagnosis , Lymphoma, T-Cell/drug therapy , Lymphoma, T-Cell/pathology , Middle Aged , Male , Biopsy , AdultABSTRACT
Dengue is caused by a mosquito-transmitted flavivirus. The disease is now endemic to many tropical and subtropical regions, manifesting as approximately 96 million symptomatic cases of dengue each year. Clinical trials have shown TAK-003 (Qdenga®), a live attenuated dengue tetravalent vaccine, to be well-tolerated, immunogenic, and efficacious in adults with no prior exposure to dengue virus infection living in non-endemic regions, as well as in adults and children living in dengue-endemic areas. This open-label, single-arm phase 3 trial (NCT03771963) was conducted in two dengue non-endemic areas of the USA, and it evaluated the immunogenicity and safety of naturally-aged TAK-003 administered to adult participants. Overall, the immunogenicity data from this trial are consistent with those reported from other TAK-003 phase 2 and 3 trials, and the safety data are consistent with the broader integrated safety data analysis. The data show that naturally-aged TAK-003 had a well-tolerated reactogenicity and adverse events profile when administered in the second half of its clinical 24-month shelf-life and that it still elicited an immune response that persisted up to 6 months after the second dose against all four dengue serotypes, with no important safety risks identified during the trial.
Subject(s)
Dengue Vaccines , Dengue Virus , Dengue , Child , Adult , Humans , Aged , Dengue/prevention & control , Vaccines, Attenuated , Vaccines, Combined , Antibodies, Viral , Immunogenicity, VaccineABSTRACT
PURPOSE: Therapy-related acute myeloid leukemias (t-AML) are a heterogenous group of aggressive neoplasms that arise following exposure to cytotoxic chemotherapy and/or ionizing radiation. Many therapy-related myeloid neoplasms (t-MN) are associated with distinct chromosomal aberrations and/or TP53 alterations, but little is known about the clinicopathologic and molecular features of normal karyotype t-AML (NK-t-AML) and whether this t-MN subtype is distinctly different from NK de novo AML (NK-dn-AML). METHODS: This multi-institutional study by the Bone Marrow Pathology Group retrospectively evaluated clinicopathologic and molecular characteristics of 335 patients with NK-AML, comprising 105 t-AML and 230 dn-AML cases. RESULTS: Patients with t-AML compared with dn-AML exhibit significantly shorter overall survival (OS; median months: 17.6 v 44.2; P < .0001) and relapse-free survival (RFS; median months: 9.1 v 19.2; P = .0018). Frequency of NPM1, FLT3, KRAS, and GATA2 mutations were significantly different in NK-t-AML compared with NK-dn-AML (NPM1 35% v 49%; P = .0493; FLT3 23% v 36%; P = 0494; KRAS 12% v 5%; P = .0465; GATA2 9% v 2% P = .0105), while TP53 mutations were rare. Patients with t-AML more often stratified into intermediate or adverse 2017 ELN genetic risk groups. Favorable ELN risk predicted favorable OS (hazard ratio [HR], 0.4056; 95% CI, 0 to 0.866; P = .020) and RFS (HR, 0.355; 95% CI, 0 to 0.746; P = .006). Among all patients with NK-AML, stem-cell transplant and favorable ELN risk both significantly affected RFS, while therapy-relatedness and age had a borderline significant impact on OS (HR, 1.355; 95% CI, 0.975 to 1.882; P = .070). CONCLUSION: To our knowledge, this is the largest study to date to comprehensively evaluate NK-t-AML and provides a framework that may inform our understanding of NK-t-AML disease biology and could potentially help guide therapeutic management and improved disease classification in t-MNs that lack cytogenetic aberrations.
Subject(s)
Bone Marrow , Leukemia, Myeloid, Acute , Humans , Bone Marrow/pathology , Nuclear Proteins/genetics , Nucleophosmin , Prognosis , Retrospective Studies , Proto-Oncogene Proteins p21(ras)/genetics , Leukemia, Myeloid, Acute/genetics , Chromosome Aberrations , KaryotypeABSTRACT
Myeloid sarcoma (MS) is currently considered equivalent to de novo acute myeloid leukemia (AML); however, the relationship between these entities is poorly understood. This retrospective multi-institutional cohort study compared 43 MS with NPM1 mutation to 106 AML with NPM1 mutation. Compared to AML, MS had more frequent cytogenetic abnormalities including complex karyotype (p = .009 and p = .007, respectively) and was enriched in mutations of genes involved in histone modification, including ASXL1 (p = .007 and p = .008, respectively). AML harbored a higher average number of gene mutations (p = .002) including more frequent PTPN11 mutations (p < .001) and mutations of DNA-methylating genes including DNMT3A and IDH1 (both p < .001). MS had significantly shorter overall survival (OS) than AML (median OS: 44.9 vs. 93.2 months, respectively, p = .037). MS with NPM1 mutation has a unique genetic landscape, and poorer OS, compared to AML with NPM1 mutation.
First study comparing genetic profiles of MS and AML with a common disease-defining lesion.NPM1Mut MS may be genetically distinct from NPM1Mut AML.NPM1Mut MS may have inferior overall survival compared to NPM1Mut AML.
Subject(s)
Leukemia, Myeloid, Acute , Sarcoma, Myeloid , Humans , Bone Marrow/pathology , Nuclear Proteins/genetics , Nucleophosmin , Sarcoma, Myeloid/diagnosis , Sarcoma, Myeloid/genetics , Sarcoma, Myeloid/pathology , Retrospective Studies , Cohort Studies , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Mutation , PrognosisABSTRACT
Multiparametric imaging allows researchers to measure the expression of many biomarkers simultaneously, allowing detailed characterization of cell microenvironments. One such technique, CODEX, allows fluorescence imaging of >30 proteins in a single tissue section. In the commercial CODEX system, primary antibodies are conjugated to DNA barcodes. This modification can result in antibody dysfunction, and development of a custom antibody panel can be very costly and time consuming as trial and error of modified antibodies proceeds. To address these challenges, we developed novel tyramide-conjugated DNA barcodes that can be used with primary antibodies via peroxidase-conjugated secondary antibodies. This approach results in signal amplification and imaging without the need to conjugate primary antibodies. When combined with commercially available barcode-conjugated primary antibodies, we can very quickly develop working antibody panels. We also present methods to perform antibody staining using a commercially available automated tissue stainer and in situ hybridization imaging on a CODEX platform. Future work will include application of the combined tyramide-based and regular CODEX approach to image specific tumors with their immune cell infiltrates, including biomarkers that are currently difficult to image by regular CODEX.
Subject(s)
Antibodies , DNA Barcoding, Taxonomic , Antibodies/metabolism , Antigens , DNA , Staining and LabelingABSTRACT
Pediatric myelodysplastic syndromes (MDS) comprise less than 5% of childhood malignancies. Approximately 30% to 45% of pediatric MDS cases are associated with an underlying genetic predisposition syndrome. A subset of patients present with MDS/acute myeloid leukemia (AML) following intensive chemotherapy for an unrelated malignancy. A definitive diagnosis of MDS can often only be rendered pending a comprehensive clinical and laboratory-based evaluation, which frequently includes ancillary testing in a reference laboratory. Clinical subtypes, the current diagnostic schema, and the results of more recently performed next-generation sequencing studies in pediatric MDS are discussed here.