Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Viruses ; 15(2)2023 01 25.
Article in English | MEDLINE | ID: mdl-36851560

ABSTRACT

Rapid emergence of the SARS-CoV-2 variants has dampened the protective efficacy of existing authorized vaccines. Nanoparticle platforms offer a means to improve vaccine immunogenicity by presenting multiple copies of desired antigens in a repetitive manner which closely mimics natural infection. We have applied nanoparticle display combined with the SpyTag-SpyCatcher system to design encapsulin-mRBD, a nanoparticle vaccine displaying 180 copies of the monomeric SARS-CoV-2 spike receptor-binding domain (RBD). Here we show that encapsulin-mRBD is strongly antigenic and thermotolerant for long durations. After two immunizations, squalene-in-water emulsion (SWE)-adjuvanted encapsulin-mRBD in mice induces potent and comparable neutralizing antibody titers of 105 against wild-type (B.1), alpha, beta, and delta variants of concern. Sera also neutralizes the recent Omicron with appreciable neutralization titers, and significant neutralization is observed even after a single immunization.


Subject(s)
COVID-19 , Nanoparticles , Animals , Humans , Mice , COVID-19/prevention & control , SARS-CoV-2/genetics , Adjuvants, Immunologic
2.
ACS Infect Dis ; 7(8): 2546-2564, 2021 08 13.
Article in English | MEDLINE | ID: mdl-34260218

ABSTRACT

The receptor binding domain (RBD) of SARS-CoV-2 is the primary target of neutralizing antibodies. We designed a trimeric, highly thermotolerant glycan engineered RBD by fusion to a heterologous, poorly immunogenic disulfide linked trimerization domain derived from cartilage matrix protein. The protein expressed at a yield of ∼80-100 mg/L in transiently transfected Expi293 cells, as well as CHO and HEK293 stable cell lines and formed homogeneous disulfide-linked trimers. When lyophilized, these possessed remarkable functional stability to transient thermal stress of up to 100 °C and were stable to long-term storage of over 4 weeks at 37 °C unlike an alternative RBD-trimer with a different trimerization domain. Two intramuscular immunizations with a human-compatible SWE adjuvanted formulation elicited antibodies with pseudoviral neutralizing titers in guinea pigs and mice that were 25-250 fold higher than corresponding values in human convalescent sera. Against the beta (B.1.351) variant of concern (VOC), pseudoviral neutralization titers for RBD trimer were ∼3-fold lower than against wildtype B.1 virus. RBD was also displayed on a designed ferritin-like Msdps2 nanoparticle. This showed decreased yield and immunogenicity relative to trimeric RBD. Replicative virus neutralization assays using mouse sera demonstrated that antibodies induced by the trimers neutralized all four VOC to date, namely B.1.1.7, B.1.351, P.1, and B.1.617.2 without significant differences. Trimeric RBD immunized hamsters were protected from viral challenge. The excellent immunogenicity, thermotolerance, and high yield of these immunogens suggest that they are a promising modality to combat COVID-19, including all SARS-CoV-2 VOC to date.


Subject(s)
COVID-19 , Thermotolerance , Animals , Antibodies, Viral , COVID-19/therapy , Guinea Pigs , HEK293 Cells , Humans , Immunization, Passive , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
3.
Front Immunol ; 12: 765211, 2021.
Article in English | MEDLINE | ID: mdl-34956193

ABSTRACT

Saturation suppressor mutagenesis was used to generate thermostable mutants of the SARS-CoV-2 spike receptor-binding domain (RBD). A triple mutant with an increase in thermal melting temperature of ~7°C with respect to the wild-type B.1 RBD and was expressed in high yield in both mammalian cells and the microbial host, Pichia pastoris, was downselected for immunogenicity studies. An additional derivative with three additional mutations from the B.1.351 (beta) isolate was also introduced into this background. Lyophilized proteins were resistant to high-temperature exposure and could be stored for over a month at 37°C. In mice and hamsters, squalene-in-water emulsion (SWE) adjuvanted formulations of the B.1-stabilized RBD were considerably more immunogenic than RBD lacking the stabilizing mutations and elicited antibodies that neutralized all four current variants of concern with similar neutralization titers. However, sera from mice immunized with the stabilized B.1.351 derivative showed significantly decreased neutralization titers exclusively against the B.1.617.2 (delta) VOC. A cocktail comprising stabilized B.1 and B.1.351 RBDs elicited antibodies with qualitatively improved neutralization titers and breadth relative to those immunized solely with either immunogen. Immunized hamsters were protected from high-dose viral challenge. Such vaccine formulations can be rapidly and cheaply produced, lack extraneous tags or additional components, and can be stored at room temperature. They are a useful modality to combat COVID-19, especially in remote and low-resource settings.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Viral/immunology , Cricetinae , Immunogenicity, Vaccine/immunology , Mice , Spike Glycoprotein, Coronavirus/genetics
4.
Biomolecules ; 10(11)2020 11 23.
Article in English | MEDLINE | ID: mdl-33238579

ABSTRACT

The bacterial RNA polymerase (RNAP) is a multi-subunit protein complex (α2ßß'ω σ) containing the smallest subunit, ω. Although identified early in RNAP research, its function remained ambiguous and shrouded with controversy for a considerable period. It was shown before that the protein has a structural role in maintaining the conformation of the largest subunit, ß', and its recruitment in the enzyme assembly. Despite evolutionary conservation of ω and its role in the assembly of RNAP, E. coli mutants lacking rpoZ (codes for ω) are viable due to the association of the global chaperone protein GroEL with RNAP. To get a better insight into the structure and functional role of ω during transcription, several dominant lethal mutants of ω were isolated. The mutants showed higher binding affinity compared to that of native ω to the α2ßß' subassembly. We observed that the interaction between α2ßß' and these lethal mutants is driven by mostly favorable enthalpy and a small but unfavorable negative entropy term. However, during the isolation of these mutants we isolated a silent mutant serendipitously, which showed a lethal phenotype. Silent mutant of a given protein is defined as a protein having the same sequence of amino acids as that of wild type but having mutation in the gene with alteration in base sequence from more frequent code to less frequent one due to codon degeneracy. Eventually, many silent mutants were generated to understand the role of rare codons at various positions in rpoZ. We observed that the dominant lethal mutants of ω having either point mutation or silent in nature are more structured in comparison to the native ω. However, the silent code's position in the reading frame of rpoZ plays a role in the structural alteration of the translated protein. This structural alteration in ω makes it more rigid, which affects the plasticity of the interacting domain formed by ω and α2ßß'. Here, we attempted to describe how the conformational flexibility of the ω helps in maintaining the plasticity of the active site of RNA polymerase. The dominant lethal mutant of ω has a suppressor mapped near the catalytic center of the ß' subunit, and it is the same for both types of mutants.


Subject(s)
DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/physiology , Bacterial Proteins/chemistry , Bacterial Proteins/physiology , Mutant Proteins/chemistry , Mutant Proteins/physiology , Protein Subunits/chemistry , Protein Subunits/physiology , Structure-Activity Relationship , Transcription Factors/metabolism
5.
ACS Omega ; 4(18): 17714-17725, 2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31681877

ABSTRACT

The bacterial RNA polymerase is a multi-subunit enzyme complex composed of six subunits, α2ßß'σω. The function of this enzyme is to transcribe the DNA base sequence to the RNA intermediate, which is ultimately translated to protein. Though the contribution of each subunit in RNA synthesis has been clearly elucidated, the role of the smallest ω-subunit is still unclear despite several studies. Recently, a study on a dominant negative mutant of rpoZ has been reported in which the mutant was shown to render the RNA polymerase defective in transcription initiation (ω6, N60D) and gave an insight on the function of ω in RNA polymerase. Serendipitously, we also obtained a silent mutant, and the mutant was found to be lethal during the isolation of toxic mutants. The primary focus of this study is to understand the mechanistic details of this lethality. Isolated ω shows a predominantly unstructured circular dichroism profile and becomes α-helical in the enzyme complex. This structural transition is perhaps the reason for this lack of function. Subsequently, we generated several silent mutants of ω to investigate the role of codon bias and the effect of rare codons with respect to their position in rpoZ. Not all silent mutations affect the structure. RNA polymerase when reconstituted with structurally altered silent mutants of ω is transcriptionally inactive. The CodonPlus strain, which has surplus tRNA, was used to assess for the rescue of the phenotype in lethal silent mutants.

SELECTION OF CITATIONS
SEARCH DETAIL