Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
Add more filters

Publication year range
1.
Genet Med ; 26(2): 101027, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37955240

ABSTRACT

PURPOSE: In the absence of prospective data on neurological symptoms, disease outcome, or guidelines for system specific management in phosphomannomutase 2-congenital disorders of glycosylation (PMM2-CDG), we aimed to collect and review natural history data. METHODS: Fifty-one molecularly confirmed individuals with PMM2-CDG enrolled in the Frontiers of Congenital Disorders of Glycosylation natural history study were reviewed. In addition, we prospectively reviewed a smaller cohort of these individuals with PMM2-CDG on off-label acetazolamide treatment. RESULTS: Mean age at diagnosis was 28.04 months. Developmental delay is a constant phenotype. Neurological manifestation included ataxia (90.2%), myopathy (82.4%), seizures (56.9%), neuropathy (52.9%), microcephaly (19.1%), extrapyramidal symptoms (27.5%), stroke-like episodes (SLE) (15.7%), and spasticity (13.7%). Progressive cerebellar atrophy is the characteristic neuroimaging finding. Additionally, supratentorial white matter changes were noted in adult age. No correlation was observed between the seizure severity and SLE risk, although all patients with SLE have had seizures in the past. "Off-label" acetazolamide therapy in a smaller sub-cohort resulted in improvement in speech fluency but did not show statistically significant improvement in objective ataxia scores. CONCLUSION: Clinical and radiological findings suggest both neurodevelopmental and neurodegenerative pathophysiology. Seizures may manifest at any age and are responsive to levetiracetam monotherapy in most cases. Febrile seizure is the most common trigger for SLEs. Acetazolamide is well tolerated.


Subject(s)
Cerebellar Ataxia , Congenital Disorders of Glycosylation , Phosphotransferases (Phosphomutases)/deficiency , Stroke , Adult , Humans , Child, Preschool , Congenital Disorders of Glycosylation/drug therapy , Congenital Disorders of Glycosylation/genetics , Acetazolamide/therapeutic use , Follow-Up Studies , Prospective Studies
2.
Mol Genet Metab ; 142(4): 108509, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38959600

ABSTRACT

OBJECTIVE: Our report describes clinical, genetic, and biochemical features of participants with a molecularly confirmed congenital disorder of glycosylation (CDG) enrolled in the Frontiers in Congenital Disorders of Glycosylation (FCDGC) Natural History cohort at year 5 of the study. METHODS: We enrolled individuals with a known or suspected CDG into the FCDGC Natural History Study, a multicenter prospective and retrospective natural history study of all genetic causes of CDG. We conducted a cross-sectional analysis of baseline study visit data from participants with confirmed CDG who were consented into the FCDGC Natural History Study (5U54NS115198) from October 2019 to November 2023. RESULTS: Three hundred thirty-three subjects consented to the FCDGC Natural History Study. Of these, 280 unique individuals had genetic data available that was consistent with a diagnosis of CDG. These 280 individuals were enrolled into the study between October 8, 2019 and November 29, 2023. One hundred forty-one (50.4%) were female, and 139 (49.6%) were male. Mean and median age at enrollment was 10.1 and 6.5 years, respectively, with a range of 0.22 to 71.4 years. The cohort encompassed individuals with disorders of N-linked protein glycosylation (57%), glycosylphosphatidylinositol anchor disorder (GPI anchor) (15%), disorders of Golgi homeostasis, trafficking and transport (12%), dolichol metabolism disorders (5%), disorders of multiple pathways (6%), and other (5%). The most frequent presenting symptom(s) leading to diagnosis were developmental delay/disability (77%), followed by hypotonia (56%) and feeding difficulties (42%). Mean and median time between first related symptom and diagnosis was 2.7 and 0.8 years, respectively. One hundred percent of individuals in our cohort had developmental differences/disabilities at the time of their baseline visit, followed by 97% with neurologic involvement, 91% with gastrointestinal (GI)/liver involvement, and 88% with musculoskeletal involvement. Severity of disease in individuals was scored on the Nijmegen Progression CDG Rating Scale (NPCRS) with 27% of scores categorized as mild, 44% moderate, and 29% severe. Of the individuals with N-linked protein glycosylation defects, 83% of those with data showed a type 1 pattern on carbohydrate deficient transferrin (CDT) analysis including 82/84 individuals with PMM2-CDG, 6% a type 2 pattern, 1% both type 1 and type 2 pattern and 10% a normal or nonspecific pattern. One hundred percent of individuals with Golgi homeostasis and trafficking defects with data showed a type 2 pattern on CDT analysis, while Golgi transport defect showed a type II pattern 73% of the time, a type 1 pattern for 7%, and 20% had a normal or nonspecific pattern. Most of the variants documented were classified as pathogenic or likely pathogenic using ACMG criteria. For the majority of the variants, the predicted molecular consequence was missense followed by nonsense and splice site, and the majority of the diagnoses are inherited in an autosomal recessive pattern but with disorders of all major nuclear inheritance included. DISCUSSION: The FCDGC Natural History Study serves as an important resource to build future research studies, improve clinical care, and prepare for clinical trial readiness. Herein is the first overview of CDG participants of the FCDGC Natural History Study.

3.
Cytotherapy ; 26(7): 739-748, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38613540

ABSTRACT

Metachromatic leukodystrophy (MLD) is a fatal, progressive neurodegenerative disorder caused by biallelic pathogenic mutations in the ARSA (Arylsulfatase A) gene. With the advent of presymptomatic diagnosis and the availability of therapies with a narrow window for intervention, it is critical to define a standardized approach to diagnosis, presymptomatic monitoring, and clinical care. To meet the needs of the MLD community, a panel of MLD experts was established to develop disease-specific guidelines based on healthcare resources in the United States. This group developed a consensus opinion for best-practice recommendations, as follows: (i) Diagnosis should include both genetic and biochemical testing; (ii) Early diagnosis and treatment for MLD is associated with improved clinical outcomes; (iii) The panel supported the development of newborn screening to accelerate the time to diagnosis and treatment; (iv) Clinical management of MLD should include specialists familiar with the disease who are able to follow patients longitudinally; (v) In early onset MLD, including late infantile and early juvenile subtypes, ex vivo gene therapy should be considered for presymptomatic patients where available; (vi) In late-onset MLD, including late juvenile and adult subtypes, hematopoietic cell transplant (HCT) should be considered for patients with no or minimal disease involvement. This document summarizes current guidance on the presymptomatic monitoring of children affected by MLD as well as the clinical management of symptomatic patients. Future data-driven evidence and evolution of these recommendations will be important to stratify clinical treatment options and improve clinical care.


Subject(s)
Leukodystrophy, Metachromatic , Humans , Infant, Newborn , Cerebroside-Sulfatase/genetics , Consensus , Genetic Therapy/methods , Leukodystrophy, Metachromatic/therapy , Leukodystrophy, Metachromatic/diagnosis , Leukodystrophy, Metachromatic/genetics , Neonatal Screening/methods , United States
4.
Am J Med Genet A ; 194(5): e63519, 2024 May.
Article in English | MEDLINE | ID: mdl-38214124

ABSTRACT

Metabolic pathways are known to generate byproducts-some of which have no clear metabolic function and some of which are toxic. Nicotinamide adenine dinucleotide phosphate hydrate (NAD(P)HX) is a toxic metabolite that is produced by stressors such as a fever, infection, or physical stress. Nicotinamide adenine dinucleotide phosphate hydrate dehydratase (NAXD) and nicotinamide adenine dinucleotide phosphate hydrate epimerase (NAXE) are part of the nicotinamide repair system that function to break down this toxic metabolite. Deficiency of NAXD and NAXE interrupts the critical intracellular repair of NAD(P)HX and allows for its accumulation. Clinically, deficiency of NAXE manifests as progressive, early onset encephalopathy with brain edema and/or leukoencephalopathy (PEBEL) 1, while deficiency of NAXD manifests as PEBEL2. In this report, we describe a case of probable PEBEL2 in a patient with a variant of unknown significance (c.362C>T, p.121L) in the NAXD gene who presented after routine immunizations with significant skin findings and in the absence of fevers.


Subject(s)
Brain Diseases , Immunization , Humans , Immunization/adverse effects , Leukoencephalopathies/etiology , Racemases and Epimerases/deficiency , Racemases and Epimerases/genetics , Hydro-Lyases/deficiency , Hydro-Lyases/genetics , Brain Diseases/etiology
5.
Annu Rev Neurosci ; 38: 105-25, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-25840006

ABSTRACT

This review presents principles of glycosylation, describes the relevant glycosylation pathways and their related disorders, and highlights some of the neurological aspects and issues that continue to challenge researchers. More than 100 rare human genetic disorders that result from deficiencies in the different glycosylation pathways are known today. Most of these disorders impact the central and/or peripheral nervous systems. Patients typically have developmental delays/intellectual disabilities, hypotonia, seizures, neuropathy, and metabolic abnormalities in multiple organ systems. Among these disorders there is great clinical diversity because all cell types differentially glycosylate proteins and lipids. The patients have hundreds of misglycosylated products, which afflict a myriad of processes, including cell signaling, cell-cell interaction, and cell migration. This vast complexity in glycan composition and function, along with the limited availability of analytic tools, has impeded the identification of key glycosylated molecules that cause pathologies. To date, few critical target proteins have been pinpointed.


Subject(s)
Autistic Disorder/metabolism , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/metabolism , Epilepsy/metabolism , Eye Diseases/metabolism , Intellectual Disability/metabolism , Polysaccharides/metabolism , Animals , Autistic Disorder/complications , Biomarkers/metabolism , Epilepsy/complications , Eye Diseases/complications , Glycosaminoglycans/metabolism , Glycosylation , Humans , Intellectual Disability/complications
6.
Alzheimers Dement ; 18(5): 988-1007, 2022 05.
Article in English | MEDLINE | ID: mdl-34581500

ABSTRACT

Studies supporting a strong association between tau deposition and neuronal loss, neurodegeneration, and cognitive decline have heightened the allure of tau and tau-related mechanisms as therapeutic targets. In February 2020, leading tau experts from around the world convened for the first-ever Tau2020 Global Conference in Washington, DC, co-organized and cosponsored by the Rainwater Charitable Foundation, the Alzheimer's Association, and CurePSP. Representing academia, industry, government, and the philanthropic sector, presenters and attendees discussed recent advances and current directions in tau research. The meeting provided a unique opportunity to move tau research forward by fostering global partnerships among academia, industry, and other stakeholders and by providing support for new drug discovery programs, groundbreaking research, and emerging tau researchers. The meeting also provided an opportunity for experts to present critical research-advancing tools and insights that are now rapidly accelerating the pace of tau research.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Biomarkers , Drug Discovery , Humans , tau Proteins
7.
Mol Genet Metab ; 133(4): 397-399, 2021 08.
Article in English | MEDLINE | ID: mdl-34140212

ABSTRACT

PMM2-CDG is the most common congenital disorder of glycosylation (CDG) accounting for almost 65% of known CDG cases affecting N-glycosylation. Abnormalities in N-glycosylation could have a negative impact on many endocrine axes. There is very little known on the effect of impaired N-glycosylation on the hypothalamic-pituitary-adrenal axis function and whether CDG patients are at risk of secondary adrenal insufficiency and decreased adrenal cortisol production. Cortisol and ACTH concentrations were simultaneously measured between 7:44 am to 1 pm in forty-three subjects (20 female, median age 12.8 years, range 0.1 to 48.6 years) participating in an ongoing international, multi-center Natural History study for PMM2-CDG (ClinicalTrials.gov Identifier: NCT03173300). Of the 43 subjects, 11 (25.6%) had cortisol below 5 µg/dl and low to normal ACTH levels, suggestive of secondary adrenal insufficiency. Two of the 11 subjects have confirmed central adrenal insufficiency and are on hydrocortisone replacement and/or stress dosing during illness; 3 had normal and 1 had subnormal cortisol response to ACTH low-dose stimulation test but has not yet been started on therapy; the remaining 5 have upcoming stimulation testing planned. Our findings suggest that patients with PMM2-CDG may be at risk for adrenal insufficiency. Monitoring of morning cortisol and ACTH levels should be part of the standard care in patients with PMM2-CDG.


Subject(s)
Adrenal Insufficiency/diagnosis , Adrenal Insufficiency/physiopathology , Phosphotransferases (Phosphomutases)/blood , Adolescent , Adrenal Insufficiency/etiology , Adult , Child , Child, Preschool , Congenital Disorders of Glycosylation , Female , Glycosylation , Humans , Infant , Male , Middle Aged , Phosphotransferases (Phosphomutases)/genetics , Pituitary-Adrenal System/physiology , Prospective Studies , Risk Factors , Young Adult
8.
J Inherit Metab Dis ; 44(1): 88-98, 2021 01.
Article in English | MEDLINE | ID: mdl-32944978

ABSTRACT

Inborn errors of metabolism (IEM) represent the first group of genetic disorders, amenable to causal therapies. In addition to traditional medical diet and cofactor treatments, new treatment strategies such as enzyme replacement and small molecule therapies, solid organ transplantation, and cell-and gene-based therapies have become available. Inherent to the rare nature of the single conditions, generating high-quality evidence for these treatments in clinical trials and under real-world conditions has been challenging. Guidelines developed with standardized methodologies have contributed to improve the practice of care and long-term clinical outcomes. Adaptive trial designs allow for changes in sample size, group allocation and trial duration as the trial proceeds. n-of-1 studies may be used in small sample sized when participants are clinically heterogeneous. Multicenter observational and registry-based clinical trials are promoted via international research networks. Core outcome and standard data element sets will enhance comparative analysis of clinical trials and observational studies. Patient-centered outcome-research as well as patient-led research initiatives will further accelerate the development of therapies for IEM.


Subject(s)
Metabolism, Inborn Errors/therapy , Biomedical Research , Clinical Trials as Topic , Evidence-Based Medicine , Humans , Orphan Drug Production , Precision Medicine , Rare Diseases
9.
J Inherit Metab Dis ; 44(2): 502-514, 2021 03.
Article in English | MEDLINE | ID: mdl-32677106

ABSTRACT

BACKGROUND: (+)-Epicatechin (EPI) induces mitochondrial biogenesis and antioxidant metabolism in muscle fibers and neurons. We aimed to evaluate safety and efficacy of (+)-EPI in pediatric subjects with Friedreich's ataxia (FRDA). METHODS: This was a phase II, open-label, baseline-controlled single-center trial including 10 participants ages 10 to 22 with confirmed FA diagnosis. (+)-EPI was administered orally at 75 mg/d for 24 weeks, with escalation to 150 mg/d at 12 weeks for subjects not showing improvement of neuromuscular, neurological or cardiac endpoints. Neurological endpoints were change from baseline in Friedreich's Ataxia Rating Scale (FARS) and 8-m timed walk. Cardiac endpoints were changes from baseline in left ventricular (LV) structure and function by cardiac magnetic resonance imaging (MRI) and echocardiogram, changes in cardiac electrophysiology, and changes in biomarkers for heart failure and hypertrophy. RESULTS: Mean FARS/modified (m)FARS scores showed nonstatistically significant improvement by both group and individual analysis. FARS/mFARS scores improved in 5/9 subjects (56%), 8-m walk in 3/9 (33%), 9-peg hole test in 6/10 (60%). LV mass index by cardiac MRI was significantly reduced at 12 weeks (P = .045), and was improved in 7/10 (70%) subjects at 24 weeks. Mean LV ejection fraction was increased at 24 weeks (P = .008) compared to baseline. Mean maximal septal thickness by echocardiography was increased at 24 weeks (P = .031). There were no serious adverse events. CONCLUSION: (+)-EPI was well tolerated over 24 weeks at up to 150 mg/d. Improvement was observed in cardiac structure and function in subset of subjects with FRDA without statistically significant improvement in primary neurological outcomes. SYNOPSIS: A (+)-epicatechin showed improvement of cardiac function, nonsignificant reduction of FARS/mFARS scores, and sustained significant upregulation of muscle-regeneration biomarker follistatin.


Subject(s)
Antioxidants/administration & dosage , Catechin/administration & dosage , Friedreich Ataxia/drug therapy , Heart/diagnostic imaging , Adolescent , Child , Echocardiography , Female , Friedreich Ataxia/physiopathology , Humans , Magnetic Resonance Imaging , Male , Prospective Studies , Severity of Illness Index , Treatment Outcome , Walking
10.
J Inherit Metab Dis ; 44(6): 1463-1480, 2021 11.
Article in English | MEDLINE | ID: mdl-34418116

ABSTRACT

Niemann-Pick disease type C (NPC) is a rare, genetic, progressive neurodegenerative disorder with high unmet medical need. We investigated the safety and efficacy of arimoclomol, which amplifies the heat shock response to target NPC protein misfolding and improve lysosomal function, in patients with NPC. In a 12-month, prospective, randomised, double-blind, placebo-controlled, phase 2/3 trial (ClinicalTrials.gov identifier: NCT02612129), patients (2-18 years) were randomised 2:1 to arimoclomol:placebo, stratified by miglustat use. Routine clinical care was maintained. Arimoclomol was administered orally three times daily. The primary endpoint was change in 5-domain NPC Clinical Severity Scale (NPCCSS) score from baseline to 12 months. Fifty patients enrolled; 42 completed. At month 12, the mean progression from baseline in the 5-domain NPCCSS was 0.76 with arimoclomol vs 2.15 with placebo. A statistically significant treatment difference in favour of arimoclomol of -1.40 (95% confidence interval: -2.76, -0.03; P = .046) was observed, corresponding to a 65% reduction in annual disease progression. In the prespecified subgroup of patients receiving miglustat as routine care, arimoclomol resulted in stabilisation of disease severity over 12 months with a treatment difference of -2.06 in favour of arimoclomol (P = .006). Adverse events occurred in 30/34 patients (88.2%) receiving arimoclomol and 12/16 (75.0%) receiving placebo. Fewer patients had serious adverse events with arimoclomol (5/34, 14.7%) vs placebo (5/16, 31.3%). Treatment-related serious adverse events (n = 2) included urticaria and angioedema. Arimoclomol provided a significant and clinically meaningful treatment effect in NPC and was well tolerated.


Subject(s)
Hydroxylamines/therapeutic use , Niemann-Pick Disease, Type C/drug therapy , Adolescent , Child , Child, Preschool , Disease Progression , Double-Blind Method , Female , Humans , Hydroxylamines/adverse effects , Internationality , Male , Niemann-Pick Disease, Type C/genetics , Prospective Studies , Severity of Illness Index , Treatment Outcome , Young Adult
11.
Am J Med Genet A ; 182(4): 652-658, 2020 04.
Article in English | MEDLINE | ID: mdl-31883306

ABSTRACT

The non-POU domain containing, octamer-binding gene, NONO, is located on chromosome Xq13.1 and encodes a member of a small family of RNA and DNA binding proteins that perform a variety of tasks involved in RNA synthesis, transcriptional regulation and DNA repair. Hemizygous loss-of-function variants in NONO have been shown to cause mental retardation, X-linked, syndromic 34 in males. Features of this disorder can include a range of neurodevelopmental phenotypes, left ventricular noncompaction (LVNC), congenital heart defects, and CNS anomalies. To date only eight cases have been described in the literature. Here we report two unrelated patients and a miscarried fetus with loss-of-function variants in NONO. Their phenotypes, and a review of previously reported cases, demonstrate that hemizygous loss-of-function variants in NONO cause a recognizable genetic syndrome. The cardinal features of this condition include developmental delay, intellectual disability, hypotonia, macrocephaly, structural abnormalities affecting the corpus callosum and/or cerebellum, LVNC, congenital heart defects, and gastrointestinal/feeding issues. This syndrome also carries an increased risk for strabismus and cryptorchidism and is associated with dysmorphic features that include an elongated face, up/down-slanted palpebral fissures, frontal bossing, and malar hypoplasia.


Subject(s)
DNA-Binding Proteins/genetics , Developmental Disabilities/pathology , Heart Defects, Congenital/pathology , Hemizygote , Intellectual Disability/pathology , Mutation , RNA-Binding Proteins/genetics , Adult , Child, Preschool , Developmental Disabilities/genetics , Female , Gestational Age , Heart Defects, Congenital/genetics , Humans , Intellectual Disability/genetics , Male , Phenotype , Syndrome
12.
J Inherit Metab Dis ; 43(5): 1060-1069, 2020 09.
Article in English | MEDLINE | ID: mdl-32324281

ABSTRACT

Miglustat has been indicated for the treatment of Niemann-Pick disease type C (NP-C) since 2009. The aim of this observational study was to assess the effect of miglustat on long-term survival of patients with NP-C. Data for 789 patients from five large national cohorts and from the NPC Registry were collected and combined. Miglustat-treated and untreated patients overall and within sub-groups according to age-at-neurological-onset, that is, early infantile-onset (<2 years), late infantile-onset (2 to <6 years), juvenile-onset (6 to <15 years), and adolescent/adult-onset (≥15 years) were analysed and compared. Survival was analysed from the time of first neurological manifestation (Neurological onset group, comprising 669 patients) and from diagnosis (Diagnosis group, comprising 590 patients) using a Cox proportional hazard model adjusted for various covariates. Overall, 384 (57.4%) patients in the Neurological onset group and 329 (55.8%) in the Diagnosis group were treated with miglustat. Miglustat treatment was associated with a significant reduction in risk of mortality in both groups (entire Neurological onset group, Hazard ratio [HR] = 0.51; entire Diagnosis group, HR = 0.44; both P < .001). The effect was observed consistently in all age-at-neurological-onset sub-groups (HRs = 0.3 to 0.7) and was statistically significant for late infantile-onset patients in both groups (Neurological onset group, HR = 0.36, P < .05; Diagnosis group, HR = 0.32, P < .01), and juvenile-onset patients in the Diagnosis group only (HR = 0.30, P < .05). Despite the limitations of the data that urge cautious interpretation, the findings are consistent with a beneficial effect of miglustat on survival in patients with NP-C.


Subject(s)
1-Deoxynojirimycin/analogs & derivatives , Niemann-Pick Disease, Type C/drug therapy , Niemann-Pick Disease, Type C/mortality , 1-Deoxynojirimycin/therapeutic use , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Enzyme Inhibitors , Female , Humans , Infant , Infant, Newborn , Internationality , Male , Middle Aged , Registries , Retrospective Studies , Survival Analysis , Treatment Outcome , Young Adult
13.
Curr Neurol Neurosci Rep ; 20(2): 2, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32034528

ABSTRACT

PURPOSE OF REVIEW: Owing to vaccine hesitancy, there has been a resurgence of measles infections in developed countries. Practitioners can expect to see an increase in patients with neurologic complications of measles. These devastating disorders include primary measles encephalitis, acute post measles encephalitis, subacute sclerosing panencephalitis (SSPE), and measles inclusion body encephalitis (MIBE). RECENT FINDINGS: Although there are many unanswered questions regarding the neurologic complications of measles, recent advances have led to better understanding of the mechanism of the spread of measles within the nervous system, particularly the disruption of F protein function, which raises the possibility of treatment with fusion-inhibiting molecules. Measles and its neurological complications are preventable and must be prevented. Neurologists must educate other clinicians and the public regarding the consequences of inadequate herd immunity to measles. More effective treatments for SSPE and MIBE may be available in the near future, but currently these remain lethal diseases.


Subject(s)
Measles/complications , Nervous System Diseases/complications , Humans , Measles/metabolism , Nervous System Diseases/metabolism , Viral Fusion Proteins/metabolism
14.
Hum Mutat ; 40(7): 908-925, 2019 07.
Article in English | MEDLINE | ID: mdl-30817854

ABSTRACT

Pathogenic de novo variants in the X-linked gene SLC35A2 encoding the major Golgi-localized UDP-galactose transporter required for proper protein and lipid glycosylation cause a rare type of congenital disorder of glycosylation known as SLC35A2-congenital disorders of glycosylation (CDG; formerly CDG-IIm). To date, 29 unique de novo variants from 32 unrelated individuals have been described in the literature. The majority of affected individuals are primarily characterized by varying degrees of neurological impairments with or without skeletal abnormalities. Surprisingly, most affected individuals do not show abnormalities in serum transferrin N-glycosylation, a common biomarker for most types of CDG. Here we present data characterizing 30 individuals and add 26 new variants, the single largest study involving SLC35A2-CDG. The great majority of these individuals had normal transferrin glycosylation. In addition, expanding the molecular and clinical spectrum of this rare disorder, we developed a robust and reliable biochemical assay to assess SLC35A2-dependent UDP-galactose transport activity in primary fibroblasts. Finally, we show that transport activity is directly correlated to the ratio of wild-type to mutant alleles in fibroblasts from affected individuals.


Subject(s)
Congenital Disorders of Glycosylation/genetics , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Uridine Diphosphate Galactose/metabolism , Animals , Biopsy , CHO Cells , Cells, Cultured , Congenital Disorders of Glycosylation/metabolism , Congenital Disorders of Glycosylation/pathology , Cricetulus , Female , Humans , Male , Mutation
15.
Ann Neurol ; 84(3): 473-480, 2018 09.
Article in English | MEDLINE | ID: mdl-30076629

ABSTRACT

The clinical phenotype of leucine-rich glioma-inactivated protein 1 (LGI1) and contactin-associated proteinlike 2 (CASPR2) autoimmunity is well defined in adults. Data for children are limited (<10 cases). Among 13,319 pediatric patients serologically tested for autoimmune neurological disorders (2010-2017), 264 were seropositive for voltage-gated potassium channel-complex-IgG (radioimmunoprecipitation). Only 13 (4.9%) were positive by transfected cell-binding assay for LGI1-IgG (n = 7), CASPR2-IgG (n = 3), or both (n = 3). This is significantly less than in adults. Encephalopathy, seizures, and peripheral nerve hyperexcitability were common, as was coexisting autoimmunity. No faciobrachial dystonic seizures or cancers were identified. Functional neurologic disorders were frequently the initial diagnosis, and immunotherapy appeared beneficial. Ann Neurol 2018;84:473-480.


Subject(s)
Autoimmune Diseases of the Nervous System/immunology , Autoimmunity/immunology , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Proteins/metabolism , Adolescent , Autoantibodies/immunology , Autoantibodies/metabolism , Autoimmune Diseases of the Nervous System/metabolism , Child , Child, Preschool , Female , Humans , Immunotherapy/methods , Intracellular Signaling Peptides and Proteins , Male , Membrane Proteins/immunology , Nerve Tissue Proteins/immunology , Potassium Channels, Voltage-Gated/immunology , Proteins/immunology
16.
J Inherit Metab Dis ; 42(1): 5-28, 2019 01.
Article in English | MEDLINE | ID: mdl-30740725

ABSTRACT

Phosphomannomutase 2 (PMM2-CDG) is the most common congenital disorder of N-glycosylation and is caused by a deficient PMM2 activity. The clinical presentation and the onset of PMM2-CDG vary among affected individuals ranging from a severe antenatal presentation with multisystem involvement to mild adulthood presentation limited to minor neurological involvement. Management of affected patients requires a multidisciplinary approach. In this article, a systematic review of the literature on PMM2-CDG was conducted by a group of international experts in different aspects of CDG. Our managment guidelines were initiated based on the available evidence-based data and experts' opinions. This guideline mainly addresses the clinical evaluation of each system/organ involved in PMM2-CDG, and the recommended management approach. It is the first systematic review of current practices in PMM2-CDG and the first guidelines aiming at establishing a practical approach to the recognition, diagnosis and management of PMM2-CDG patients.


Subject(s)
Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/drug therapy , Phosphotransferases (Phosphomutases)/deficiency , Follow-Up Studies , Glycosylation , Humans
17.
Am J Kidney Dis ; 72(2): 302-308, 2018 08.
Article in English | MEDLINE | ID: mdl-29395486

ABSTRACT

The diagnosis of autosomal dominant polycystic kidney disease (ADPKD) relies on imaging criteria in the setting of a positive familial history. Molecular analysis, seldom used in clinical practice, identifies a causative mutation in >90% of cases in the genes PKD1, PKD2, or rarely GANAB. We report the clinical and genetic dissection of a 7-generation pedigree, resulting in the diagnosis of 2 different cystic disorders. Using targeted next-generation sequencing of 65 candidate genes in a patient with an ADPKD-like phenotype who lacked the familial PKD2 mutation, we identified a COL4A1 mutation (p.Gln247*) and made the diagnosis of HANAC (hereditary angiopathy with nephropathy, aneurysms, and muscle cramps) syndrome. While 4 individuals had ADPKD-PKD2, various COL4A1-related phenotypes were identified in 5 patients, and 3 individuals with likely digenic PKD2/COL4A1 disease reached end-stage renal disease at around 50 years of age, significantly earlier than observed for either monogenic disorder. Thus, using targeted next-generation sequencing as part of the diagnostic approach in patients with cystic diseases provides differential diagnoses and identifies factors underlying disease variability. As specific therapies are rapidly developing for ADPKD, a precise etiologic diagnosis should be paramount for inclusion in therapeutic trials and optimal patient management.


Subject(s)
Collagen Type IV/genetics , Genetic Testing/methods , Mutation/genetics , Polycystic Kidney Diseases/diagnostic imaging , Polycystic Kidney Diseases/genetics , TRPP Cation Channels/genetics , Humans , Male , Middle Aged , Pedigree
20.
Mol Genet Metab ; 120(1-2): 34-37, 2017.
Article in English | MEDLINE | ID: mdl-27923544

ABSTRACT

The Niemann-Pick family of diseases was poorly understood until Roscoe Brady and his colleagues began their investigations in the 1960s. Following Brady's discovery of the defect in acid sphingomyelinase in Niemann-Pick disease, types A and B, Peter Pentchev, a senior scientist in the group, launched a series of investigations of an unusual lipid storage disease in a spontaneous mouse model. These led initially to identification of the cholesterol trafficking defect in the mouse, and then in human Niemann-Pick disease, type C (NPC). This discovery formed the basis of the standard diagnostic test for NPC for the next three decades. Subsequently, an international collaboration was established, based at the Brady lab at NIH, which culminated in discovery of the NPC1 gene. Roscoe Brady, Peter Pentchev and their colleagues defined and refined the clinical biochemical and pathological phenotypes of NPC in a series of elegant parallel studies. They also identified abnormal oxysterols in NPC; later work has proved such compounds to be sensitive biomarkers of the disease. The dedication of the Brady lab to NPC, and the discoveries that flowed therefrom, provided critical foundations for the current explosion of progress in this disease.


Subject(s)
Carrier Proteins/genetics , Cholesterol/metabolism , Membrane Glycoproteins/genetics , Niemann-Pick Disease, Type C/metabolism , Animals , Disease Models, Animal , History, 20th Century , History, 21st Century , Humans , Intracellular Signaling Peptides and Proteins , Mice , Mutation , Niemann-Pick C1 Protein , Oxysterols
SELECTION OF CITATIONS
SEARCH DETAIL