Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Publication year range
1.
Blood ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820498

ABSTRACT

Interplay between platelets, coagulation factors, endothelial cells (ECs) and fibrinolytic factors is necessary for effective hemostatic plug formation. This study describes a four-dimensional (4D) imaging platform to visualize and quantify hemostatic plug components in mice with high spatiotemporal resolution. Fibrin accumulation following laser-induced vascular injury was observed at the platelet plug-EC interface, controlled by the antagonistic balance between fibrin generation and breakdown. We observed less fibrin accumulation in mice expressing low levels of tissue factor (TFlow) or F12-/- mice compared to controls, whereas increased fibrin accumulation, including on the vasculature adjacent to the platelet plug, was observed in plasminogen-deficient mice or wild-type mice treated with tranexamic acid (TXA). Phosphatidylserine (PS), a membrane lipid critical for the assembly of coagulation factors, was first detected at the platelet plug-EC interface, followed by exposure across the endothelium. Impaired PS exposure resulted in a significant reduction in fibrin accumulation in cyclophilin D-/- mice. Adoptive transfer studies demonstrated a key role for PS exposure on platelets, and to a lesser degree on ECs, in fibrin accumulation during hemostatic plug formation. Together, these studies suggest that (1) platelets are the functionally dominant procoagulant cellular surface, and (2) plasmin is critical for limiting fibrin accumulation at the site of a forming hemostatic plug.

2.
Blood ; 143(2): 105-117, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37832029

ABSTRACT

ABSTRACT: Elevated circulating fibrinogen levels correlate with increased risk for both cardiovascular and venous thromboembolic diseases. In vitro studies show that formation of a highly dense fibrin matrix is a major determinant of clot structure and stability. Here, we analyzed the impact of nonpolymerizable fibrinogen on arterial and venous thrombosis as well as hemostasis in vivo using FgaEK mice that express normal levels of a fibrinogen that cannot be cleaved by thrombin. In a model of carotid artery thrombosis, FgaWT/EK and FgaEK/EK mice were protected from occlusion with 4% ferric chloride (FeCl3) challenges compared with wild-type (FgaWT/WT) mice, but this protection was lost, with injuries driven by higher concentrations of FeCl3. In contrast, fibrinogen-deficient (Fga-/-) mice showed no evidence of occlusion, even with high-concentration FeCl3 challenge. Fibrinogen-dependent platelet aggregation and intraplatelet fibrinogen content were similar in FgaWT/WT, FgaWT/EK, and FgaEK/EK mice, consistent with preserved fibrinogen-platelet interactions that support arterial thrombosis with severe challenge. In an inferior vena cava stasis model of venous thrombosis, FgaEK/EK mice had near complete protection from thrombus formation. FgaWT/EK mice also displayed reduced thrombus incidence and a significant reduction in thrombus mass relative to FgaWT/WT mice after inferior vena cava stasis, suggesting that partial expression of nonpolymerizable fibrinogen was sufficient for conferring protection. Notably, FgaWT/EK and FgaEK/EK mice had preserved hemostasis in multiple models as well as normal wound healing times after skin incision, unlike Fga-/- mice that displayed significant bleeding and delayed healing. These findings indicate that a nonpolymerizable fibrinogen variant can significantly suppress occlusive thrombosis while preserving hemostatic potential in vivo.


Subject(s)
Hemostatics , Thrombosis , Venous Thrombosis , Animals , Mice , Fibrinogen/metabolism , Hemostasis , Venous Thrombosis/genetics , Venous Thrombosis/metabolism , Thrombosis/metabolism , Blood Platelets/metabolism
3.
PLoS Pathog ; 18(1): e1010227, 2022 01.
Article in English | MEDLINE | ID: mdl-35041705

ABSTRACT

The blood-clotting protein fibrin(ogen) plays a critical role in host defense against invading pathogens, particularly against peritoneal infection by the Gram-positive microbe Staphylococcus aureus. Here, we tested the hypothesis that direct binding between fibrin(ogen) and S. aureus is a component of the primary host antimicrobial response mechanism and prevention of secondary microbe dissemination from the peritoneal cavity. To establish a model system, we showed that fibrinogen isolated from FibγΔ5 mice, which express a mutant form lacking the final 5 amino acids of the fibrinogen γ chain (termed fibrinogenγΔ5), did not support S. aureus adherence when immobilized and clumping when in suspension. In contrast, purified wildtype fibrinogen supported robust adhesion and clumping that was largely dependent on S. aureus expression of the receptor clumping factor A (ClfA). Following peritoneal infection with S. aureus USA300, FibγΔ5 mice displayed worse survival compared to WT mice coupled to reduced bacterial killing within the peritoneal cavity and increased dissemination of the microbes into circulation and distant organs. The failure of acute bacterial killing, but not enhanced dissemination, was partially recapitulated by mice infected with S. aureus USA300 lacking ClfA. Fibrin polymer formation and coagulation transglutaminase Factor XIII each contributed to killing of the microbes within the peritoneal cavity, but only elimination of polymer formation enhanced systemic dissemination. Host macrophage depletion or selective elimination of the fibrin(ogen) ß2-integrin binding motif both compromised local bacterial killing and enhanced S. aureus systemic dissemination, suggesting fibrin polymer formation in and of itself was not sufficient to retain S. aureus within the peritoneal cavity. Collectively, these findings suggest that following peritoneal infection, the binding of S. aureus to stabilized fibrin matrices promotes a local, macrophage-mediated antimicrobial response essential for prevention of microbe dissemination and downstream host mortality.


Subject(s)
Fibrinogen/immunology , Peritonitis/immunology , Staphylococcal Infections/immunology , Animals , Coagulase/immunology , Coagulase/metabolism , Fibrin/metabolism , Mice , Peritonitis/metabolism , Staphylococcal Infections/metabolism , Staphylococcus aureus/immunology , Staphylococcus aureus/metabolism
4.
Blood ; 139(21): 3194-3203, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35358299

ABSTRACT

Platelets are critical in hemostasis and a major contributor to arterial thrombosis (AT). (Pre)clinical studies suggest platelets also contribute to venous thrombosis (VT), but the mechanisms are largely unknown. We hypothesized that in VT, platelets use signaling machinery distinct from AT. Here we aimed to characterize the contributions of platelet G protein-coupled (GPCR) and immunoreceptor tyrosine-based activation motif (ITAM) receptor signaling to VT. Wild-type (WT) and transgenic mice were treated with inhibitors to selectively inhibit platelet-signaling pathways: ITAM-CLEC2 (Clec2mKO), glycoprotein VI (JAQ1 antibody), and Bruton's tyrosine kinase (ibrutinib); GPCR-cyclooxygenase 1 (aspirin); and P2Y12 (clopidogrel). VT was induced by inferior vena cava stenosis. Thrombin generation in platelet-rich plasma and whole-blood clot formation were studied ex vivo. Intravital microscopy was used to study platelet-leukocyte interactions after flow restriction. Thrombus weights were reduced in WT mice treated with high-dose aspirin + clopidogrel (dual antiplatelet therapy [DAPT]) but not in mice treated with either inhibitor alone or low-dose DAPT. Similarly, thrombus weights were reduced in mice with impaired ITAM signaling (Clec2mKO + JAQ1; WT + ibrutinib) but not in Clec2mKO or WT + JAQ1 mice. Both aspirin and clopidogrel, but not ibrutinib, protected mice from FeCl3-induced AT. Thrombin generation and clot formation were normal in blood from high-dose DAPT- or ibrutinib-treated mice; however, platelet adhesion and platelet-neutrophil aggregate formation at the vein wall were reduced in mice treated with high-dose DAPT or ibrutinib. In summary, VT initiation requires platelet activation via GPCRs and ITAM receptors. Strong inhibition of either signaling pathway reduces VT in mice.


Subject(s)
Thrombosis , Venous Thrombosis , Animals , Aspirin , Blood Platelets/metabolism , Clopidogrel/metabolism , Clopidogrel/pharmacology , GTP-Binding Proteins , Immunoreceptor Tyrosine-Based Activation Motif , Mice , Mice, Transgenic , Platelet Activation , Platelet Aggregation , Platelet Aggregation Inhibitors/pharmacology , Thrombin/metabolism , Thrombosis/metabolism , Venous Thrombosis/metabolism
5.
Blood ; 139(9): 1374-1388, 2022 03 03.
Article in English | MEDLINE | ID: mdl-34905618

ABSTRACT

Genetic variants within the fibrinogen Aα chain encoding the αC-region commonly result in hypodysfibrinogenemia in patients. However, the (patho)physiological consequences and underlying mechanisms of such mutations remain undefined. Here, we generated Fga270 mice carrying a premature termination codon within the Fga gene at residue 271. The Fga270 mutation was compatible with Mendelian inheritance for offspring of heterozygous crosses. Adult Fga270/270 mice were hypofibrinogenemic with ∼10% plasma fibrinogen levels relative to FgaWT/WT mice, linked to 90% reduction in hepatic Fga messenger RNA (mRNA) because of nonsense-mediated decay of the mutant mRNA. Fga270/270 mice had preserved hemostatic potential in vitro and in vivo in models of tail bleeding and laser-induced saphenous vein injury, whereas Fga-/- mice had continuous bleeding. Platelets from FgaWT/WT and Fga270/270 mice displayed comparable initial aggregation following adenosine 5'-diphosphate stimulation, but Fga270/270 platelets quickly disaggregated. Despite ∼10% plasma fibrinogen, the fibrinogen level in Fga270/270 platelets was ∼30% of FgaWT/WT platelets with a compensatory increase in fibronectin. Notably, Fga270/270 mice showed complete protection from thrombosis in the inferior vena cava stasis model. In a model of Staphylococcus aureus peritonitis, Fga270/270 mice supported local, fibrinogen-mediated bacterial clearance and host survival comparable to FgaWT/WT, unlike Fga-/- mice. Decreasing the normal fibrinogen levels to ∼10% with small interfering RNA in mice also provided significant protection from venous thrombosis without compromising hemostatic potential and antimicrobial function. These findings both reveal novel molecular mechanisms underpinning fibrinogen αC-region truncation mutations and highlight the concept that selective fibrinogen reduction may be efficacious for limiting thrombosis while preserving hemostatic and immune protective functions.


Subject(s)
Afibrinogenemia , Blood Platelets/metabolism , Fibrinogen , Hemostasis/genetics , Mutation , Platelet Aggregation/genetics , Thrombosis , Afibrinogenemia/genetics , Afibrinogenemia/metabolism , Animals , Fibrinogen/genetics , Fibrinogen/metabolism , Mice , Mice, Knockout , Thrombosis/genetics , Thrombosis/metabolism
6.
Blood ; 136(10): 1180-1190, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32518959

ABSTRACT

Ras-related protein 1 (Rap1) is a major convergence point of the platelet-signaling pathways that result in talin-1 binding to the integrin ß cytoplasmic domain and consequent integrin activation, platelet aggregation, and effective hemostasis. The nature of the connection between Rap1 and talin-1 in integrin activation is an important remaining gap in our understanding of this process. Previous work identified a low-affinity Rap1-binding site in the talin-1 F0 domain that makes a small contribution to integrin activation in platelets. We recently identified an additional Rap1-binding site in the talin-1 F1 domain that makes a greater contribution than F0 in model systems. Here we generated mice bearing point mutations, which block Rap1 binding without affecting talin-1 expression, in either the talin-1 F1 domain (R118E) alone, which were viable, or in both the F0 and F1 domains (R35E,R118E), which were embryonic lethal. Loss of the Rap1-talin-1 F1 interaction in platelets markedly decreases talin-1-mediated activation of platelet ß1- and ß3-integrins. Integrin activation and platelet aggregation in mice whose platelets express only talin-1(R35E, R118E) are even more impaired, resembling the defect seen in platelets lacking both Rap1a and Rap1b. Although Rap1 is important in thrombopoiesis, platelet secretion, and surface exposure of phosphatidylserine, loss of the Rap1-talin-1 interaction in talin-1(R35E, R118E) platelets had little effect on these processes. These findings show that talin-1 is the principal direct effector of Rap1 GTPases that regulates platelet integrin activation in hemostasis.


Subject(s)
Integrin beta1/metabolism , Integrin beta3/metabolism , Point Mutation , Talin/physiology , Thrombopoiesis , rap GTP-Binding Proteins/physiology , rap1 GTP-Binding Proteins/physiology , Animals , Female , Integrin beta1/genetics , Integrin beta3/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Platelet Activation , Platelet Aggregation , Protein Domains , Signal Transduction
7.
Arterioscler Thromb Vasc Biol ; 40(8): 1891-1904, 2020 08.
Article in English | MEDLINE | ID: mdl-32493172

ABSTRACT

OBJECTIVE: Platelets are critical to the formation of a hemostatic plug and the pathogenesis of atherothrombosis. Preclinical animal models, especially the mouse, provide an important platform to assess the efficacy and safety of antiplatelet drugs. However, these studies are limited by inherent differences between human and mouse platelets and the species-selectivity of many drugs. To circumvent these limitations, we developed a new protocol for the adoptive transfer of human platelets into thrombocytopenic nonobese diabetic/severe combined immune deficiency mice, that is, a model where all endogenous platelets are replaced by human platelets in mice accepting xenogeneic tissues. Approach and Results: To demonstrate the power of this new model, we visualized and quantified hemostatic plug formation and stability by intravital spinning disk confocal microscopy following laser ablation injury to the saphenous vein. Integrin αIIbß3-dependent hemostatic platelet plug formation was achieved within ≈30 seconds after laser ablation injury in humanized platelet mice. Pretreatment of mice with standard dual antiplatelet therapy (Aspirin+Ticagrelor) or PAR1 inhibitor, L-003959712 (an analog of vorapaxar), mildly prolonged the bleeding time and significantly reduced platelet adhesion to the site of injury. Consistent with findings from clinical trials, inhibition of PAR1 in combination with dual antiplatelet therapy markedly prolonged bleeding time in humanized platelet mice. CONCLUSIONS: We propose that this novel mouse model will provide a robust platform to test and predict the safety and efficacy of experimental antiplatelet drugs and to characterize the hemostatic function of synthetic, stored and patient platelets.


Subject(s)
Blood Platelets/physiology , Hemostasis/drug effects , Adoptive Transfer , Animals , Benzofurans/pharmacology , Carbamates/pharmacology , Dual Anti-Platelet Therapy/adverse effects , Humans , Male , Mice , Models, Animal , Receptor, PAR-1/antagonists & inhibitors
8.
Blood ; 132(18): 1951-1962, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30131434

ABSTRACT

RAP GTPases, important regulators of cellular adhesion, are abundant signaling molecules in the platelet/megakaryocytic lineage. However, mice lacking the predominant isoform, RAP1B, display a partial platelet integrin activation defect and have a normal platelet count, suggesting the existence of a RAP1-independent pathway to integrin activation in platelets and a negligible role for RAP GTPases in megakaryocyte biology. To determine the importance of individual RAP isoforms on platelet production and on platelet activation at sites of mechanical injury or vascular leakage, we generated mice with megakaryocyte-specific deletion (mKO) of Rap1a and/or Rap1b Interestingly, Rap1a/b-mKO mice displayed a marked macrothrombocytopenia due to impaired proplatelet formation by megakaryocytes. In platelets, RAP isoforms had redundant and isoform-specific functions. Deletion of RAP1B, but not RAP1A, significantly reduced α-granule secretion and activation of the cytoskeleton regulator RAC1. Both isoforms significantly contributed to thromboxane A2 generation and the inside-out activation of platelet integrins. Combined deficiency of RAP1A and RAP1B markedly impaired platelet aggregation, spreading, and clot retraction. Consistently, thrombus formation in physiological flow conditions was abolished in Rap1a/b-mKO, but not Rap1a-mKO or Rap1b-mKO, platelets. Rap1a/b-mKO mice were strongly protected from experimental thrombosis and exhibited a severe defect in hemostasis after mechanical injury. Surprisingly, Rap1a/b-mKO platelets were indistinguishable from controls in their ability to prevent blood-lymphatic mixing during development and hemorrhage at sites of inflammation. In summary, our studies demonstrate an essential role for RAP1 signaling in platelet integrin activation and a critical role in platelet production. Although important for hemostatic/thrombotic plug formation, platelet RAP1 signaling is dispensable for vascular integrity during development and inflammation.


Subject(s)
Blood Platelets/cytology , Gene Deletion , Platelet Adhesiveness , Thrombopoiesis , rap GTP-Binding Proteins/genetics , rap1 GTP-Binding Proteins/genetics , Animals , Blood Platelets/metabolism , Hemostasis , Integrins/metabolism , Mice , Mice, Knockout , Protein Isoforms/genetics , Protein Isoforms/metabolism , Thrombocytopenia/genetics , Thrombocytopenia/metabolism , rap GTP-Binding Proteins/metabolism , rap1 GTP-Binding Proteins/metabolism
9.
J Biol Chem ; 292(5): 1691-1704, 2017 02 03.
Article in English | MEDLINE | ID: mdl-27903653

ABSTRACT

The class I PI3K family of lipid kinases plays an important role in integrin αIIbß3 function, thereby supporting thrombus growth and consolidation. Here, we identify Ras/Rap1GAP Rasa3 (GAP1IP4BP) as a major phosphatidylinositol 3,4,5-trisphosphate-binding protein in human platelets and a key regulator of integrin αIIbß3 outside-in signaling. We demonstrate that cytosolic Rasa3 translocates to the plasma membrane in a PI3K-dependent manner upon activation of human platelets. Expression of wild-type Rasa3 in integrin αIIbß3-expressing CHO cells blocked Rap1 activity and integrin αIIbß3-mediated spreading on fibrinogen. In contrast, Rap1GAP-deficient (P489V) and Ras/Rap1GAP-deficient (R371Q) Rasa3 had no effect. We furthermore show that two Rasa3 mutants (H794L and G125V), which are expressed in different mouse models of thrombocytopenia, lack both Ras and Rap1GAP activity and do not affect integrin αIIbß3-mediated spreading of CHO cells on fibrinogen. Platelets from thrombocytopenic mice expressing GAP-deficient Rasa3 (H794L) show increased spreading on fibrinogen, which in contrast to wild-type platelets is insensitive to PI3K inhibitors. Together, these results support an important role for Rasa3 in PI3K-dependent integrin αIIbß3-mediated outside-in signaling and cell spreading.


Subject(s)
GTPase-Activating Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol Phosphates/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction/physiology , Amino Acid Substitution/genetics , Animals , Blood Platelets/metabolism , Blood Platelets/pathology , CHO Cells , Cricetinae , Cricetulus , Disease Models, Animal , GTPase-Activating Proteins/genetics , Humans , Mice , Mice, Mutant Strains , Mutation, Missense , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol Phosphates/genetics , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Thrombocytopenia/genetics , Thrombocytopenia/metabolism , Thrombocytopenia/pathology
10.
Blood ; 127(11): 1468-80, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26744461

ABSTRACT

Platelets are essential for hemostasis, and thrombocytopenia is a major clinical problem. Megakaryocytes (MKs) generate platelets by extending long processes, proplatelets, into sinusoidal blood vessels. However, very little is known about what regulates proplatelet formation. To uncover which proteins were dynamically changing during this process, we compared the proteome and transcriptome of round vs proplatelet-producing MKs by 2D difference gel electrophoresis (DIGE) and polysome profiling, respectively. Our data revealed a significant increase in a poorly-characterized MK protein, myristoylated alanine-rich C-kinase substrate (MARCKS), which was upregulated 3.4- and 5.7-fold in proplatelet-producing MKs in 2D DIGE and polysome profiling analyses, respectively. MARCKS is a protein kinase C (PKC) substrate that binds PIP2. In MKs, it localized to both the plasma and demarcation membranes. MARCKS inhibition by peptide significantly decreased proplatelet formation 53%. To examine the role of MARCKS in the PKC pathway, we treated MKs with polymethacrylate (PMA), which markedly increased MARCKS phosphorylation while significantly inhibiting proplatelet formation 84%, suggesting that MARCKS phosphorylation reduces proplatelet formation. We hypothesized that MARCKS phosphorylation promotes Arp2/3 phosphorylation, which subsequently downregulates proplatelet formation; both MARCKS and Arp2 were dephosphorylated in MKs making proplatelets, and Arp2 inhibition enhanced proplatelet formation. Finally, we used MARCKS knockout (KO) mice to probe the direct role of MARCKS in proplatelet formation; MARCKS KO MKs displayed significantly decreased proplatelet levels. MARCKS expression and signaling in primary MKs is a novel finding. We propose that MARCKS acts as a "molecular switch," binding to and regulating PIP2 signaling to regulate processes like proplatelet extension (microtubule-driven) vs proplatelet branching (Arp2/3 and actin polymerization-driven).


Subject(s)
Intracellular Signaling Peptides and Proteins/physiology , Megakaryocytes/metabolism , Membrane Proteins/physiology , Protein Processing, Post-Translational , Thrombopoiesis/physiology , Actin-Related Protein 2-3 Complex/metabolism , Actin-Related Protein 3/metabolism , Amino Acid Sequence , Angiopoietin-Like Protein 2 , Angiopoietin-like Proteins , Angiopoietins/metabolism , Animals , Apoptosis , Blood Platelets/metabolism , Intracellular Signaling Peptides and Proteins/deficiency , Liver/cytology , Liver/embryology , Membrane Proteins/deficiency , Membrane Proteins/metabolism , Mice , Mice, Knockout , Molecular Sequence Data , Myristoylated Alanine-Rich C Kinase Substrate , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphorylation , Protein Biosynthesis , Protein Kinase C/metabolism , Signal Transduction
11.
Blood ; 128(9): 1282-9, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27235135

ABSTRACT

In addition to mutations in ITG2B or ITGB3 genes that cause defective αIIbß3 expression and/or function in Glanzmann's thrombasthenia patients, platelet dysfunction can be a result of genetic variability in proteins that mediate inside-out activation of αIIbß3 The RASGRP2 gene is strongly expressed in platelets and neutrophils, where its encoded protein CalDAG-GEFI facilitates the activation of Rap1 and subsequent activation of integrins. We used next-generation sequencing (NGS) and whole-exome sequencing (WES) to identify 2 novel function-disrupting mutations in RASGRP2 that account for bleeding diathesis and platelet dysfunction in 2 unrelated families. By using a panel of 71 genes, we identified a homozygous change (c.1142C>T) in exon 10 of RASGRP2 in a 9-year-old child of Chinese origin (family 1). This variant led to a p.Ser381Phe substitution in the CDC25 catalytic domain of CalDAG-GEFI. In 2 Spanish siblings from family 2, WES identified a nonsense homozygous variation (c.337C>T) (p.Arg113X) in exon 5 of RASGRP2 CalDAG-GEFI expression was markedly reduced in platelets from all patients, and by using a novel in vitro assay, we found that the nucleotide exchange activity was dramatically reduced in CalDAG-GEFI p.Ser381Phe. Platelets from homozygous patients exhibited agonist-specific defects in αIIbß3 integrin activation and aggregation. In contrast, α- and δ-granule secretion, platelet spreading, and clot retraction were not markedly affected. Integrin activation in the patients' neutrophils was also impaired. These patients are the first cases of a CalDAG-GEFI deficiency due to homozygous RASGRP2 mutations that are linked to defects in both leukocyte and platelet integrin activation.


Subject(s)
Blood Platelets/metabolism , Exons , Guanine Nucleotide Exchange Factors , Mutation, Missense , Platelet Activation/genetics , Thrombasthenia , rap1 GTP-Binding Proteins/metabolism , Amino Acid Substitution , Blood Platelets/pathology , Child , Enzyme Activation/genetics , Female , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , High-Throughput Nucleotide Sequencing , Humans , Integrin beta3/genetics , Integrin beta3/metabolism , Male , Middle Aged , Platelet Membrane Glycoprotein IIb/genetics , Platelet Membrane Glycoprotein IIb/metabolism , Secretory Vesicles/genetics , Secretory Vesicles/metabolism , Thrombasthenia/genetics , Thrombasthenia/metabolism , Thrombasthenia/pathology
12.
Platelets ; 29(1): 84-86, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28726538

ABSTRACT

Congenital platelet function disorders are often the result of defects in critical signal transduction pathways required for platelet adhesion and clot formation. Mutations affecting RASGRP2, the gene encoding the Rap GTPase activator, CalDAG-GEFI, give rise to a novel, and rare, group of platelet signal transduction abnormalities. We here report platelet function studies for two brothers (P1 and P2) expressing a novel variant of RASGRP2, CalDAG-GEFI(p.Gly305Asp). P1 and P2 have a lifelong history of bleeding with severe epistaxis successfully treated with platelet transfusions or rFVIIa. Other bleedings include extended hemorrhage from minor wounds. Platelet counts and plasma coagulation were normal, as was αIIbß3 and GPIb expression on the platelet surface. Aggregation of patients' platelets was significantly impaired in response to select agonists including ADP, epinephrine, collagen, and calcium ionophore A23187. Integrin αIIbß3 activation and granule release were also impaired. CalDAG-GEFI protein expression was markedly reduced but not absent. Homology modeling places the Gly305Asp substitution at the GEF-Rap1 interface, suggesting that the mutant protein has very limited catalytic activity. In summary, we here describe a novel mutation in RASGRP2 that affects both expression and function of CalDAG-GEFI and that causes impaired platelet adhesive function and significant bleeding in humans.


Subject(s)
Blood Platelet Disorders/blood , Blood Platelet Disorders/genetics , Blood Platelets/metabolism , Guanine Nucleotide Exchange Factors/genetics , Hemorrhage/etiology , Biomarkers , Blood Platelet Disorders/complications , Child , Erythrocyte Indices , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/metabolism , Hemorrhage/diagnosis , Humans , Male , Models, Molecular , Pedigree , Phenotype , Platelet Aggregation/genetics , Platelet Count , Protein Conformation , Signal Transduction
13.
Platelets ; 29(2): 192-195, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28762304

ABSTRACT

The RASGRP2 gene encodes the Ca2+ and DAG-regulated guanine nucleotide exchange factor I (CalDAG-GEFI), which plays a key role in integrin activation in platelets and neutrophils. We here report two new RASGRP2 variants associated with platelet dysfunction and bleeding in patients. The homozygous patients had normal platelet and neutrophil counts and morphology. Platelet phenotyping showed: prolonged PFA-100 closure times; normal expression of major glycoprotein receptors; severely reduced platelet aggregation response to ADP and collagen (both patients); aggregation response to PAR1 and arachidonic acid markedly impaired in one patient; PMA-induced aggregation unaffected; platelet secretion, clot retraction, and spreading minimally affected. Genetic analysis identified two new homozygous variants in RASGRP2: c.706C>T (p.Q236X) and c.887G>A (p.C296Y). In both patients, CalDAG-GEFI protein was not detectable in platelet lysates, and platelet αIIbß3 activation, as assessed by fibrinogen binding, was greatly impaired in response to all agonists except PMA. Patient neutrophils showed normal integrin expression, but impaired Mn2+-induced fibrinogen binding. In summary, we have identified two new RASGRP2 mutations that can be added to this rapidly growing form of inherited platelet function disorder.


Subject(s)
Blood Platelets/metabolism , Guanine Nucleotide Exchange Factors/blood , Hemorrhagic Disorders/blood , Hemorrhagic Disorders/genetics , Mutation , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Blood Platelet Disorders/blood , Blood Platelet Disorders/genetics , Blood Platelets/pathology , Child , Child, Preschool , Female , Guanine Nucleotide Exchange Factors/biosynthesis , Guanine Nucleotide Exchange Factors/genetics , Humans , Male , Pedigree
14.
Blood ; 126(25): 2695-703, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26324702

ABSTRACT

Regulation of integrins is critical for lymphocyte adhesion to endothelium and trafficking through secondary lymphoid organs. Inside-out signaling to integrins is mediated by the small GTPase Rap1. Two effectors of Rap1 regulate integrins, RapL and Rap1 interacting adaptor molecule (RIAM). Using mice conditionally deficient in both Rap1a and Rap1b and mice null for RIAM, we show that the Rap1/RIAM module is not required for T- or B-cell development but is essential for efficient adhesion to intercellular adhesion molecule (ICAM) 1 and vascular cell adhesion molecule (VCAM) 1 and for proper trafficking of lymphocytes to secondary lymphoid organs. Interestingly, in RIAM-deficient mice, whereas peripheral lymph nodes (pLNs) were depleted of both B and T cells and recirculating B cells were diminished in the bone barrow (BM), the spleen was hypercellular, albeit with a relative deficiency of marginal zone B cells. The abnormality in lymphocyte trafficking was accompanied by defective humoral immunity to T-cell-dependent antigens. Platelet function was intact in RIAM-deficient animals. These in vivo results confirm a role for RIAM in the regulation of some, but not all, leukocyte integrins and suggest that RIAM-regulated integrin activation is required for trafficking of lymphocytes from blood into pLNs and BM, where relatively high shear forces exist in high endothelial venules and sinusoids, respectively.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , B-Lymphocytes/immunology , Chemotaxis, Leukocyte/immunology , Membrane Proteins/immunology , T-Lymphocytes/immunology , Adaptor Proteins, Signal Transducing/metabolism , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cell Adhesion/immunology , Integrins/metabolism , Membrane Proteins/metabolism , Mice , Mice, Knockout , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , rap1 GTP-Binding Proteins/immunology , rap1 GTP-Binding Proteins/metabolism
15.
Arterioscler Thromb Vasc Biol ; 36(9): 1838-46, 2016 09.
Article in English | MEDLINE | ID: mdl-27417588

ABSTRACT

OBJECTIVE: The tight regulation of platelet adhesiveness, mediated by the αIIbß3 integrin, is critical for hemostasis and prevention of thrombosis. We recently demonstrated that integrin affinity in platelets is controlled by the guanine nucleotide exchange factor, CalDAG-GEFI (CD-GEFI), and its target, RAP1. In this study, we investigated whether low-level expression of CD-GEFI leads to protection from thrombosis without pathological bleeding in mice. APPROACH AND RESULTS: Cdg1(low) mice were generated by knockin of human CD-GEFI cDNA into the mouse Cdg1 locus. CD-GEFI expression in platelets from Cdg1(low) mice was reduced by ≈90% when compared with controls. Activation of RAP1 and αIIbß3 was abolished at low agonist concentrations and partially inhibited at high agonist concentrations in Cdg1(low) platelets. Consistently, the aggregation response of Cdg1(low) platelets was weaker than that of wild-type platelets, but more efficient than that observed in Cdg1(-/-) platelets. Importantly, Cdg1(low) mice were strongly protected from arterial and immune complex-mediated thrombosis, with only minimal impact on primary hemostasis. CONCLUSIONS: Together, our studies suggest the partial inhibition of CD-GEFI function as a powerful new approach to safely prevent thrombotic complications.


Subject(s)
Blood Platelets/metabolism , Guanine Nucleotide Exchange Factors/deficiency , Hemostasis , Platelet Activation , Thrombosis/prevention & control , Animals , Disease Models, Animal , Genotype , Guanine Nucleotide Exchange Factors/blood , Guanine Nucleotide Exchange Factors/genetics , Humans , Mice, Transgenic , Mutation , Phenotype , Platelet Aggregation , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Signal Transduction , Thrombosis/blood , Thrombosis/genetics , Time Factors , rap1 GTP-Binding Proteins/blood
16.
Arterioscler Thromb Vasc Biol ; 36(5): 792-9, 2016 05.
Article in English | MEDLINE | ID: mdl-26988592

ABSTRACT

OBJECTIVE: Platelets are important for the development and progression of atherosclerotic lesions. However, relatively little is known about the contribution of platelet signaling to this pathological process. Our recent work identified 2 independent, yet synergistic, signaling pathways that lead to the activation of the small GTPase Rap1; one mediated by the guanine nucleotide exchange factor, CalDAG-GEFI (CDGI), the other by P2Y12, a platelet receptor for adenosine diphosphate and the target of antiplatelet drugs. In this study, we evaluated lesion formation in atherosclerosis-prone low-density lipoprotein receptor deficient (Ldlr(-/-)) mice lacking CDGI or P2Y12 in hematopoietic cells. APPROACH AND RESULTS: Lethally irradiated Ldlr(-/-) mice were reconstituted with bone marrow from wild-type (WT), Caldaggef1(-/-) (cdgI(-/-)), p2y12(-/-), or cdgI(-/-)p2y12(-/-) (double knockout [DKO]) mice and fed a high-fat diet for 12 weeks. Ldlr(-/-) chimeras deficient for CDGI or P2Y12 developed significantly smaller atherosclerotic lesions in the aortic sinus and in aortas when compared with the Ldlr(-/-)/WT controls. We also observed a significant reduction in platelet-leukocyte aggregates in blood from hypercholesterolemic Ldlr(-/-)/cdgI(-/-) and Ldlr(-/-)/p2y12(-/-) chimeras. Consistently, fewer macrophages and neutrophils were detected in the aortic sinus of Ldlr(-/-)/cdgI(-/-) and Ldlr(-/-)/ p2y12(-/-) chimeras. Compared with controls, the plaque collagen content was significantly higher in Ldlr(-/-) chimeras lacking CDGI. Interestingly, no statistically significant additive effects were seen in Ldlr(-/-)/DKO chimeras when compared with chimeras lacking only CDGI. CONCLUSIONS: Our findings suggest that CDGI is critical for atherosclerotic plaque development in hypercholesterolemic Ldlr(-/-) mice because of its contribution to platelet-leukocyte aggregate formation and leukocyte recruitment to the lesion area.


Subject(s)
Aorta/metabolism , Aortic Diseases/prevention & control , Atherosclerosis/prevention & control , Guanine Nucleotide Exchange Factors/deficiency , Plaque, Atherosclerotic , Animals , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Diseases/pathology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Blood Platelets/metabolism , Chemotaxis, Leukocyte , Collagen/metabolism , Diet, High-Fat , Disease Models, Animal , Genetic Predisposition to Disease , Guanine Nucleotide Exchange Factors/genetics , Hypercholesterolemia/genetics , Hypercholesterolemia/metabolism , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation/prevention & control , Leukocytes/metabolism , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration , Phenotype , Platelet Adhesiveness , Receptors, LDL/deficiency , Receptors, LDL/genetics , Receptors, Purinergic P2Y12/deficiency , Receptors, Purinergic P2Y12/genetics , Time Factors , rap1 GTP-Binding Proteins/blood
17.
Blood ; 123(17): 2722-31, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24585775

ABSTRACT

Tight regulation of integrin affinity is critical for hemostasis. A final step of integrin activation is talin binding to 2 sites within the integrin ß cytoplasmic domain. Binding of talin to a membrane-distal NPxY sequence facilitates a second, weaker interaction of talin with an integrin membrane-proximal region (MPR) that is critical for integrin activation. To test the functional significance of these distinct interactions on platelet function in vivo, we generated knock-in mice expressing talin1 mutants with impaired capacity to interact with the ß3 integrin MPR (L325R) or NPLY sequence (W359A). Both talin1(L325R) and talin1(W359A) mice were protected from experimental thrombosis. Talin1(L325R) mice, but not talin(W359A) mice, exhibited a severe bleeding phenotype. Activation of αIIbß3 was completely blocked in talin1(L325R) platelets, whereas activation was reduced by approximately 50% in talin1(W359A) platelets. Quantitative biochemical measurements detected talin1(W359A) binding to ß3 integrin, albeit with a 2.9-fold lower affinity than wild-type talin1. The rate of αIIbß3 activation was slower in talin1(W359A) platelets, which consequently delayed aggregation under static conditions and reduced thrombus formation under physiological flow conditions. Together our data indicate that reduction of talin-ß3 integrin binding affinity results in decelerated αIIbß3 integrin activation and protection from arterial thrombosis without pathological bleeding.


Subject(s)
Blood Platelets/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Talin/genetics , Talin/metabolism , Thrombosis/metabolism , Animals , Calcium/metabolism , Flow Cytometry , Gene Deletion , Gene Expression Regulation , Hemostasis , Mice , Mice, Transgenic , Mutation , Protein Binding , Shear Strength , Stress, Mechanical , Surface Plasmon Resonance
18.
Biochim Biophys Acta ; 1841(6): 880-7, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24631848

ABSTRACT

In mice with temporally-induced cardiac-specific deficiency of acyl-CoA synthetase-1 (Acsl1(H-/-)), the heart is unable to oxidize long-chain fatty acids and relies primarily on glucose for energy. These metabolic changes result in the development of both a spontaneous cardiac hypertrophy and increased phosphorylated S6 kinase (S6K), a substrate of the mechanistic target of rapamycin, mTOR. Doppler echocardiography revealed evidence of significant diastolic dysfunction, indicated by a reduced E/A ratio and increased mean performance index, although the deceleration time and the expression of sarco/endoplasmic reticulum calcium ATPase and phospholamban showed no difference between genotypes. To determine the role of mTOR in the development of cardiac hypertrophy, we treated Acsl1(H-/-) mice with rapamycin. Six to eight week old Acsl1(H-/-) mice and their littermate controls were given i.p. tamoxifen to eliminate cardiac Acsl1, then concomitantly treated for 10weeks with i.p. rapamycin or vehicle alone. Rapamycin completely blocked the enhanced ventricular S6K phosphorylation and cardiac hypertrophy and attenuated the expression of hypertrophy-associated fetal genes, including α-skeletal actin and B-type natriuretic peptide. mTOR activation of the related Acsl3 gene, usually associated with pathologic hypertrophy, was also attenuated in the Acsl1(H-/-) hearts, indicating that alternative pathways of fatty acid activation did not compensate for the loss of Acsl1. Compared to controls, Acsl1(H-/-) hearts exhibited an 8-fold higher uptake of 2-deoxy[1-(14)C]glucose and a 35% lower uptake of the fatty acid analog 2-bromo[1-(14)C]palmitate. These data indicate that Acsl1-deficiency causes diastolic dysfunction and that mTOR activation is linked to the development of cardiac hypertrophy in Acsl1(H-/-) mice.


Subject(s)
Cardiomegaly/enzymology , Coenzyme A Ligases/genetics , Heart Failure, Diastolic/enzymology , Sirolimus/administration & dosage , TOR Serine-Threonine Kinases/genetics , Animals , Cardiomegaly/drug therapy , Cardiomegaly/pathology , Coenzyme A Ligases/deficiency , Coenzyme A Ligases/metabolism , Endoplasmic Reticulum/metabolism , Heart Failure, Diastolic/genetics , Heart Failure, Diastolic/pathology , Humans , Lipid Metabolism/genetics , Mice , Oxidation-Reduction , Tamoxifen/pharmacology
19.
Thromb Haemost ; 123(5): 501-509, 2023 May.
Article in English | MEDLINE | ID: mdl-36716775

ABSTRACT

Cancer patients have increased thrombosis and bleeding compared with the general population. Cancer is associated with activation of both platelets and coagulation. Mouse models have been used to study the dysregulation of platelets and coagulation in cancer. We established a mouse model of pancreatic cancer in which tissue factor-expressing human pancreatic tumors (BxPC-3) are grown in nude mice. Tumor-bearing mice have an activated coagulation system and increased venous thrombosis compared to control mice. We also showed that tumor-derived, tissue factor-positive extracellular vesicles activated platelets ex vivo and in vivo. In this study, we determined the effect of tumors on a platelet-dependent arterial thrombosis model. Unexpectedly, we observed significantly reduced carotid artery thrombosis in tumor-bearing mice compared to controls. In addition, we observed significantly increased tail bleeding in tumor-bearing mice compared to controls. These results suggested that the presence of the tumor affected platelets. Indeed, tumor-bearing mice exhibited a significant decrease in platelet count and an increase in mean platelet volume and percentage of reticulated platelets, findings that are consistent with increased platelet turnover. Levels of the platelet activation marker platelet factor 4 were also increased in tumor-bearing mice. We also observed decreased platelet receptor expression in tumor-bearing mice and reduced levels of active αIIb/ß3 integrin in response to PAR4 agonist peptide and convulxin in platelets from tumor-bearing mice compared with platelets from control mice. In summary, our study suggests that in tumor-bearing mice there is chronic platelet activation, leading to thrombocytopenia, decreased receptor expression, and impaired platelet adhesive function.


Subject(s)
Pancreatic Neoplasms , Thrombosis , Humans , Mice , Animals , Thromboplastin/metabolism , Mice, Nude , Blood Platelets/metabolism , Platelet Activation , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Pancreatic Neoplasms/complications , Hemorrhage/complications , Platelet Aggregation
20.
J Thromb Haemost ; 21(7): 1891-1902, 2023 07.
Article in English | MEDLINE | ID: mdl-36958516

ABSTRACT

BACKGROUND: The hemostatic plug formation at sites of vascular injury is strongly dependent on rapid platelet activation and integrin-mediated adhesion and aggregation. However, to prevent thrombotic complications, platelet aggregate formation must be a self-limiting process. The second-wave mediator adenosine diphosphate (ADP) activates platelets via Gq-coupled P2Y1 and Gi-coupled P2Y12 receptors. After ADP exposure, the P2Y1 receptor undergoes rapid phosphorylation-induced desensitization, a negative feedback mechanism believed to be critical for limiting thrombus growth. OBJECTIVE: The objective of this study was to examine the role of rapid P2Y1 receptor desensitization on platelet function and thrombus formation in vivo. METHODS: We analyzed a novel knock-in mouse strain expressing a P2Y1 receptor variant that cannot be phosphorylated beyond residue 340 (P2Y1340-0P), thereby preventing the desensitization of the receptor. RESULTS: P2Y1340-0P mice followed a Mendelian inheritance pattern, and peripheral platelet counts were comparable between P2Y1340-0P/340-0P and control mice. In vitro, P2Y1340-0P/340-0P platelets were hyperreactive to ADP, showed a robust activation response to the P2Y1 receptor-selective agonist, MRS2365, and did not desensitize in response to repeated ADP challenge. We observed increased calcium mobilization, protein kinase C substrate phosphorylation, alpha granule release, activation of the small GTPase Rap1, and integrin inside-out activation/aggregation. This hyperreactivity, however, did not lead to increased platelet adhesion or excessive plug formation under physiological shear conditions. CONCLUSION: Our studies demonstrate that receptor phosphorylation at the C-terminus is critical for P2Y1 receptor desensitization in platelets and that impaired desensitization leads to increased P2Y1 receptor signaling in vitro. Surprisingly, desensitization of the P2Y1 receptor is not required for limiting platelet adhesion/aggregation at sites of vascular injury, likely because ADP is degraded quickly or washed away in the bloodstream.


Subject(s)
Thrombosis , Vascular System Injuries , Mice , Animals , Platelet Aggregation , Blood Platelets/metabolism , Hemostasis , Thrombosis/genetics , Thrombosis/prevention & control , Thrombosis/metabolism , Adenosine Diphosphate/pharmacology , Integrins/metabolism , Receptors, Purinergic P2Y1/genetics , Receptors, Purinergic P2Y1/metabolism , Receptors, Purinergic P2Y12/genetics , Receptors, Purinergic P2Y12/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL