Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Analyst ; 148(4): 932-941, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36722841

ABSTRACT

cfDNA is an emerging biomarker with promising uses for the monitoring of cancer or infectious disease diagnostics. This work demonstrates a new concept for an automated cfDNA extraction with nanobeads as the solid phase in a centrifugal microfluidic LabDisk. By using a combination of centrifugal and magnetic forces, we retain the nanobeads in one incubation chamber while sequentially adding, incubating and removing the sample and pre-stored buffers for extraction. As the recovery rate of the typically low concentration of cfDNA is of high importance to attain sufficient amounts for analysis, optimal beadhandling is paramount. The goal is that the cfDNA in the sample adsorbs to the solid phase completely during the binding step, is retained during washing and completely removed during elution. In this work, we improved beadhandling by optimizing the incubation chamber geometry and both frequency and temperature protocols, to maximize recovery rates. For characterization of the extraction performance, synthetic mutant DNA was spiked into human plasma samples. The LabDisk showed better reproducibility in DNA recovery rates with a standard deviation of ±13% compared to a manual approach using spin-columns (±17%) or nanobeads (±26%). The extraction of colorectal cancer samples with both the developed LabDisk and a robotic automation instrument resulted in comparable allele frequencies. Consequently, we present a highly attractive solution for an automated liquid biopsy cfDNA extraction in a small benchtop device.


Subject(s)
Cell-Free Nucleic Acids , Liquid Biopsy , Microfluidics , Humans , Cell-Free Nucleic Acids/genetics , DNA/genetics , Microfluidics/methods , Reproducibility of Results , Nanostructures , Centrifugation
2.
Anal Chem ; 93(5): 2854-2860, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33481582

ABSTRACT

We implement dual-volume centrifugal step emulsification on a single chip to extend the dynamic range of digital assays. Compared to published single-volume approaches, the range between the lower detection limit (LDL) and the upper limit of quantification (ULQ) increases by two orders of magnitude. In comparison to existing multivolume approaches, the dual-volume centrifugal step emulsification requires neither complex manufacturing nor specialized equipment. Sample metering into two subvolumes, droplet generation, and alignment of the droplets in two separate monolayers are performed automatically by microfluidic design. Digital quantification is demonstrated by exemplary droplet digital loop-mediated isothermal amplification (ddLAMP). Within 5 min, the reaction mix is split into subvolumes of 10.5 and 2.5 µL, and 2,5k and 176k droplets are generated with diameters of 31.6 ± 1.4 and 213.9 ± 7.5 µm, respectively. After 30 min of incubation, quantification over 5 log steps is demonstrated with a linearity of R2 ≥ 0.992.

3.
Anal Chem ; 93(24): 8508-8516, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34100587

ABSTRACT

We demonstrate microfluidic automation and parallelization of Limulus amebocyte lysate (LAL)-based bacterial endotoxin testing using centrifugal microfluidics. LAL is the standard reagent to test for endotoxin contaminations in injectable pharmaceuticals. The main features of the introduced system are more than 90% reduction of LAL consumption, from 100 µL/reaction to 9.6 µL/reaction, automated liquid handling to reduce opportunities for contamination and manual handling errors, and microfluidic parallelization by integrating 104 reactions into a single centrifugal microplate. In a single Eclipse microplate, 21 samples and their positive product controls are tested in duplicate. In addition, a standard curve with up to five points is generated, resulting in a total of 104 reactions. Test samples with a defined concentration of 0.5 endotoxin units per milliliter were tested, resulting in a coefficient of variation below 0.75%. A key feature for achieving a small coefficient of variation is ensuring the same path length along the microfluidic channels to the final reaction chambers for each sample and the reagent, so that any unspecific adsorption to the polymer surfaces does not affect the accuracy and precision. Analysis of a sample containing naturally occurring endotoxin with the developed microfluidic microplate yielded comparable results to the conventional testing method. A test with eight commercially available pharmaceuticals was found to pass all requirements for bacterial endotoxin testing as specified in the United States Pharmacopeia. The automated endotoxin testing system reveals specific advantages of centrifugal microfluidics for analytical biochemistry applications. Small liquid volumes are handled (metered, mixed, and aliquoted) in a very precise, highly integrated, and highly parallel manner within mass-fabricated microplates.


Subject(s)
Endotoxins , Limulus Test , Automation , Microfluidics , Miniaturization
4.
Anal Chem ; 92(19): 12833-12841, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32842730

ABSTRACT

Next-generation sequencing (NGS) has become a mainstream method in bioanalysis. Improvements in sequencing and bioinformatics turned the complex and cumbersome library preparation to the bottleneck in terms of reproducibility and costs in the complete NGS workflow. Here, we introduce an automated library preparation approach based on a generic centrifugal microfluidic cartridge. Multiplex polymerase chain reaction amplification and subsequent cleanup were performed with all reagents prestored on the disk, including cell-line-based DNA as quality control. Exchange of prestored reagents allows applying the cartridge to different target genes. Sequencing of automatically prepared libraries from T-cell receptor and immunoglobulin gene rearrangements in context of lymphoproliferative disorders demonstrated excellent cleanup performance between 91.9 and 99.9% of target DNA reads and successful amplification of all target regions by up to 15 forward primers combined with 4 reverse primers. The fully automated library preparation by centrifugal microfluidics thus offers attractive automation options in diagnostic settings.


Subject(s)
Centrifugation , DNA/genetics , Gene Library , High-Throughput Nucleotide Sequencing , Microfluidic Analytical Techniques , Multiplex Polymerase Chain Reaction , Cell Line , Computational Biology , Humans , Quality Control
5.
Analyst ; 145(21): 7040-7047, 2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33103683

ABSTRACT

We present the RespiDisk enabling the fully automated and multiplex point-of-care (POC) detection of (currently) up to 19 respiratory tract infection (RTI) pathogens from a single sample based on reverse transcriptase polymerase chain reaction (RT-PCR). RespiDisk comprises a RTI-specific implementation of the centrifugal microfluidic LabDisk platform and combines new and existing advanced unit operations for liquid control, thereby automating all assay steps only by a spinning frequency and temperature protocol in combination with the use of a permanent magnet for in situ bead handing. The capabilities of the system were demonstrated with 36 tested quality samples mimicking clinical conditions (clinical and/or cultured material suspended in transport medium or synthetic bronchoalveolar lavage (BAL)) from past external quality assessment (EQA) panels covering 13 of the 19 integrated RTI detection assays. In total, 36 samples × 19 assays/sample resulting in 684 assays were performed with the RespiDisk, and its analytical performance was in full agreement with the routine clinical workflow serving as reference. A strong feature of the platform is its universality since its components allow the simultaneous detection of a broad panel of bacteria and viruses in a single run, thereby enabling the differentiation between antibiotic-treatable diseases. Furthermore, the full integration of all necessary biochemical components enables a reduction of the hands-on time from manual to automated sample-to-answer analysis to about 5 min. The study was performed on an air-heated LabDisk Player instrument with a time-to-result of 200 min.


Subject(s)
Respiratory Tract Infections , Viruses , Bacteria , Humans , Microfluidics , Point-of-Care Systems , Respiratory Tract Infections/diagnosis
6.
Molecules ; 25(8)2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32326221

ABSTRACT

We present a versatile tool for the generation of monodisperse water-in-fluorinated-oil droplets in standard reaction tubes by centrifugal step emulsification. The microfluidic cartridge is designed as an insert into a standard 2 mL reaction tube and can be processed in standard laboratory centrifuges. It allows for droplet generation and subsequent transfer for any downstream analysis or further use, does not need any specialized device, and manufacturing is simple because it consists of two parts only: A structured substrate and a sealing foil. The design of the structured substrate is compatible to injection molding to allow manufacturing at large scale. Droplets are generated in fluorinated oil and collected in the reaction tube for subsequent analysis. For sample sizes up to 100 µL with a viscosity range of 1 mPa·s-4 mPa·s, we demonstrate stable droplet generation and transfer of more than 6 × 105 monodisperse droplets (droplet diameter 66 µm ± 3 µm, CV ≤ 4%) in less than 10 min. With two application examples, a digital droplet polymerase chain reaction (ddPCR) and digital droplet loop mediated isothermal amplification (ddLAMP), we demonstrate the compatibility of the droplet production for two main amplification techniques. Both applications show a high degree of linearity (ddPCR: R2 ≥ 0.994; ddLAMP: R2 ≥ 0.998), which demonstrates that the cartridge and the droplet generation method do not compromise assay performance.


Subject(s)
Centrifugation , Emulsions , Lipid Droplets , Microfluidic Analytical Techniques , Biological Assay/instrumentation , Biological Assay/methods , Biological Assay/standards , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Microfluidic Analytical Techniques/standards , Microfluidics/instrumentation , Microfluidics/methods , Microfluidics/standards , Polymerase Chain Reaction/methods , Reference Standards , Viscosity , Workflow
7.
Langmuir ; 35(30): 9809-9815, 2019 Jul 30.
Article in English | MEDLINE | ID: mdl-31283246

ABSTRACT

We demonstrate that buoyancy in centrifugal step emulsification enables substantially higher generation rates of monodisperse droplets compared to pressure driven set-ups. Step emulsification in general can produce droplets in comparatively simple systems (only one moving liquid) with a low CV of <5% in droplet diameter and with a minimum dead volume. If operated below a critical capillary number, the droplet diameter is defined by geometry and surface forces only. Above that critical capillary number, however, jetting occurs, leading to an increased droplet diameter and CV. Consequently, generation rates of monodisperse droplets are limited in pressure-driven systems. In this paper, we show that centrifugal step emulsification can overcome this limitation by applying sufficient buoyancy to the system. The buoyancy, induced by the centrifugal field and a density difference of the continuous and disperse phase, supports droplet necking by pulling the forming droplet away from the nozzle. The influence of buoyancy is studied using specific microfluidic designs that allow for supplying different buoyancies to the same droplet generation rates. For a droplet diameter of 100 µm, droplet generation at rates above 2.8k droplets per second and nozzle were reached, which is an increase of more than a factor of 8 in comparison to pressure-driven systems.

9.
Biomed Microdevices ; 16(3): 375-85, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24562605

ABSTRACT

This paper introduces a disposable battery-driven heating system for loop-mediated isothermal DNA amplification (LAMP) inside a centrifugally-driven DNA purification platform (LabTube). We demonstrate LabTube-based fully automated DNA purification of as low as 100 cell-equivalents of verotoxin-producing Escherichia coli (VTEC) in water, milk and apple juice in a laboratory centrifuge, followed by integrated and automated LAMP amplification with a reduction of hands-on time from 45 to 1 min. The heating system consists of two parallel SMD thick film resistors and a NTC as heating and temperature sensing elements. They are driven by a 3 V battery and controlled by a microcontroller. The LAMP reagents are stored in the elution chamber and the amplification starts immediately after the eluate is purged into the chamber. The LabTube, including a microcontroller-based heating system, demonstrates contamination-free and automated sample-to-answer nucleic acid testing within a laboratory centrifuge. The heating system can be easily parallelized within one LabTube and it is deployable for a variety of heating and electrical applications.


Subject(s)
Centrifugation/instrumentation , DNA/genetics , DNA/isolation & purification , Heating/economics , Heating/instrumentation , Polymerase Chain Reaction/instrumentation , Systems Integration , Automation , Disposable Equipment , Electric Power Supplies , Food Analysis , Shiga-Toxigenic Escherichia coli/cytology
10.
Analyst ; 139(11): 2788-98, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24710334

ABSTRACT

Contamination of foods is a public health hazard that episodically causes thousands of deaths and sickens millions worldwide. To ensure food safety and quality, rapid, low-cost and easy-to-use detection methods are desirable. Here, the LabSystem is introduced for integrated, automated DNA purification, amplification and detection. It consists of a disposable, centrifugally driven DNA purification platform (LabTube) and a low-cost UV/vis-reader (LabReader). For demonstration of the LabSystem in the context of food safety, purification of Escherichia coli (non-pathogenic E. coli and pathogenic verotoxin-producing E. coli (VTEC)) in water and milk and the product-spoiler Alicyclobacillus acidoterrestris (A. acidoterrestris) in apple juice was integrated and optimized in the LabTube. Inside the LabReader, the purified DNA was amplified, readout and analyzed using both qualitative isothermal loop-mediated DNA amplification (LAMP) and quantitative real-time PCR. For the LAMP-LabSystem, the combined detection limits for purification and amplification of externally lysed VTEC and A. acidoterrestris are 10(2)-10(3) cell-equivalents. In the PCR-LabSystem for E. coli cells, the quantification limit is 10(2) cell-equivalents including LabTube-integrated lysis. The demonstrated LabSystem only requires a laboratory centrifuge (to operate the disposable, fully closed LabTube) and a low-cost LabReader for DNA amplification, readout and analysis. Compared with commercial DNA amplification devices, the LabReader improves sensitivity and specificity by the simultaneous readout of four wavelengths and the continuous readout during temperature cycling. The use of a detachable eluate tube as an interface affords semi-automation of the LabSystem, which does not require specialized training. It reduces the hands-on time from about 50 to 3 min with only two handling steps: sample input and transfer of the detachable detection tube.


Subject(s)
Bacteria/isolation & purification , DNA, Bacterial/isolation & purification , Food Microbiology , Automation , Bacteria/genetics , Genes, Bacterial , Real-Time Polymerase Chain Reaction
11.
Lab Chip ; 24(4): 975-984, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38284233

ABSTRACT

We present a novel centrifugal microfluidic approach to rapidly identify animal species in meat products. The workflow requires a centrifugal cartridge for DNA extraction and for preparation of a recombinant polymerase amplification (RPA) reaction, a programmable centrifuge for processing the cartridge and an isothermal reader to perform the RPA. Liquid reagents are pre-stored on the cartridge and the meat sample can be added directly without any pre-treatment. With this system, we are able to identify six different animal species in a single run within one hour. In pork salami containing horse, turkey, sheep, chicken and beef meat, it was possible to identify species levels as low as 0.01%. In beef salami and cooked pork sausages 0.1% of foreign meat could be detected. This novel workflow enables rapid and sensitive species identification in processed meat at the point of need.


Subject(s)
Meat Products , Microfluidics , Cattle , Sheep , Animals , Horses , Meat/analysis , Meat Products/analysis , Chickens
12.
Lab Chip ; 23(11): 2623-2632, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37158238

ABSTRACT

We present a centrifugal microfluidic cartridge for the eight-fold parallel generation of monodisperse water-in-oil droplets using standard laboratory equipment. The key element is interfacing centrifugal microfluidics with its design based on polar coordinates to the linear structures of standard high-throughput laboratory automation. Centrifugal step emulsification is used to simultaneously generate droplets from eight samples directly into standard 200 µl PCR 8-tube strips. To ensure minimal manual liquid handling, the design of the inlets allows the user to load the samples and the oil via a standard multichannel pipette. Simulation-based design of the cartridge ensures that the performance is consistent in each droplet generation unit despite the varying radial positions that originate from the interface to the linear oriented PCR 8-tube strip and from the integration of linear oriented inlet holes for the multichannel pipettes. Within 10 minutes, sample volumes of 50 µl per droplet generation unit are emulsified at a fixed rotation speed of 960 rpm into 1.47 × 105 monodisperse droplets with a mean diameter of 86 µm. The overall coefficient of variation (CV) of the droplet diameter was below 4%. Feasibility is demonstrated by an exemplary digital droplet polymerase chain reaction (ddPCR) assay which showed high linearity (R2 ≥ 0.999) across all of the eight tubes of the strip.


Subject(s)
Microfluidics , Nucleic Acid Amplification Techniques , Polymerase Chain Reaction , Emulsions/chemistry , Water
13.
Biosensors (Basel) ; 13(12)2023 Dec 03.
Article in English | MEDLINE | ID: mdl-38131769

ABSTRACT

C-reactive protein is a well-studied host response biomarker, whose diagnostic performance depends on its accurate classification into concentration zones defined by clinical scenario-specific cutoff values. We validated a newly developed, bead-based, bound-free phase detection immunoassay (BFPD-IA) versus a commercial CE-IVD enzyme-linked immunosorbent assay (ELISA) kit and a commercial CE-IVD immunoturbidimetric assay (ITA) kit. The latter was performed on a fully automated DPC Konelab 60i clinical analyzer used in routine diagnosis. We classified 53 samples into concentration zones derived from four different sets of cutoff values that are related to antibiotic prescription scenarios in the case of respiratory tract infections. The agreements between the methods were ELISA/ITA at 87.7%, ELISA/BFPD-IA at 87.3%, and ITA/-BFPD-IA at 93.9%, reaching 98-99% in all cases when considering the calculated relative combined uncertainty of the single measurement of each sample. In a subgroup of 37 samples, which were analyzed for absolute concentration quantification, the scatter plot slopes' correlations were as follows: ELISA/ITA 1.15, R2 = 0.97; BFPD-IA/ELISA 1.12, R2 = 0.95; BFPD-IA/ITA 0.95, R2 = 0.93. These very good performances and the agreement between BFPD-IA and ITA (routine diagnostic), combined with BFPD-IA's functional advantages over ITA (and ELISA)-such as quick time to result (~20 min), reduced consumed reagents (only one assay buffer and no washing), few and easy steps, and compatibility with nucleic-acid-amplification instruments-render it a potential approach for a reliable, cost-efficient, evidence-based point-of-care diagnostic test for guiding antibiotic prescriptions.


Subject(s)
C-Reactive Protein , Humans , C-Reactive Protein/analysis , Immunoassay/methods , Enzyme-Linked Immunosorbent Assay/methods , Biomarkers
14.
Lab Chip ; 24(1): 74-84, 2023 12 20.
Article in English | MEDLINE | ID: mdl-37999937

ABSTRACT

Globally, tuberculosis (TB) remains the deadliest bacterial infectious disease, and spreading antibiotic resistances is the biggest challenge for combatting the disease. Rapid and comprehensive diagnostics including drug susceptibility testing (DST) would assure early treatment, reduction of morbidity and the interruption of transmission chains. To date, rapid genetic resistance testing addresses only one to four drug groups while complete DST is done phenotypically and takes several weeks. To overcome these limitations, we developed a two-stage workflow for rapid TB diagnostics including DST from a single sputum sample that can be completed within three days. The first stage is qPCR detection of M. tuberculosis complex (MTBC) including antibiotic resistance testing against the first-line antibiotics, isoniazid (Inh) and rifampicin (Rif). The test is automated by centrifugal microfluidics and designed for point of care (PoC). Furthermore, enriched MTBC DNA is provided in a detachable sample tube to enable the second stage: if the PCR detects MTBC and resistance to either Inh or Rif, the MTBC DNA is shipped to specialized facilities and analyzed by targeted next generation sequencing (tNGS) to assess the complete resistance profile. Proof-of-concept testing of the PoC test revealed an analytical sensitivity of 44.2 CFU ml-1, a diagnostic sensitivity of 96%, and a diagnostic specificity of 100% for MTBC detection. Coupled tNGS successfully provided resistance profiles, demonstrated for samples from 17 patients. To the best of our knowledge, the presented combination of PoC qPCR with tNGS allows for the fastest comprehensive TB diagnostics comprising decentralized pathogen detection with subsequent resistance profiling in a facility specialized in tNGS.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Rifampin/pharmacology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Mycobacterium tuberculosis/genetics , Microbial Sensitivity Tests , Point-of-Care Systems , Microfluidics , Sensitivity and Specificity , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis/microbiology , Isoniazid/pharmacology , Isoniazid/therapeutic use , Drug Resistance, Microbial , DNA
15.
Sensors (Basel) ; 12(8): 10550-65, 2012.
Article in English | MEDLINE | ID: mdl-23112615

ABSTRACT

In this paper a multi-disciplinary simulation of a capacitive droplet sensor based on an open plate capacitor as transducing element is presented. The numerical simulations are based on the finite volume method (FVM), including calculations of an electric field which changes according to the presence of a liquid droplet. The volume of fluid (VOF) method is applied for the simulation of the ejection process of a liquid droplet out of a dispenser nozzle. The simulations were realised using the computational fluid dynamic (CFD) software CFD ACE+. The investigated capacitive sensing principle enables to determine the volume of a micro droplet passing the sensor capacitor due to the induced change in capacity. It could be found that single droplets in the considered volume range of 5 nL < V(drop) < 100 nL lead to a linear change of the capacity up to ΔQ < 30 fC. The sensitivity of the focused capacitor geometry was evaluated to be S(i) = 0.3 fC/nL. The simulation results are validated by experiments which exhibit good agreement.

16.
Biosensors (Basel) ; 12(6)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35735560

ABSTRACT

In this paper, we present the ImmunoDisk, a fully automated sample-to-answer centrifugal microfluidic cartridge, integrating a heterogeneous, wash-free, magnetic- and fluorescent bead-based immunoassay (bound-free phase detection immunoassay/BFPD-IA). The BFPD-IA allows the implementation of a simple fluidic structure, where the assay incubation, bead separation and detection are performed in the same chamber. The system was characterized using a C-reactive protein (CRP) competitive immunoassay. A parametric investigation on air drying of protein-coupled beads for pre-storage at room temperature is presented. The key parameters were buffer composition, drying temperature and duration. A protocol for drying two different types of protein-coupled beads with the same temperature and duration using different drying buffers is presented. The sample-to-answer workflow was demonstrated measuring CRP in 5 µL of human serum, without prior dilution, utilizing only one incubation step, in 20 min turnaround time, in the clinically relevant concentration range of 15-115 mg/L. A reproducibility assessment over three disk batches revealed an average signal coefficient of variation (CV) of 5.8 ± 1.3%. A CRP certified reference material was used for method verification with a concentration CV of 8.6%. Our results encourage future testing of the CRP-ImmunoDisk in clinical studies and its point-of-care implementation in many diagnostic applications.


Subject(s)
C-Reactive Protein , Microfluidics , Humans , Immunoassay/methods , Indicators and Reagents , Reproducibility of Results
17.
Micromachines (Basel) ; 13(12)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36557411

ABSTRACT

Centrifugal microfluidics enables fully automated molecular diagnostics at the point-of-need. However, the integration of solid-phase nucleic acid extraction remains a challenge. Under this scope, we developed the magnetophoresis under continuous rotation for magnetic bead-based nucleic acid extraction. Four stationary permanent magnets are arranged above a cartridge, creating a magnetic field that enables the beads to be transported between the chambers of the extraction module under continuous rotation. The centrifugal force is maintained to avoid uncontrolled spreading of liquids. We concluded that below a frequency of 5 Hz, magnetic beads move radially inwards. In support of magnetophoresis, bead inertia and passive geometrical design features allow to control the azimuthal bead movement between chambers. We then demonstrated ferrimagnetic bead transfer in liquids with broad range of surface tension and density values. Furthermore, we extracted nucleic acids from lysed Anopheles gambiae mosquitoes reaching comparable results of eluate purity (LabDisk: A260/A280 = 1.6 ± 0.04; Reference: 1.8 ± 0.17), and RT-PCR of extracted RNA (LabDisk: Ct = 17.9 ± 1.6; Reference: Ct = 19.3 ± 1.7). Conclusively, magnetophoresis at continuous rotation enables easy cartridge integration and nucleic acid extraction at the point-of-need with high yield and purity.

18.
Microsyst Nanoeng ; 7: 72, 2021.
Article in English | MEDLINE | ID: mdl-34567784

ABSTRACT

Despite the widespread application of point-of-care lateral flow tests, the viscosity dependence of these assay results remains a significant challenge. Here, we employ centrifugal microfluidic flow control through the nitrocellulose membrane of the strip to eliminate the viscosity bias. The key feature is the balancing of the sample flow into the cassette of the lateral flow test with the air flow out of the cassette. A viscosity-independent flow rate of 3.01 ± 0.18 µl/min (±6%) is demonstrated for samples with viscosities ranging from 1.1 mPas to 24 mPas, a factor greater than 20. In a model human IgG lateral flow assay, signal-intensity shifts caused by varying the sample viscosity from 1.1 mPas to 2.3 mPas could be reduced by more than 84%.

19.
Anal Chim Acta ; 1182: 338954, 2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34602197

ABSTRACT

Next generation sequencing is evolving from a research tool into a method applied in diagnostic routine. The complete sequencing workflow includes sample pre-processing, library preparation, sequencing and bioinformatics. High quality in each of these steps is necessary to obtain excellent sequencing results. The tedious and error-prone library preparation poses a significant challenge for smaller laboratories, where high throughput pipetting robots are not cost-effective. Here we present an automated library preparation for whole genome sequencing using centrifugal microfluidics. Two samples can be run per cartridge. Precise metering of reagents allows the required liquid volumes to be reduced by 40% and the amount of sample used by 60%. The functionality of the cartridge is demonstrated with bacteria and DNA extracted from a human FFPE sample. For the bacterial sample, mean sequencing depths from 140 to 183 reads and a coverage of 99.8% of the reference genome were detected. For the human DNA, mean sequencing depths of 4.4-5.7 reads and a coverage of 78.2% of the effective reference genome were observed.


Subject(s)
High-Throughput Nucleotide Sequencing , Microfluidics , Gene Library , Humans , Sequence Analysis, DNA , Whole Genome Sequencing
20.
Lab Chip ; 21(3): 558-570, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33319895

ABSTRACT

We present a proof-of-principle study on automated, highly sensitive and multiplexed qPCR quantification by centrifugal microfluidics. The MRD disk can be used for standardisation of repetitive, longitudinal assays with high requirements on reproducibility and sensitivity, such as cancer monitoring. In contrast to high-throughput qPCR automation by bulky and expensive robotic workstations we employ a small centrifugal microfluidic instrument, addressing the need of low- to mid-throughput applications. As a potential application we demonstrate automated minimum residual disease (MRD) monitoring of prognostic markers in patients with acute lymphoblastic leukaemia (ALL). The disk-workflow covers all aspects of clinical gold standard MRD quantification: generation of standard curves, specificity controls, no template controls and quantification of the ALL patient sample. We integrated a highly sensitive, colorimetric 2-plex analysis of MRD targets, as well as a 2-plex analysis of reference genes, both in parallel and in a single LabDisk cartridge. For this purpose, a systematic procedure for crosstalk- and signal-to-noise-optimisation is introduced, providing a guideline for efficient multiplex readout inside microfluidic platforms. The qPCR standard curves (n = 12/12) generated on-disk reach clinically required linearity (R2 = 98.1% to R2 = 99.8%). In three consecutive MRD disk runs with an ALL patient sample containing the two representative MRD targets VH3D3D5JH3 and VkIkde, we observe high accordance between the on-disk quantifications (48 ± 6 copies/reaction and 69 ± 6 copies/reaction) and the expected concentrations (57 copies/reaction for both targets). In comparison to the clinical gold standard of manually pipetted, singleplex assays, the MRD disk yields comparable limit of quantification (1 × 10-4) in n = 6/6 analyses (vs. n = 4/4 in gold standard) and a limit of detection (1 × 10-5) in n = 6/6 analysis (vs. n = 2/4 in gold standard). The automation reduces the risk of manual liquid handling errors, making the MRD disk an attractive solution to assure reproducibility in moderate-throughput, longitudinal gene quantification applications.


Subject(s)
Microfluidics , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Neoplasm, Residual , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Real-Time Polymerase Chain Reaction , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL