Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Antimicrob Agents Chemother ; 68(3): e0122223, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38265216

ABSTRACT

Clostridioides difficile infection (CDI) is a leading cause of hospital-acquired diarrhea, which often stems from disruption of the gut microbiota by broad-spectrum antibiotics. The increasing prevalence of antibiotic-resistant C. difficile strains, combined with disappointing clinical trial results for recent antibiotic candidates, underscores the urgent need for novel CDI antibiotics. To this end, we investigated C. difficile enoyl ACP reductase (CdFabK), a crucial enzyme in de novo fatty acid synthesis, as a drug target for microbiome-sparing antibiotics. To test this concept, we evaluated the efficacy and in vivo spectrum of activity of the phenylimidazole analog 296, which is validated to inhibit intracellular CdFabK. Against major CDI-associated ribotypes 296 had an Minimum inhibitory concentration (MIC90) of 2 µg/mL, which was comparable to vancomycin (1 µg/mL), a standard of care antibiotic. In addition, 296 achieved high colonic concentrations and displayed dosed-dependent efficacy in mice with colitis CDI. Mice that were given 296 retained colonization resistance to C. difficile and had microbiomes that resembled the untreated mice. Conversely, both vancomycin and fidaxomicin induced significant changes to mice microbiomes, in a manner consistent with prior reports. CdFabK, therefore, represents a potential target for microbiome-sparing CDI antibiotics, with phenylimidazoles providing a good chemical starting point for designing such agents.


Subject(s)
Clostridioides difficile , Clostridium Infections , Animals , Mice , Vancomycin/pharmacology , Oxidoreductases , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Fidaxomicin/pharmacology , Clostridium Infections/drug therapy
2.
bioRxiv ; 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37790427

ABSTRACT

Clostridioides difficile infection (CDI) is a leading cause of hospital-acquired diarrhea, which often stem from disruption of the gut microbiota by broad-spectrum antibiotics. The increasing prevalence of antibiotic-resistant C. difficile strains, combined with disappointing clinical trials results for recent antibiotic candidates, underscore the urgent need for novel CDI antibiotics. To this end, we investigated C. difficile enoyl ACP reductase (CdFabK), a crucial enzyme in de novo fatty acid synthesis, as a drug target for microbiome-sparing antibiotics. To test this concept, we evaluated the efficacy and in vivo spectrum of activity of the phenylimidazole analog 296, which is validated to inhibit intracellular CdFabK. Against major CDI-associated ribotypes 296 had an MIC90 of 2 µg/ml, which was comparable to vancomycin (1 µg/ml), a standard of care antibiotic. In addition, 296 achieved high colonic concentrations and displayed dosed-dependent efficacy in mice with colitis CDI. Mice that were given 296 retained colonization resistance to C. difficile and had microbiomes that resembled the untreated mice. Conversely, both vancomycin and fidaxomicin induced significant changes to mice microbiomes, in a manner consistent with prior reports. CdFabK therefore represents a potential target for microbiome-sparing CDI antibiotics, with phenylimidazoles providing a good chemical starting point for designing such agents.

SELECTION OF CITATIONS
SEARCH DETAIL