Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Cell ; 184(12): 3143-3162.e32, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34004147

ABSTRACT

Gene expression by RNA polymerase II (RNAPII) is tightly controlled by cyclin-dependent kinases (CDKs) at discrete checkpoints during the transcription cycle. The pausing checkpoint following transcription initiation is primarily controlled by CDK9. We discovered that CDK9-mediated, RNAPII-driven transcription is functionally opposed by a protein phosphatase 2A (PP2A) complex that is recruited to transcription sites by the Integrator complex subunit INTS6. PP2A dynamically antagonizes phosphorylation of key CDK9 substrates including DSIF and RNAPII-CTD. Loss of INTS6 results in resistance to tumor cell death mediated by CDK9 inhibition, decreased turnover of CDK9 phospho-substrates, and amplification of acute oncogenic transcriptional responses. Pharmacological PP2A activation synergizes with CDK9 inhibition to kill both leukemic and solid tumor cells, providing therapeutic benefit in vivo. These data demonstrate that fine control of gene expression relies on the balance between kinase and phosphatase activity throughout the transcription cycle, a process dysregulated in cancer that can be exploited therapeutically.


Subject(s)
Cyclin-Dependent Kinase 9/metabolism , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/genetics , Protein Phosphatase 2/metabolism , RNA-Binding Proteins/metabolism , Transcription, Genetic , Tumor Suppressor Proteins/metabolism , Animals , Cell Line, Tumor , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Humans , Mice, Inbred NOD , Phosphorylation , Protein Binding , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Substrate Specificity
2.
J Biol Chem ; 295(13): 4194-4211, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32071079

ABSTRACT

Protein phosphatase 2A (PP2A) critically regulates cell signaling and is a human tumor suppressor. PP2A complexes are modulated by proteins such as cancerous inhibitor of protein phosphatase 2A (CIP2A), protein phosphatase methylesterase 1 (PME-1), and SET nuclear proto-oncogene (SET) that often are deregulated in cancers. However, how they impact cellular phosphorylation and how redundant they are in cellular regulation is poorly understood. Here, we conducted a systematic phosphoproteomics screen for phosphotargets modulated by siRNA-mediated depletion of CIP2A, PME-1, and SET (to reactivate PP2A) or the scaffolding A-subunit of PP2A (PPP2R1A) (to inhibit PP2A) in HeLa cells. We identified PP2A-modulated targets in diverse cellular pathways, including kinase signaling, cytoskeleton, RNA splicing, DNA repair, and nuclear lamina. The results indicate nonredundancy among CIP2A, PME-1, and SET in phosphotarget regulation. Notably, PP2A inhibition or reactivation affected largely distinct phosphopeptides, introducing a concept of nonoverlapping phosphatase inhibition- and activation-responsive sites (PIRS and PARS, respectively). This phenomenon is explained by the PPP2R1A inhibition impacting primarily dephosphorylated threonines, whereas PP2A reactivation results in dephosphorylation of clustered and acidophilic sites. Using comprehensive drug-sensitivity screening in PP2A-modulated cells to evaluate the functional impact of PP2A across diverse cellular pathways targeted by these drugs, we found that consistent with global phosphoproteome effects, PP2A modulations broadly affect responses to more than 200 drugs inhibiting a broad spectrum of cancer-relevant targets. These findings advance our understanding of the phosphoproteins, pharmacological responses, and cellular processes regulated by PP2A modulation and may enable the development of combination therapies.


Subject(s)
Autoantigens/genetics , Carboxylic Ester Hydrolases/genetics , DNA-Binding Proteins/genetics , Histone Chaperones/genetics , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Protein Phosphatase 2/antagonists & inhibitors , Apoptosis/drug effects , Cell Proliferation/drug effects , Enzyme Inhibitors/chemistry , Gene Expression Regulation, Neoplastic/drug effects , HeLa Cells , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , Nuclear Lamina/drug effects , Nuclear Lamina/genetics , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/genetics , Phosphorylation/drug effects , Protein Phosphatase 2/genetics , Proteome/drug effects , Proto-Oncogene Mas , RNA, Small Interfering/genetics , Systems Biology
3.
Chembiochem ; 20(1): 66-71, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30338897

ABSTRACT

Protein phosphatase-1 (PP1)-disrupting peptides (PDPs) are selective chemical modulators of PP1 that liberate the active PP1 catalytic subunit from regulatory proteins; thus allowing the dephosphorylation of nearby substrates. We have optimized the original cell-active PDP3 for enhanced stability, and obtained insights into the chemical requirements for stabilizing this 23-mer peptide for cellular applications. The optimized PDP-Nal was used to dissect the involvement of PP1 in the MAPK signaling cascade. Specifically, we have demonstrated that, in human osteosarcoma (U2OS) cells, phosphoMEK1/2 is a direct substrate of PP1, whereas dephosphorylation of phosphoERK1/2 is indirect and likely mediated through enhanced tyrosine phosphatase activity after PDP-mediated PP1 activation. Thus, as liberators of PP1 activity, PDPs represent a valuable tool for identifying the substrates of PP1 and understanding its role in diverse signaling cascades.


Subject(s)
Peptides/metabolism , Protein Phosphatase 1/metabolism , Amino Acid Sequence , Cell Line, Tumor , Histones/chemistry , Histones/metabolism , Humans , MAP Kinase Kinase 1/chemistry , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase Kinase 2/chemistry , MAP Kinase Kinase Kinase 2/metabolism , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/chemistry , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation
4.
EMBO Rep ; 18(3): 437-450, 2017 03.
Article in English | MEDLINE | ID: mdl-28174209

ABSTRACT

Protein phosphatase 2A (PP2A) is a critical human tumor suppressor. Cancerous inhibitor of PP2A (CIP2A) supports the activity of several critical cancer drivers (Akt, MYC, E2F1) and promotes malignancy in most cancer types via PP2A inhibition. However, the 3D structure of CIP2A has not been solved, and it remains enigmatic how it interacts with PP2A. Here, we show by yeast two-hybrid assays, and subsequent validation experiments, that CIP2A forms homodimers. The homodimerization of CIP2A is confirmed by solving the crystal structure of an N-terminal CIP2A fragment (amino acids 1-560) at 3.0 Å resolution, and by subsequent structure-based mutational analyses of the dimerization interface. We further describe that the CIP2A dimer interacts with the PP2A subunits B56α and B56γ. CIP2A binds to the B56 proteins via a conserved N-terminal region, and dimerization promotes B56 binding. Intriguingly, inhibition of either CIP2A dimerization or B56α/γ expression destabilizes CIP2A, indicating opportunities for controlled degradation. These results provide the first structure-function analysis of the interaction of CIP2A with PP2A/B56 and have direct implications for its targeting in cancer therapy.


Subject(s)
Autoantigens/metabolism , Membrane Proteins/metabolism , Oncogene Proteins/metabolism , Protein Phosphatase 2/metabolism , Tumor Suppressor Proteins/metabolism , Autoantigens/chemistry , Binding Sites , Humans , Intracellular Signaling Peptides and Proteins , Membrane Proteins/chemistry , Models, Molecular , Mutation , Oncogene Proteins/chemistry , Protein Binding , Protein Conformation , Protein Interaction Mapping , Protein Multimerization , Protein Phosphatase 2/chemistry , Protein Phosphatase 2/genetics , Protein Stability , Protein Subunits/metabolism , Structure-Activity Relationship , Tumor Suppressor Proteins/chemistry
5.
STAR Protoc ; 5(4): 103348, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342617

ABSTRACT

Bioluminescence resonance energy transfer (BRET) allows to quantitate protein interactions in intact cells. Here, we present a protocol for measuring BRET due to transient interactions of oncogenic K-RasG12V in plasma membrane nanoclusters of HEK293-EBNA cells. We describe steps for seeding, transfecting, and replating cells. We then detail procedures for their preparation for BRET measurements on a CLARIOstar microplate reader and detailed data analysis. For complete details on the use and execution of this protocol, please refer to Steffen et al.1.

6.
J Med Chem ; 67(11): 8569-8584, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38758695

ABSTRACT

The trafficking chaperone PDE6D (or PDEδ) was proposed as a surrogate target for K-Ras, leading to the development of a series of inhibitors that block its prenyl binding pocket. These inhibitors suffered from low solubility and suspected off-target effects, preventing their clinical development. Here, we developed a highly soluble, low nanomolar PDE6D inhibitor (PDE6Di), Deltaflexin3, which has the lowest off-target activity as compared to three prominent reference compounds. Deltaflexin3 reduces Ras signaling and selectively decreases the growth of KRAS mutant and PDE6D-dependent cancer cells. We further show that PKG2-mediated phosphorylation of Ser181 lowers K-Ras binding to PDE6D. Thus, Deltaflexin3 combines with the approved PKG2 activator Sildenafil to more potently inhibit PDE6D/K-Ras binding, cancer cell proliferation, and microtumor growth. As observed previously, inhibition of Ras trafficking, signaling, and cancer cell proliferation remained overall modest. Our results suggest reevaluating PDE6D as a K-Ras surrogate target in cancer.


Subject(s)
Cell Proliferation , Cyclic Nucleotide Phosphodiesterases, Type 6 , Proto-Oncogene Proteins p21(ras) , Sildenafil Citrate , Humans , Cyclic Nucleotide Phosphodiesterases, Type 6/antagonists & inhibitors , Cyclic Nucleotide Phosphodiesterases, Type 6/metabolism , Sildenafil Citrate/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/metabolism , Cell Proliferation/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Mutation , Animals , Structure-Activity Relationship , Phosphodiesterase Inhibitors/pharmacology , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/chemical synthesis
7.
Commun Biol ; 7(1): 837, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982284

ABSTRACT

Hyperactive Ras signalling is found in most cancers. Ras proteins are only active in membrane nanoclusters, which are therefore potential drug targets. We previously showed that the nanocluster scaffold galectin-1 (Gal1) enhances H-Ras nanoclustering via direct interaction with the Ras binding domain (RBD) of Raf. Here, we establish that the B-Raf preference of Gal1 emerges from the divergence of the Raf RBDs at their proposed Gal1-binding interface. We then identify the L5UR peptide, which disrupts this interaction by binding with low micromolar affinity to the B- and C-Raf-RBDs. Its 23-mer core fragment is sufficient to interfere with H-Ras nanoclustering, modulate Ras-signalling and moderately reduce cell viability. These latter two phenotypic effects may also emerge from the ability of L5UR to broadly engage with several RBD- and RA-domain containing Ras interactors. The L5UR-peptide core fragment is a starting point for the development of more specific reagents against Ras-nanoclustering and -interactors.


Subject(s)
Peptides , Humans , Peptides/metabolism , Peptides/chemistry , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/chemistry , Galectin 1/metabolism , Galectin 1/chemistry , Galectin 1/genetics , Protein Binding , Signal Transduction
8.
Nat Commun ; 14(1): 1143, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36854761

ABSTRACT

The protein phosphatase 2A (PP2A) heterotrimer PP2A-B56α is a human tumour suppressor. However, the molecular mechanisms inhibiting PP2A-B56α in cancer are poorly understood. Here, we report molecular level details and structural mechanisms of PP2A-B56α inhibition by an oncoprotein CIP2A. Upon direct binding to PP2A-B56α trimer, CIP2A displaces the PP2A-A subunit and thereby hijacks both the B56α, and the catalytic PP2Ac subunit to form a CIP2A-B56α-PP2Ac pseudotrimer. Further, CIP2A competes with B56α substrate binding by blocking the LxxIxE-motif substrate binding pocket on B56α. Relevant to oncogenic activity of CIP2A across human cancers, the N-terminal head domain-mediated interaction with B56α stabilizes CIP2A protein. Functionally, CRISPR/Cas9-mediated single amino acid mutagenesis of the head domain blunted MYC expression and MEK phosphorylation, and abrogated triple-negative breast cancer in vivo tumour growth. Collectively, we discover a unique multi-step hijack and mute protein complex regulation mechanism resulting in tumour suppressor PP2A-B56α inhibition. Further, the results unfold a structural determinant for the oncogenic activity of CIP2A, potentially facilitating therapeutic modulation of CIP2A in cancer and other diseases.


Subject(s)
Carcinogenesis , Protein Phosphatase 2 , Protein Processing, Post-Translational , Triple Negative Breast Neoplasms , Humans , Amino Acids , Carcinogenesis/genetics , Carcinogenesis/metabolism , Catalytic Domain , Phosphorylation , Protein Phosphatase 2/genetics , Protein Phosphatase 2/ultrastructure , Triple Negative Breast Neoplasms/metabolism
9.
Chembiochem ; 13(9): 1253-5, 2012 Jun 18.
Article in English | MEDLINE | ID: mdl-22556108

ABSTRACT

The key to understanding: The application of expressed protein ligation and protein microarrays enabled an unparalleled insight into the complex interaction of phosphorylation and glycosylation on casein kinase 2 and its biological outcome.


Subject(s)
Biology/methods , Casein Kinase II/metabolism , Chemistry/methods , Casein Kinase II/chemistry , Glycosylation , Humans , Phosphorylation
10.
Adv Cancer Res ; 153: 63-99, 2022.
Article in English | MEDLINE | ID: mdl-35101236

ABSTRACT

Disruption of the native membrane organization of Ras by the farnesyltransferase inhibitor tipifarnib in the late 1990s constituted the first indirect approach to drug target Ras. Since then, our understanding of how dynamically Ras shuttles between subcellular locations has changed significantly. Ras proteins have to arrive at the plasma membrane for efficient MAPK-signal propagation. On the plasma membrane Ras proteins are organized into isoform specific proteo-lipid assemblies called nanocluster. Recent evidence suggests that Ras nanocluster have a specific lipid composition, which supports the recruitment of effectors such as Raf. Conversely, effectors possess lipid-recognition motifs, which appear to serve as co-incidence detectors for the lipid domain of a given Ras isoform. Evidence suggests that dimeric Raf proteins then co-assemble dimeric Ras in an immobile complex, thus forming the minimal unit of an active nanocluster. Here we review established and novel trafficking chaperones and trafficking factors of Ras, along with the set of lipid and protein modulators of Ras nanoclustering. We highlight drug targeting approaches and opportunities against these determinants of functional Ras membrane organization. Finally, we reflect on implications for Ras signaling in polarized cells, such as epithelia, which are a common origin of tumorigenesis.


Subject(s)
Neoplasms , ras Proteins , Cell Membrane/metabolism , Drug Delivery Systems , Humans , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/metabolism , Signal Transduction , ras Proteins/metabolism
11.
Biochemistry ; 50(35): 7579-90, 2011 Sep 06.
Article in English | MEDLINE | ID: mdl-21806020

ABSTRACT

Phosphatase of regenerating liver 3 (PRL-3) is suggested as a biomarker and therapeutic target in several cancers. It has a well-established causative role in cancer metastasis. However, little is known about its natural substrates, pathways, and biological functions, and only a few protein substrates have been suggested so far. To improve our understanding of the substrate specificity and molecular determinants of PRL-3 activity, the wild-type (WT) protein, two supposedly catalytically inactive mutants D72A and C104S, and the reported hyperactive mutant A111S were tested in vitro for substrate specificity and activity toward phosphopeptides and phosphoinositides (PIPs), their structural stability, and their ability to promote cell migration using stable HEK293 cell lines. We discovered that WT PRL-3 does not dephosphorylate the tested phosphopeptides in vitro. However, as shown by two complementary biochemical assays, PRL-3 is active toward the phosphoinositide PI(4,5)P(2). Our experimental results substantiated by molecular docking studies suggest that PRL-3 is a phosphatidylinositol 5-phosphatase. The C104S variant was shown to be not only catalytically inactive but also structurally destabilized and unable to promote cell migration, whereas WT PRL-3 promotes cell migration. The D72A mutant is structurally stable and does not dephosphorylate the unnatural substrate 3-O-methylfluorescein phosphate (OMFP). However, we observed residual in vitro activity of D72A against PI(4,5)P(2), and in accordance with this, it exhibits the same cellular phenotype as WT PRL-3. Our analysis of the A111S variant shows that the hyperactivity toward the unnatural OMFP substrate is not apparent in dephosphorylation assays with phosphoinositides: the mutant is completely inactive against PIPs. We observed significant structural destabilization of this variant. The cellular phenotype of this mutant equals that of the catalytically inactive C104S mutant. These results provide a possible explanation for the absence of the conserved Ser of the PTP catalytic motif in the PRL family. The correlation of the phosphatase activity toward PI(4,5)P(2) with the observed phenotypes for WT PRL-3 and the mutants suggests a link between the PI(4,5)P(2) dephosphorylation by PRL-3 and its role in cell migration.


Subject(s)
Cell Movement , Neoplasm Proteins/chemistry , Neoplasm Proteins/physiology , Phosphatidylinositols/metabolism , Protein Tyrosine Phosphatases/chemistry , Protein Tyrosine Phosphatases/physiology , Amino Acid Sequence , Catalysis , Cell Movement/genetics , Cysteine/genetics , Enzyme Activation/genetics , Genetic Variation , HEK293 Cells , Humans , Molecular Sequence Data , Mutation/genetics , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Proteins/genetics , Phosphatidylinositols/chemistry , Protein Tyrosine Phosphatases/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Serine/genetics , Substrate Specificity/genetics
12.
Cancers (Basel) ; 13(4)2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33672199

ABSTRACT

The ATP-competitive inhibitors of Hsp90 have been tested predominantly in kinase addicted cancers; however, they have had limited success. A mechanistic connection between Hsp90 and oncogenic K-Ras is not known. Here, we show that K-Ras selectivity is enabled by the loss of the K-Ras membrane nanocluster modulator galectin-3 downstream of the Hsp90 client HIF-1α. This mechanism suggests a higher drug sensitivity in the context of KRAS mutant, HIF-1α-high and/or Gal3-high cancer cells, such as those found, in particular, in pancreatic adenocarcinoma. The low toxicity of conglobatin further indicates a beneficial on-target toxicity profile for Hsp90/Cdc37 interface inhibitors. We therefore computationally screened >7 M compounds, and identified four novel small molecules with activities of 4 µM-44 µM in vitro. All of the compounds were K-Ras selective, and potently decreased the Hsp90 client protein levels without inducing the heat shock response. Moreover, they all inhibited the 2D proliferation of breast, pancreatic, and lung cancer cell lines. The most active compounds from each scaffold, furthermore, significantly blocked 3D spheroids and the growth of K-Ras-dependent microtumors. We foresee new opportunities for improved Hsp90/Cdc37 interface inhibitors in cancer and other aging-associated diseases.

13.
Clin Cancer Res ; 27(10): 2848-2860, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33674272

ABSTRACT

PURPOSE: Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein that inhibits the tumor suppressor PP2A-B56α. However, CIP2A mRNA variants remain uncharacterized. Here, we report the discovery of a CIP2A splicing variant, novel CIP2A variant (NOCIVA). EXPERIMENTAL DESIGN: Characterization of CIP2A variants was performed by both 3' and 5' rapid amplification of cDNA ends from cancer cells. The function of NOCIVA was assessed by structural and molecular biology approaches. Its clinical relevance was studied in an acute myeloid leukemia (AML) patient cohort and two independent chronic myeloid leukemia (CML) cohorts. RESULTS: NOCIVA contains CIP2A exons 1 to 13 fused to 349 nucleotides from CIP2A intron 13. Intriguingly, the first 39 nucleotides of the NOCIVA-specific sequence are in the coding frame with exon 13 of CIP2A and code for a 13-amino acid peptide tail nonhomologous to any known human protein sequence. Therefore, NOCIVA translates to a unique human protein. NOCIVA retains the capacity to bind to B56α, but, whereas CIP2A is predominantly a cytoplasmic protein, NOCIVA translocates to the nucleus. Indicative of prevalent alternative splicing from CIP2A to NOCIVA in myeloid malignancies, AML and CML patient samples overexpress NOCIVA, but not CIP2A mRNA. In AML, a high NOCIVA/CIP2A mRNA expression ratio is a marker for adverse overall survival. In CML, high NOCIVA expression is associated with inferior event-free survival among imatinib-treated patients, but not among patients treated with dasatinib or nilotinib. CONCLUSIONS: We discovered a novel variant of the oncoprotein CIP2A and its clinical relevance in predicting tyrosine kinase inhibitor therapy resistance in myeloid leukemias.


Subject(s)
Autoantigens/genetics , Biomarkers, Tumor , Drug Resistance, Neoplasm/genetics , Intracellular Signaling Peptides and Proteins/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myeloid, Acute/genetics , Membrane Proteins/genetics , Protein Kinase Inhibitors/pharmacology , RNA Isoforms , Alternative Splicing , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Autoantigens/chemistry , Base Sequence , Gene Expression Regulation, Leukemic/drug effects , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Membrane Proteins/chemistry , Models, Molecular , Prognosis , Protein Conformation , Structure-Activity Relationship , Treatment Outcome
14.
Cancer Res ; 81(16): 4319-4331, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34145035

ABSTRACT

Basal-like breast cancers (BLBC) are characterized by defects in homologous recombination (HR), deficient mitotic checkpoint, and high-proliferation activity. Here, we discover CIP2A as a candidate driver of BLBC. CIP2A was essential for DNA damage-induced initiation of mouse BLBC-like mammary tumors and for survival of HR-defective BLBC cells. CIP2A was dispensable for normal mammary gland development and for unperturbed mitosis, but selectively essential for mitotic progression of DNA damaged cells. A direct interaction between CIP2A and a DNA repair scaffold protein TopBP1 was identified, and CIP2A inhibition resulted in enhanced DNA damage-induced TopBP1 and RAD51 recruitment to chromatin in mammary epithelial cells. In addition to its role in tumor initiation, and survival of BRCA-deficient cells, CIP2A also drove proliferative MYC and E2F1 signaling in basal-like triple-negative breast cancer (BL-TNBC) cells. Clinically, high CIP2A expression was associated with poor patient prognosis in BL-TNBCs but not in other breast cancer subtypes. Small-molecule reactivators of PP2A (SMAP) inhibited CIP2A transcription, phenocopied the CIP2A-deficient DNA damage response (DDR), and inhibited growth of patient-derived BLBC xenograft. In summary, these results demonstrate that CIP2A directly interacts with TopBP1 and coordinates DNA damage-induced mitotic checkpoint and proliferation, thereby driving BLBC initiation and progression. SMAPs could serve as a surrogate therapeutic strategy to inhibit the oncogenic activity of CIP2A in BLBCs. SIGNIFICANCE: These results identify CIP2A as a nongenetic driver and therapeutic target in basal-like breast cancer that regulates DNA damage-induced G2-M checkpoint and proliferative signaling.


Subject(s)
Autoantigens/metabolism , Breast Neoplasms/metabolism , Carcinogenesis , Carrier Proteins/metabolism , DNA-Binding Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Nuclear Proteins/metabolism , 9,10-Dimethyl-1,2-benzanthracene , Animals , Cell Cycle , Cell Line, Tumor , Cell Proliferation , DNA Damage , Female , Humans , Immunohistochemistry , Mice , Mice, Knockout , Mice, Transgenic , Mitosis , Mutation , Proteome , Recombination, Genetic , Signal Transduction
15.
FEBS J ; 282(10): 1871-90, 2015 May.
Article in English | MEDLINE | ID: mdl-25757426

ABSTRACT

Vaccinia H1-related (VHR) phosphatase, also known as dual-specificity phosphatase (DUSP) 3, is a small member of the DUSP (also called DSP) family of phosphatases. VHR has a preference for phospho-tyrosine substrates, and has important roles in cellular signaling ranging from cell-cycle regulation and the DNA damage response to MAPK signaling, platelet activation and angiogenesis. VHR/DUSP3 has been implicated in several human cancers, where its tumor-suppressing and -promoting properties have been described. We give a detailed overview of VHR/DUSP3 phosphatase and compare it with its most closely related phosphatases DUSP13B, DUSP26 and DUSP27.


Subject(s)
Dual Specificity Phosphatase 3/metabolism , Animals , Humans , Mitogen-Activated Protein Kinases/metabolism , Neoplasms/enzymology , Neoplasms/metabolism , Signal Transduction/physiology
16.
ACS Chem Biol ; 9(7): 1451-9, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-24798147

ABSTRACT

Vaccinia H1-related (VHR) phosphatase is a dual specificity phosphatase that is required for cell-cycle progression and plays a role in cell growth of certain cancers. Therefore, it represents a potential drug target. VHR is structurally and biochemically well characterized, yet its regulatory principles are still poorly understood. Understanding its regulation is important, not only to comprehend VHR's biological mechanisms and roles but also to determine its potential and druggability as a target in cancer. Here, we investigated the functional role of the unique "variable insert" region in VHR by selectively introducing the photo-cross-linkable amino acid para-benzoylphenylalanine (pBPA) using the amber suppression method. This approach led to the discovery of VHR dimerization, which was further confirmed using traditional chemical cross-linkers. Phe68 in VHR was discovered as a residue involved in the dimerization. We demonstrate that VHR can dimerize inside cells, and that VHR catalytic activity is reduced upon dimerization. Our results suggest that dimerization could occlude the active site of VHR, thereby blocking its accessibility to substrates. These findings indicate that the previously unknown transient self-association of VHR acts as a means for the negative regulation of its catalytic activity.


Subject(s)
Benzophenones/metabolism , Dual Specificity Phosphatase 3/metabolism , Phenylalanine/analogs & derivatives , Protein Multimerization , Animals , Benzophenones/chemistry , COS Cells , Catalytic Domain , Chlorocebus aethiops , Cross-Linking Reagents/chemistry , Dual Specificity Phosphatase 3/chemistry , Dual Specificity Phosphatase 3/genetics , Enzyme Activation , Humans , Models, Molecular , Mutagenesis , Mutation , Phenylalanine/chemistry , Phenylalanine/genetics , Phenylalanine/metabolism , Photochemical Processes
SELECTION OF CITATIONS
SEARCH DETAIL