Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Emerg Infect Dis ; 28(2): 303-313, 2022 02.
Article in English | MEDLINE | ID: mdl-35075998

ABSTRACT

Cache Valley virus (CVV) is a mosquitoborne virus that infects livestock and humans. We report results of surveillance for CVV in New York, USA, during 2000-2016; full-genome analysis of selected CVV isolates from sheep, horse, humans, and mosquitoes from New York and Canada; and phenotypic characterization of selected strains. We calculated infection rates by using the maximum-likelihood estimation method by year, region, month, and mosquito species. The highest maximum-likelihood estimations were for Anopheles spp. mosquitoes. Our phylogenetic analysis identified 2 lineages and found evidence of segment reassortment. Furthermore, our data suggest displacement of CVV lineage 1 by lineage 2 in New York and Canada. Finally, we showed increased vector competence of An. quadrimaculatus mosquitoes for lineage 2 strains of CVV compared with lineage 1 strains.


Subject(s)
Anopheles , Bunyamwera virus , Animals , Bunyamwera virus/genetics , Horses , Mosquito Vectors , New York/epidemiology , Phylogeny , Sheep
2.
PLoS Pathog ; 16(10): e1008951, 2020 10.
Article in English | MEDLINE | ID: mdl-33052957

ABSTRACT

Both mosquito species-specific differences and virus strain -specific differences impact vector competence. Previous results in our laboratory with individual populations of N. American mosquitoes support studies suggesting Aedes aegypti are more competent than Ae. albopictus for American Zika virus (ZIKV) strains and demonstrate that U.S. Ae. albopictus have higher competence for an ancestral Asian ZIKV strain. A982V, an amino acid substitution in the NS1 gene acquired prior to the American outbreak, has been shown to increase competence in Ae. aegypti. We hypothesized that variability in the NS1 could therefore contribute to species-specific differences and developed a reverse genetics system based on a 2016 ZIKV isolate from Honduras (ZIKV-WTic) to evaluate the phenotypic correlates of individual amino acid substitutions. In addition to A982V, we evaluated G894A, which was acquired during circulation in the Americas. Reversion of 982 and 894 to ancestral residues increased infectivity, transmissibility and viral loads in Ae. albopictus but had no effect on competence or replication in Ae. aegypti. In addition, while host cell-specific differences in NS1 secretion were measured, with significantly higher secretion in mammalian cells relative to mosquito cells, strain-specific differences in secretion were not detected, despite previous reports. These results demonstrate that individual mutations in NS1 can influence competence in a species-specific manner independent of differences in NS1 secretion and further indicate that ancestral NS1 residues confer increased competence in Ae. albopictus. Lastly, experimental infections of Ifnar1-/- mice demonstrated that these NS1 substitutions can influence viral replication in the host and, specifically, that G894A could represent a compensatory change following a fitness loss from A982V with some viral genetic backgrounds. Together these data suggest a possible role for epistatic interactions in ZIKV fitness in invertebrate and vertebrate hosts and demonstrate that strains with increased transmission potential in U.S. Ae. albopictus could emerge.


Subject(s)
Aedes/virology , Host-Pathogen Interactions , Mosquito Vectors/virology , Viral Load , Viral Nonstructural Proteins/genetics , Zika Virus Infection/transmission , Zika Virus Infection/virology , Animals , Chlorocebus aethiops , Female , Mice , Mice, Knockout , Mutation , Receptor, Interferon alpha-beta/physiology , Vero Cells , Viral Nonstructural Proteins/metabolism , Virus Replication , Zika Virus/classification , Zika Virus/genetics
3.
J Infect Dis ; 223(5): 743-751, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33417696

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) received an Emergency Use Authorization by the US Food and Drug Administration (FDA). CCP with a signal-to-cutoff ratio of ≥12 using the Ortho VITROS severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoglobulin G (IgG) test (OVSARS2IgG) is permitted to be labeled "high titer." Little is known about the relationship between OVSARS2IgG ratio and neutralizing capacity of plasma/sera against genuine SARS-CoV-2. METHODS: Nine hundred eighty-one samples from 196 repeat CCP donors 0-119 days post-initial donation (DPID) were analyzed. Neutralizing capacity was assessed for 50% (PRNT50) and 90% (PRNT90) reduction of infectious virus using the gold standard plaque reduction neutralization test (PRNT). A subset of 91 donations was evaluated by OVSARS2IgG and compared to PRNT titers for diagnostic accuracy. RESULTS: Of donations, 32.7%/79.5% (PRNT90/PRNT50) met a 1:80 titer initially but only 14.0%/48.8% (PRNT90/PRNT50) met this cutoff ≥85 DPID. Correlation of OVSARS2IgG results to neutralizing capacity allowed extrapolation to CCP therapy results. CCP with OVSARS2IgG ratios equivalent to a therapeutically beneficial group had neutralizing titers of ≥1:640 (PRNT50) and/or ≥1:80 (PRNT90). Specificity and positive predictive value of the OVSARS2IgG for qualifying highly neutralizing CCP was optimal using ratios significantly greater than the FDA cutoff. CONCLUSIONS: This information provides a basis for refining the recommended properties of CCP used to treat COVID-19.


Subject(s)
COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Cohort Studies , Female , Humans , Immunization, Passive/standards , Male , Middle Aged , Neutralization Tests , Retrospective Studies , Sensitivity and Specificity , Time Factors , COVID-19 Serotherapy
4.
J Infect Dis ; 223(1): 47-55, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33104179

ABSTRACT

Passive transfer of antibodies from COVID-19 convalescent patients is being used as an experimental treatment for eligible patients with SARS-CoV-2 infections. The United States Food and Drug Administration's (FDA) guidelines for convalescent plasma initially recommended target antibody titers of 160. We evaluated SARS-CoV-2 neutralizing antibodies in sera from recovered COVID-19 patients using plaque reduction neutralization tests (PRNT) at moderate (PRNT50) and high (PRNT90) stringency thresholds. We found that neutralizing activity significantly increased with time post symptom onset (PSO), reaching a peak at 31-35 days PSO. At this point, the number of sera having neutralizing titers of at least 160 was approximately 93% (PRNT50) and approximately 54% (PRNT90). Sera with high SARS-CoV-2 antibody levels (>960 enzyme-linked immunosorbent assay titers) showed maximal activity, but not all high-titer sera contained neutralizing antibody at FDA recommended levels, particularly at high stringency. These results underscore the value of serum characterization for neutralization activity.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/therapy , Neutralization Tests , Enzyme-Linked Immunosorbent Assay , Humans , Immunization, Passive , COVID-19 Serotherapy
5.
Biochemistry ; 58(8): 1155-1166, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30698412

ABSTRACT

Zika virus (ZIKV) is an enveloped RNA virus from the flavivirus family that can cause fetal neural abnormalities in pregnant women. Previously, we established that ZIKV-EP (envelope protein) binds to human placental chondroitin sulfate (CS), suggesting that CS may be a potential host cell surface receptor in ZIKV pathogenesis. In this study, we further characterized the GAG disaccharide composition of other biological tissues (i.e., mosquitoes, fetal brain cells, and eye tissues) in ZIKV pathogenesis to investigate the role of tissue specific GAGs. Heparan sulfate (HS) was the major GAG, and levels of HS-6-sulfo, HS 0S (unsulfated HS), and CS 4S disaccharides were the main differences in the GAG composition of Aedes aegypti and Aedes albopictus mosquitoes. In human fetal neural progenitor and differentiated cells, HS 0S and CS 4S were the main disaccharides. A change in disaccharide composition levels was observed between undifferentiated and differentiated cells. In different regions of the bovine eyes, CS was the major GAG, and the amounts of hyaluronic acid or keratan sulfate varied depending on the region of the eye. Next, we examined heparin (HP) of various structures to investigate their potential in vitro antiviral activity against ZIKV and Dengue virus (DENV) infection in Vero cells. All compounds effectively inhibited DENV replication; however, they surprisingly promoted ZIKV replication. HP of longer chain lengths more strongly promoted activity in ZIKV replication. This study further expands our understanding of role of GAGs in ZIKV pathogenesis and carbohydrate-based antivirals against flaviviral infection.


Subject(s)
Aedes/metabolism , Dengue/drug therapy , Eye/metabolism , Fetus/metabolism , Glycosaminoglycans/metabolism , Heparitin Sulfate/pharmacology , Zika Virus Infection/drug therapy , Aedes/virology , Animals , Antiviral Agents/pharmacology , Cattle , Chlorocebus aethiops , Dengue/metabolism , Dengue/pathology , Dengue/virology , Dengue Virus/pathogenicity , Eye/drug effects , Fetus/drug effects , Glycosaminoglycans/chemistry , Heparitin Sulfate/chemistry , Humans , In Vitro Techniques , Mosquito Vectors/virology , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Vero Cells , Virus Internalization , Virus Replication , Zika Virus/pathogenicity , Zika Virus Infection/metabolism , Zika Virus Infection/pathology , Zika Virus Infection/virology
6.
J Clin Microbiol ; 56(3)2018 03.
Article in English | MEDLINE | ID: mdl-29263203

ABSTRACT

The recent outbreak of Zika virus (ZIKV) in the Americas has challenged diagnostic laboratory testing strategies. At the Wadsworth Center, ZIKV serological testing was performed for over 10,000 specimens, using a combination of an enzyme-linked immunosorbent assay (ELISA) for IgM antibodies (Abs) to ZIKV, a polyvalent microsphere immunoassay (MIA) to detect Abs broadly reactive with flaviviruses, and a plaque reduction neutralization test (PRNT) for further testing. Overall, 42% of patients showed serological evidence of flavivirus infection (primarily past dengue virus [DENV] infection), while 7% possessed IgM Abs to ZIKV and/or DENV. ZIKV IgM Abs typically arose within 3 to 4 days, with only one instance of duration beyond 100 days after reported symptoms. PRNT analysis of 826 IgM-positive specimens showed 7% positive neutralization to ZIKV alone, 9% to DENV alone, and 85% to both ZIKV and DENV. Thus, the extensive Ab cross-reactivity among flaviviruses significantly reduced the value of performing PRNT analysis, especially when a traditional paired serum algorithm with viral neutralization titering was used. Nevertheless, the finding of a negative ZIKV result by PRNT was invaluable for reassuring both physicians and patients. The MIA detected both IgM and IgG, which enabled us to identify patients who presented without IgM anti-ZIKV Abs but still had ZIKV-specific neutralizing Abs. On the basis of these results, a new algorithm, which included an IgM Ab capture (MAC)-ELISA to detect recent infection, a flavivirus MIA to identify patients no longer producing IgM, and a single-dilution PRNT for ZIKV exclusion and occasional discrimination of ZIKV and DENV, was implemented.


Subject(s)
Serologic Tests/methods , Zika Virus Infection/diagnosis , Zika Virus/immunology , Algorithms , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cross Reactions , Dengue Virus/immunology , Humans , Immunoassay , Immunoglobulin G/blood , Immunoglobulin M/blood , Neutralization Tests , New York , Practice Guidelines as Topic , Serologic Tests/trends , Zika Virus/isolation & purification
7.
J Gen Virol ; 95(Pt 6): 1281-1288, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24643879

ABSTRACT

Understanding the potential for host range shifts and expansions of RNA viruses is critical to predicting the evolutionary and epidemiological paths of these pathogens. As arthropod-borne viruses (arboviruses) experience frequent spillover from their amplification cycles and are generalists by nature, they are likely to experience a relatively high frequency of success in a range of host environments. Despite this, the potential for host expansion, the genetic correlates of adaptation to novel environments and the costs of such adaptations in originally competent hosts are still not characterized fully for arboviruses. In the studies presented here, we utilized experimental evolution of St. Louis encephalitis virus (SLEV; family Flaviviridae, genus Flavivirus) in vitro in the Dermacentor andersoni line of tick cells to model adaptation to a novel invertebrate host. Our results demonstrated that levels of adaptation and costs in alternate hosts are highly variable among lineages, but also that significant fitness increases in tick cells are achievable with only modest change in consensus genetic sequence. In addition, although accumulation of diversity may at times buffer against phenotypic costs within the SLEV swarm, an increased proportion of variants with an impaired capacity to infect and spread on vertebrate cell culture accumulated with tick cell passage. Isolation and characterization of a subset of these variants implicates the NS3 gene as an important host range determinant for SLEV.


Subject(s)
Dermacentor/virology , Encephalitis Virus, St. Louis/genetics , Encephalitis Virus, St. Louis/pathogenicity , Adaptation, Physiological/genetics , Animals , Cell Line , Chlorocebus aethiops , Dermacentor/genetics , Encephalitis Virus, St. Louis/physiology , Genes, Viral , Genome, Viral , Host Specificity/genetics , Host Specificity/physiology , Ixodes/virology , RNA Helicases/genetics , RNA, Viral/biosynthesis , RNA, Viral/genetics , Serine Endopeptidases/genetics , Vero Cells , Viral Nonstructural Proteins/genetics , Virulence/genetics , Virulence/physiology , Virus Replication/genetics
8.
Parasit Vectors ; 17(1): 267, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918848

ABSTRACT

BACKGROUND: Past findings demonstrate that arthropods can egest midgut microbiota into the host skin leading to dual colonization of the vertebrate host with pathogens and saliva microbiome. A knowledge gap exists on how the saliva microbiome interacts with the pathogen in the saliva. To fill this gap, we need to first define the microbial composition of mosquito saliva. METHODS: The current study aimed at analyzing and comparing the microbial profile of Aedes albopictus saliva and midgut as well as assessing the impact of Zika virus (ZIKV) infection on the midgut and saliva microbial composition. Colony-reared Ae. albopictus strains were either exposed to ZIKV infectious or noninfectious bloodmeal. At 14 ays postinfection, the 16S V3-V4 hypervariable rRNA region was amplified from midgut and saliva samples and sequenced on an Illumina MiSeq platform. The relative abundance and diversity of midgut and saliva microbial taxa were assessed. RESULTS: We observed a richer microbial community in the saliva compared with the midgut, yet some of the microbial taxa were common in the midgut and saliva. ZIKV infection did not impact the microbial diversity of midgut or saliva. Further, we identified Elizabethkingia spp. in the Ae. albopictus saliva. CONCLUSIONS: This study provides insights into the microbial community of the Ae. albopictus saliva as well as the influence of ZIKV infection on the microbial composition of its midgut and saliva. The identification of Elizabethkingia spp., an emerging pathogen of global health significance, in Ae. albopictus saliva is of medical importance. Future studies to assess the interactions between Ae. albopictus saliva microbiome and ZIKV could lead to novel strategies for developing transmission barrier tools.


Subject(s)
Aedes , Microbiota , Mosquito Vectors , Saliva , Zika Virus , Animals , Saliva/microbiology , Saliva/virology , Aedes/microbiology , Aedes/virology , Zika Virus/genetics , Zika Virus/isolation & purification , Mosquito Vectors/microbiology , Mosquito Vectors/virology , Gastrointestinal Microbiome , RNA, Ribosomal, 16S/genetics , Female , Zika Virus Infection/transmission , Zika Virus Infection/virology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/virology
9.
Am J Trop Med Hyg ; 109(6): 1329-1332, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37972332

ABSTRACT

Jamestown Canyon virus (JCV) (Peribunyavirdae; Orthobunyavirus) is a mosquito-borne pathogen endemic to North America. The genome is composed of three segmented negative-sense RNA fragments designated as small, medium, and large. Jamestown Canyon virus is an emerging threat to public health, and infection in humans can cause severe neurological diseases, including encephalitis and meningitis. We report JCV mosquito surveillance data from 2001 to 2022 in New York state. Jamestown Canyon virus was detected in 12 mosquito species, with the greatest prevalence in Aedes canadensis and Anopheles punctipennis. Detection fluctuated annually, with the highest levels recorded in 2020. Overall, JCV infection rates were significantly greater from 2012 to 2022 compared with 2001 to 2011. Full-genome sequencing and phylogenetic analysis were also performed with representative JCV isolates collected from 2003 to 2022. These data demonstrated the circulation of numerous genetic variants, broad geographic separation, and the first identification of lineage B JCV in New York state in 2022.


Subject(s)
Anopheles , Encephalitis Virus, California , Encephalitis, California , Animals , Humans , Encephalitis Virus, California/genetics , New York/epidemiology , Phylogeny
10.
iScience ; 26(8): 107468, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37593454

ABSTRACT

West Nile virus (WNV), the most prevalent arthropod-borne virus (arbovirus) in the United States, is maintained in a cycle between Culex spp. mosquitoes and birds. Arboviruses exist within hosts and vectors as a diverse set of closely related genotypes. In theory, this genetic diversity can facilitate adaptation to distinct environments during host cycling, yet host-specific fitness of minority genotypes has not been assessed. Utilizing WNV deep-sequencing data, we previously identified a naturally occurring, mosquito-biased substitution, NS3 P319L. Using both cell culture and experimental infection in natural hosts, we demonstrated that this substitution confers attenuation in vertebrate hosts and increased transmissibility by mosquitoes. Biochemical assays demonstrated temperature-sensitive ATPase activity consistent with host-specific phenotypes. Together these data confirm the maintenance of host-specific minority variants in arbovirus mutant swarms, suggest a unique role for NS3 in viral fitness, and demonstrate that intrahost sequence data can inform mechanisms of host-specific adaptation.

11.
Front Immunol ; 13: 995412, 2022.
Article in English | MEDLINE | ID: mdl-36172366

ABSTRACT

Anti-COVID antibody therapeutics have been developed but not widely used due to their high cost and escape of neutralization from the emerging variants. Here, we describe the development of VHH-IgA1.1, a nanobody IgA fusion molecule as an inhalable, affordable and less invasive prophylactic and therapeutic treatment against SARS-CoV-2 Omicron variants. VHH-IgA1.1 recognizes a conserved epitope of SARS-CoV-2 spike protein Receptor Binding Domain (RBD) and potently neutralizes major global SARS-CoV-2 variants of concern (VOC) including the Omicron variant and its sub lineages BA.1.1, BA.2 and BA.2.12.1. VHH-IgA1.1 is also much more potent against Omicron variants as compared to an IgG Fc fusion construct, demonstrating the importance of IgA mediated mucosal protection for Omicron infection. Intranasal administration of VHH-IgA1.1 prior to or after challenge conferred significant protection from severe respiratory disease in K18-ACE2 transgenic mice infected with SARS-CoV-2 VOC. More importantly, for cost-effective production, VHH-IgA1.1 produced in Pichia pastoris had comparable potency to mammalian produced antibodies. Our study demonstrates that intranasal administration of affordably produced VHH-IgA fusion protein provides effective mucosal immunity against infection of SARS-CoV-2 including emerging variants.


Subject(s)
COVID-19 , Immunoglobulin A , SARS-CoV-2 , Single-Domain Antibodies , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Viral/pharmacology , Epitopes/chemistry , Humans , Immunoglobulin A/pharmacology , Immunoglobulin G , Mice , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus
12.
mSphere ; 7(4): e0019322, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35703544

ABSTRACT

In October 2020, the National Cancer Institute (NCI) Serological Sciences Network (SeroNet) was established to study the immune response to COVID-19, and "to develop, validate, improve, and implement serological testing and associated technologies" (https://www.cancer.gov/research/key-initiatives/covid-19/coronavirus-research-initiatives/serological-sciences-network). SeroNet is comprised of 25 participating research institutions partnering with the Frederick National Laboratory for Cancer Research (FNLCR) and the SeroNet Coordinating Center. Since its inception, SeroNet has supported collaborative development and sharing of COVID-19 serological assay procedures and has set forth plans for assay harmonization. To facilitate collaboration and procedure sharing, a detailed survey was sent to collate comprehensive assay details and performance metrics on COVID-19 serological assays within SeroNet. In addition, FNLCR established a protocol to calibrate SeroNet serological assays to reference standards, such as the U.S. severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serology standard reference material and first WHO international standard (IS) for anti-SARS-CoV-2 immunoglobulin (20/136), to facilitate harmonization of assay reporting units and cross-comparison of study data. SeroNet institutions reported development of a total of 27 enzyme-linked immunosorbent assay (ELISA) methods, 13 multiplex assays, and 9 neutralization assays and use of 12 different commercial serological methods. FNLCR developed a standardized protocol for SeroNet institutions to calibrate these diverse serological assays to reference standards. In conclusion, SeroNet institutions have established a diverse array of COVID-19 serological assays to study the immune response to SARS-CoV-2 and vaccines. Calibration of SeroNet serological assays to harmonize results reporting will facilitate future pooled data analyses and study cross-comparisons. IMPORTANCE SeroNet institutions have developed or implemented 61 diverse COVID-19 serological assays and are collaboratively working to harmonize these assays using reference materials to establish standardized reporting units. This will facilitate clinical interpretation of serology results and cross-comparison of research data.


Subject(s)
COVID-19 , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Testing , Humans , SARS-CoV-2 , Serologic Tests/methods
13.
medRxiv ; 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35262095

ABSTRACT

Background: In October 2020, the National Cancer Institute (NCI) Serological Sciences Network (SeroNet) was established to study the immune response to COVID-19, and "to develop, validate, improve, and implement serological testing and associated technologies." SeroNet is comprised of 25 participating research institutions partnering with the Frederick National Laboratory for Cancer Research (FNLCR) and the SeroNet Coordinating Center. Since its inception, SeroNet has supported collaborative development and sharing of COVID-19 serological assay procedures and has set forth plans for assay harmonization. Methods: To facilitate collaboration and procedure sharing, a detailed survey was sent to collate comprehensive assay details and performance metrics on COVID-19 serological assays within SeroNet. In addition, FNLCR established a protocol to calibrate SeroNet serological assays to reference standards, such as the U.S. SARS-CoV-2 serology standard reference material and First WHO International Standard (IS) for anti-SARS-CoV-2 immunoglobulin (20/136), to facilitate harmonization of assay reporting units and cross-comparison of study data. Results: SeroNet institutions reported development of a total of 27 ELISA methods, 13 multiplex assays, 9 neutralization assays, and use of 12 different commercial serological methods. FNLCR developed a standardized protocol for SeroNet institutions to calibrate these diverse serological assays to reference standards. Conclusions: SeroNet institutions have established a diverse array of COVID-19 serological assays to study the immune response to SARS-CoV-2 virus and vaccines. Calibration of SeroNet serological assays to harmonize results reporting will facilitate future pooled data analyses and study cross-comparisons.

14.
Virology ; 561: 58-64, 2021 09.
Article in English | MEDLINE | ID: mdl-34147955

ABSTRACT

Pathogens are transmitted from one host to another either by vertical transmission (VT) or horizontal transmission (HT). Mosquito-borne arboviruses (arthropod-borne viruses), including several clinically important viruses such as dengue, Zika, West Nile and chikungunya viruses persist in nature by both VT and HT. VT may also serve as an essential link in the transmission cycle during adverse environmental conditions. VT rates (VTRs) vary between virus families and even among viruses within the same genus. The mechanism behind these differences in VTRs among viruses is poorly understood. For efficient VT to occur, viruses must infect the mosquito germline. Here, we show that Zika virus infects mosquito ovaries and is transmitted vertically at a low rate. The infected progeny derive from mosquitoes with infected ovaries. The prevalence of ovary infection increases after a second non-infectious blood meal following an infectious blood meal.


Subject(s)
Aedes/virology , Zika Virus/physiology , Animals , Cell Line , Female , Ovary/virology , Viral Plaque Assay
15.
Cell Rep Med ; 2(7): 100329, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34151306

ABSTRACT

Coronavirus disease 2019 (COVID-19) is associated with a wide spectrum of disease presentation, ranging from asymptomatic infection to acute respiratory distress syndrome (ARDS). Paradoxically, a direct relationship has been suggested between COVID-19 disease severity and the levels of circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibodies, including virus-neutralizing titers. A serological analysis of 536 convalescent healthcare workers reveals that SARS-CoV-2-specific and virus-neutralizing antibody levels are elevated in individuals that experience severe disease. The severity-associated increase in SARS-CoV-2-specific antibody is dominated by immunoglobulin G (IgG), with an IgG subclass ratio skewed toward elevated receptor binding domain (RBD)- and S1-specific IgG3. In addition, individuals that experience severe disease show elevated SARS-CoV-2-specific antibody binding to the inflammatory receptor FcÉ£RIIIa. Based on these correlational studies, we propose that spike-specific IgG subclass utilization may contribute to COVID-19 disease severity through potent Fc-mediated effector functions. These results may have significant implications for SARS-CoV-2 vaccine design and convalescent plasma therapy.


Subject(s)
Antibodies, Viral/blood , COVID-19/blood , Immunoglobulin G/blood , Adult , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , Severity of Illness Index
16.
J Clin Endocrinol Metab ; 106(5): e2025-e2034, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33524125

ABSTRACT

PURPOSE: Comorbidities making up metabolic syndrome (MetS), such as obesity, type 2 diabetes, and chronic cardiovascular disease can lead to increased risk of coronavirus disease-2019 (COVID-19) with a higher morbidity and mortality. SARS-CoV-2 antibodies are higher in severely or critically ill COVID-19 patients, but studies have not focused on levels in convalescent patients with MetS, which this study aimed to assess. METHODS: This retrospective study focused on adult convalescent outpatients with SARS-CoV-2 positive serology during the COVID-19 pandemic at NewYork Presbyterian/Weill Cornell. Data collected for descriptive and correlative analysis included SARS-COV-2 immunoglobin G (IgG) levels and history of MetS comorbidities from April 17, 2020 to May 20, 2020. Additional data, including SARS-CoV-2 IgG levels, body mass index (BMI), hemoglobin A1c (HbA1c) and lipid levels were collected and analyzed for a second cohort from May 21, 2020 to June 21, 2020. SARS-CoV-2 neutralizing antibodies were measured in a subset of the study cohort. RESULTS: SARS-CoV-2 IgG levels were significantly higher in convalescent individuals with MetS comorbidities. When adjusted for age, sex, race, and time duration from symptom onset to testing, increased SARS-CoV-2 IgG levels remained significantly associated with obesity (P < 0.0001). SARS-CoV-2 IgG levels were significantly higher in patients with HbA1c ≥6.5% compared to those with HbA1c <5.7% (P = 0.0197) and remained significant on multivariable analysis (P = 0.0104). A positive correlation was noted between BMI and antibody levels [95% confidence interval: 0.37 (0.20-0.52) P < 0.0001]. Neutralizing antibody titers were higher in COVID-19 individuals with BMI ≥ 30 (P = 0.0055). CONCLUSION: Postconvalescent SARS-CoV-2 IgG and neutralizing antibodies are elevated in obese patients, and a positive correlation exists between BMI and antibody levels.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/immunology , Immunoglobulin G/immunology , Metabolic Syndrome/immunology , Adult , Antibodies, Neutralizing/blood , COVID-19/blood , COVID-19/complications , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/virology , Female , Humans , Immunoglobulin G/blood , Male , Metabolic Syndrome/blood , Metabolic Syndrome/virology , Middle Aged , Obesity/blood , Obesity/immunology , Obesity/virology , Retrospective Studies
17.
Biosens Bioelectron ; 178: 113008, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33515984

ABSTRACT

The association of mortality with the early humoral response to SARS-CoV-2 infection within the first few days after onset of symptoms (DAOS) has not been thoroughly investigated partly due to a lack of sufficiently sensitive antibody testing methods. Here we report two sensitive and automated testing-on-a-probe (TOP) biosensor assays for SARS-CoV-2 viral specific total antibodies (TAb) and surrogate neutralizing antibodies (SNAb), which are suitable for clinical use. The TOP assays employ an RBD-coated quartz probe using a Cy5-Streptavidin-polysacharide conjugate to improve sensitivity and minimize interference. Disposable cartridges containing pre-dispensed reagents require no liquid manipulation or fluidics during testing. The TOP-TAb assay exhibited higher sensitivity in the 0-7 DAOS window than a widely used FDA-EUA assay. The rapid and automated TOP-SNAb correlated well with two well-established SARS-CoV-2 virus neutralization tests. The clinical utility of the TOP assays was demonstrated by evaluating early antibody responses in 120 SARS-CoV-2 RT-PCR positive adult hospitalized patients. Higher TAb and SNAb positivity rates and more robust antibody responses at patient's initial hospital presentation were seen in inpatients who survived COVID-19 than those who died in the hospital. Survival analysis using the Cox Proportional Hazards Model showed that patients who had negative TAb and/or SNAb at initial hospital presentation were at a higher risk of in-hospital mortality. Furthermore, TAb and SNAb levels at presentation were inversely associated with SARS-CoV-2 viral load based on concurrent RT-PCR testing. Overall, the sensitive and automated TAb and SNAb assays allow the detection of early SARS-CoV-2 antibodies which associate with mortality.


Subject(s)
Antibodies, Viral/blood , Biosensing Techniques/instrumentation , COVID-19 Serological Testing/instrumentation , COVID-19/immunology , COVID-19/mortality , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Biosensing Techniques/statistics & numerical data , COVID-19/virology , COVID-19 Nucleic Acid Testing/statistics & numerical data , COVID-19 Serological Testing/statistics & numerical data , Cohort Studies , Equipment Design , Female , Humans , Male , Middle Aged , Neutralization Tests/statistics & numerical data , New York City/epidemiology , Pandemics , Proportional Hazards Models , Retrospective Studies , Risk Factors , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Young Adult
18.
Viruses ; 12(5)2020 05 05.
Article in English | MEDLINE | ID: mdl-32380717

ABSTRACT

The alternative splicing of pre-mRNAs expands a single genetic blueprint to encode multiple, functionally diverse protein isoforms. Viruses have previously been shown to interact with, depend on, and alter host splicing machinery. The consequences, however, incited by viral infection on the global alternative slicing (AS) landscape are under-appreciated. Here, we investigated the transcriptional and alternative splicing profile of neuronal cells infected with a contemporary Puerto Rican Zika virus (ZIKVPR) isolate, an isolate of the prototypical Ugandan ZIKV (ZIKVMR), and dengue virus 2 (DENV2). Our analyses revealed that ZIKVPR induced significantly more differential changes in expressed genes compared to ZIKVMR or DENV2, despite all three viruses showing equivalent infectivity and viral RNA levels. Consistent with the transcriptional profile, ZIKVPR induced a higher number of alternative splicing events compared to ZIKVMR or DENV2, and gene ontology analyses highlighted alternative splicing changes in genes associated with mRNA splicing. In summary, we show that ZIKV affects cellular RNA homeostasis not only at the transcriptional levels but also through the alternative splicing of cellular transcripts. These findings could provide new molecular insights into the neuropathologies associated with this virus.


Subject(s)
Alternative Splicing , Neuroblastoma/virology , Zika Virus Infection/genetics , Zika Virus/physiology , Asia , Cell Line, Tumor , Humans , Transcription, Genetic , Zika Virus/genetics , Zika Virus Infection/metabolism , Zika Virus Infection/virology
19.
Am J Trop Med Hyg ; 104(3): 1123-1130, 2020 12 21.
Article in English | MEDLINE | ID: mdl-33355070

ABSTRACT

The Asian tiger mosquito (Aedes albopictus) is an important vector of a number of arboviruses, including Zika (ZIKV), dengue (DENV), and chikungunya (CHIKV) viruses, and has recently expanded its range in the eastern United States to southern New England and New York. Given the recent establishment and proliferation of Ae. albopictus in this region and the increasing amount of international travel between the United States and endemic countries, there is a need to elucidate the public health risk posed by this mosquito species in the Northeast. Accordingly, we evaluated the competence of four Ae. albopictus populations from Connecticut and New York, for two strains each of ZIKV, DENV serotype 2 (DENV-2), and CHIKV, currently circulating in the Americas, to evaluate the local transmission risk by this vector. We found that local Ae. albopictus populations are susceptible to infection by all three viruses but are most capable of transmitting CHIKV. Variation in competence was observed for ZIKV and CHIKV, driven by the virus strains and mosquito population, whereas competence was more homogeneous for the DENV-2 strains under evaluation. These results suggest that under optimal circumstances, Ae. albopictus could support localized transmission of these viruses and emphasize the importance of maintaining mosquito surveillance and control programs to suppress Ae. albopictus populations and limit further range expansion of this species.


Subject(s)
Aedes/virology , Chikungunya virus/physiology , Dengue Virus/physiology , Mosquito Vectors/virology , Zika Virus/physiology , Animal Distribution , Animals , Humans , New England
20.
Emerg Microbes Infect ; 9(1): 67-77, 2020.
Article in English | MEDLINE | ID: mdl-31894724

ABSTRACT

Rapid and significant range expansion of both Zika virus (ZIKV) and its Aedes vector species has resulted in ZIKV being declared a global health threat. Mean temperatures are projected to increase globally, likely resulting in alterations of the transmission potential of mosquito-borne pathogens. To understand the effect of diurnal temperature range on the vectorial capacity of Ae. aegypti and Ae. albopictus for ZIKV, longevity, blood-feeding and vector competence were assessed at two temperature regimes following feeding on infectious blood meals. Higher temperatures resulted in decreased longevity of Ae. aegypti [Log-rank test, χ2, df 35.66, 5, P < 0.001] and a decrease in blood-feeding rates of Ae. albopictus [Fisher's exact test, P < 0.001]. Temperature had a population and species-specific impact on ZIKV infection rates. Overall, Ae. albopictus reared at the lowest temperature regime demonstrated the highest vectorial capacity (0.53) and the highest transmission efficiency (57%). Increased temperature decreased vectorial capacity across groups yet more significant effects were measured with Ae. aegypti relative to Ae. albopictus. The results of this study suggest that future increases in temperature in the Americas could significantly impact vector competence, blood-feeding and longevity, and potentially decrease the overall vectorial capacity of Aedes mosquitoes in the Americas.


Subject(s)
Aedes/virology , Climate Change , Mosquito Vectors/virology , Zika Virus Infection/transmission , Aedes/classification , Animals , Blood , Feeding Behavior , Female , Florida , Mexico , Mosquito Vectors/physiology , New York , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL