Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO J ; 39(21): e105111, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32945574

ABSTRACT

Elevated ribosome biogenesis in oncogene-driven cancers is commonly targeted by DNA-damaging cytotoxic drugs. Our previous first-in-human trial of CX-5461, a novel, less genotoxic agent that specifically inhibits ribosome biogenesis via suppression of RNA polymerase I (Pol I) transcription, revealed single-agent efficacy in refractory blood cancers. Despite this clinical response, patients were not cured. In parallel, we demonstrated a marked improvement in the in vivo efficacy of CX-5461 in combination with PI3K/AKT/mTORC1 pathway inhibitors. Here, we reveal the molecular basis for this improved efficacy observed in vivo, which is associated with specific suppression of translation of mRNAs encoding regulators of cellular metabolism. Importantly, acquired resistance to this cotreatment is driven by translational rewiring that results in dysregulated cellular metabolism and induction of a cAMP-dependent pathway critical for the survival of blood cancers including lymphoma and acute myeloid leukemia. Our studies thus identify key molecular mechanisms underpinning the response of blood cancers to selective inhibition of ribosome biogenesis and define metabolic vulnerabilities that will facilitate the rational design of more effective regimens for Pol I-directed therapies.


Subject(s)
Neoplasms/metabolism , Protein Biosynthesis/genetics , Protein Biosynthesis/physiology , Ribosomes/metabolism , Transcription, Genetic/drug effects , Animals , Antineoplastic Agents/pharmacology , Benzothiazoles/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm , Guanine Nucleotide Exchange Factors/metabolism , Humans , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred C57BL , Naphthyridines/pharmacology , Neoplasms/genetics , Phosphatidylinositol 3-Kinases/metabolism , Protein Biosynthesis/drug effects , Protein Kinase Inhibitors , RNA Polymerase I/metabolism , RNA, Messenger/metabolism , RNA, Ribosomal , Ribosomes/drug effects , Transcriptome
2.
Blood ; 137(24): 3351-3364, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33512431

ABSTRACT

MYC-driven B-cell lymphomas are addicted to increased levels of ribosome biogenesis (RiBi), offering the potential for therapeutic intervention. However, it is unclear whether inhibition of RiBi suppresses lymphomagenesis by decreasing translational capacity and/or by p53 activation mediated by the impaired RiBi checkpoint (IRBC). Here we generated Eµ-Myc lymphoma cells expressing inducible short hairpin RNAs to either ribosomal protein L7a (RPL7a) or RPL11, the latter an essential component of the IRBC. The loss of either protein reduced RiBi, protein synthesis, and cell proliferation to similar extents. However, only RPL7a depletion induced p53-mediated apoptosis through the selective proteasomal degradation of antiapoptotic MCL-1, indicating the critical role of the IRBC in this mechanism. Strikingly, low concentrations of the US Food and Drug Administration-approved anticancer RNA polymerase I inhibitor Actinomycin D (ActD) dramatically prolonged the survival of mice harboring Trp53+/+;Eµ-Myc but not Trp53-/-;Eµ-Myc lymphomas, which provides a rationale for treating MYC-driven B-cell lymphomas with ActD. Importantly, the molecular effects of ActD on Eµ-Myc cells were recapitulated in human B-cell lymphoma cell lines, highlighting the potential for ActD as a therapeutic avenue for p53 wild-type lymphoma.


Subject(s)
Cell Cycle Checkpoints/drug effects , Dactinomycin/pharmacology , Lymphoma, B-Cell , Myeloid Cell Leukemia Sequence 1 Protein , Proteolysis/drug effects , Proto-Oncogene Proteins c-myc , Ribosomes , Tumor Suppressor Protein p53 , Animals , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/metabolism , Male , Mice , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Ribosomal Proteins/antagonists & inhibitors , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
3.
Proc Natl Acad Sci U S A ; 116(39): 19635-19645, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31488714

ABSTRACT

Substance P (SP) regulates multiple biological processes through its high-affinity neurokinin-1 receptor (NK-1R). While the SP/NK-1R signaling axis is involved in the pathogenesis of solid cancer, the role of this signaling pathway in hematological malignancy remains unknown. Here, we demonstrate that NK-1R expression is markedly elevated in the white blood cells from acute myeloid leukemia patients and a panel of human leukemia cell lines. Blocking NK-1R induces apoptosis in vitro and in vivo via increase of mitochondrial reactive oxygen species. This oxidative stress was triggered by rapid calcium flux from the endoplasmic reticulum into mitochondria and, consequently, impairment of mitochondrial function, a mechanism underlying the cytotoxicity of NK-1R antagonists. Besides anticancer activity, blocking NK-1R produces a potent antinociceptive effect in myeloid leukemia-induced bone pain by alleviating inflammation and inducing apoptosis. These findings thus raise the exciting possibility that the NK-1R antagonists, drugs currently used in the clinic for preventing chemotherapy-induced nausea and vomiting, may provide a therapeutic option for treating human myeloid leukemia.


Subject(s)
Leukemia, Myeloid, Acute/therapy , Mitochondria/drug effects , Receptors, Neurokinin-1/metabolism , Substance P/pharmacology , Adult , Aged , Animals , Apoptosis/drug effects , Calcium/metabolism , Cell Line, Tumor , Female , Humans , Inflammation/metabolism , Leukemia/therapy , Male , Mice , Mice, Inbred ICR , Middle Aged , Mitochondria/metabolism , Neurokinin-1 Receptor Antagonists/pharmacology , Oxidative Stress , Signal Transduction/drug effects , Substance P/metabolism
4.
Proc Natl Acad Sci U S A ; 116(36): 17990-18000, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31439820

ABSTRACT

Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are an established treatment in estrogen receptor-positive breast cancer and are currently in clinical development in melanoma, a tumor that exhibits high rates of CDK4 activation. We analyzed melanoma cells with acquired resistance to the CDK4/6 inhibitor palbociclib and demonstrate that the activity of PRMT5, a protein arginine methyltransferase and indirect target of CDK4, is essential for CDK4/6 inhibitor sensitivity. By indirectly suppressing PRMT5 activity, palbociclib alters the pre-mRNA splicing of MDM4, a negative regulator of p53, leading to decreased MDM4 protein expression and subsequent p53 activation. In turn, p53 induces p21, leading to inhibition of CDK2, the main kinase substituting for CDK4/6 and a key driver of resistance to palbociclib. Loss of the ability of palbociclib to regulate the PRMT5-MDM4 axis leads to resistance. Importantly, combining palbociclib with the PRMT5 inhibitor GSK3326595 enhances the efficacy of palbociclib in treating naive and resistant models and also delays the emergence of resistance. Our studies have uncovered a mechanism of action of CDK4/6 inhibitors in regulating the MDM4 oncogene and the tumor suppressor, p53. Furthermore, we have established that palbociclib inhibition of the PRMT5-MDM4 axis is essential for robust melanoma cell sensitivity and provide preclinical evidence that coinhibition of CDK4/6 and PRMT5 is an effective and well-tolerated therapeutic strategy. Overall, our data provide a strong rationale for further investigation of novel combinations of CDK4/6 and PRMT5 inhibitors, not only in melanoma but other tumor types, including breast, pancreatic, and esophageal carcinoma.


Subject(s)
Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Melanoma/metabolism , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein-Arginine N-Methyltransferases/metabolism , Proto-Oncogene Proteins/metabolism , Pyridines/pharmacology , Cell Cycle Proteins/genetics , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/genetics , Cyclin-Dependent Kinase 6/metabolism , Drug Resistance, Neoplasm , HEK293 Cells , Humans , MCF-7 Cells , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/genetics , Proto-Oncogene Proteins/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
5.
Br J Cancer ; 124(3): 616-627, 2021 02.
Article in English | MEDLINE | ID: mdl-33173151

ABSTRACT

BACKGROUND: Intrinsic and acquired drug resistance represent fundamental barriers to the cure of high-grade serous ovarian carcinoma (HGSC), the most common histological subtype accounting for the majority of ovarian cancer deaths. Defects in homologous recombination (HR) DNA repair are key determinants of sensitivity to chemotherapy and poly-ADP ribose polymerase inhibitors. Restoration of HR is a common mechanism of acquired resistance that results in patient mortality, highlighting the need to identify new therapies targeting HR-proficient disease. We have shown promise for CX-5461, a cancer therapeutic in early phase clinical trials, in treating HR-deficient HGSC. METHODS: Herein, we screen the whole protein-coding genome to identify potential targets whose depletion cooperates with CX-5461 in HR-proficient HGSC. RESULTS: We demonstrate robust proliferation inhibition in cells depleted of DNA topoisomerase 1 (TOP1). Combining the clinically used TOP1 inhibitor topotecan with CX-5461 potentiates a G2/M cell cycle checkpoint arrest in multiple HR-proficient HGSC cell lines. The combination enhances a nucleolar DNA damage response and global replication stress without increasing DNA strand breakage, significantly reducing clonogenic survival and tumour growth in vivo. CONCLUSIONS: Our findings highlight the possibility of exploiting TOP1 inhibition to be combined with CX-5461 as a non-genotoxic approach in targeting HR-proficient HGSC.


Subject(s)
Benzothiazoles/pharmacology , Cystadenocarcinoma, Serous/drug therapy , DNA Damage/drug effects , Homologous Recombination , Naphthyridines/pharmacology , Ovarian Neoplasms/drug therapy , RNA Polymerase I/antagonists & inhibitors , Topoisomerase I Inhibitors/pharmacology , Topotecan/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , DNA Replication/drug effects , Drug Resistance, Neoplasm/genetics , Drug Synergism , Drug Therapy, Combination , Female , G1 Phase Cell Cycle Checkpoints , Genes, BRCA2 , Humans , M Phase Cell Cycle Checkpoints , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Grading , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , RNA Interference , RNA Polymerase I/genetics
6.
Proc Natl Acad Sci U S A ; 115(18): 4737-4742, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29669917

ABSTRACT

ATRX (alpha thalassemia/mental retardation X-linked) complexes with DAXX to deposit histone variant H3.3 into repetitive heterochromatin. Recent genome sequencing studies in cancers have revealed mutations in ATRX and their association with ALT (alternative lengthening of telomeres) activation. Here we report depletion of ATRX in mouse ES cells leads to selective loss in ribosomal RNA gene (rDNA) copy number. Supporting this, ATRX-mutated human ALT-positive tumors also show a substantially lower rDNA copy than ALT-negative tumors. Further investigation shows that the rDNA copy loss and repeat instability are caused by a disruption in H3.3 deposition and thus a failure in heterochromatin formation at rDNA repeats in the absence of ATRX. We also find that ATRX-depleted cells are reduced in ribosomal RNA transcription output and show increased sensitivity to RNA polymerase I (Pol I) transcription inhibitor CX5461. In addition, human ALT-positive cancer cell lines are also more sensitive to CX5461 treatment. Our study provides insights into the contribution of ATRX loss of function to tumorigenesis through the loss of rDNA stability and suggests the therapeutic potential of targeting Pol I transcription in ALT cancers.


Subject(s)
DNA, Neoplasm/metabolism , DNA, Ribosomal/metabolism , Gene Dosage , Mutation , Neoplasm Proteins/metabolism , Neoplasms/metabolism , X-linked Nuclear Protein/metabolism , Benzothiazoles/pharmacology , Cell Line, Tumor , DNA, Neoplasm/genetics , DNA, Ribosomal/genetics , Genomic Instability , Humans , Naphthyridines/pharmacology , Neoplasm Proteins/genetics , Neoplasms/genetics , Neoplasms/pathology , RNA Polymerase I/antagonists & inhibitors , RNA Polymerase I/genetics , RNA Polymerase I/metabolism , Transcription, Genetic/drug effects , Transcription, Genetic/genetics , X-linked Nuclear Protein/genetics
7.
Proc Natl Acad Sci U S A ; 114(24): 6406-6411, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28484005

ABSTRACT

Tumors of distinct tissues of origin and genetic makeup display common hallmark cellular phenotypes, including sustained proliferation, suppression of cell death, and altered metabolism. These phenotypic commonalities have been proposed to stem from disruption of conserved regulatory mechanisms evolved during the transition to multicellularity to control fundamental cellular processes such as growth and replication. Dating the evolutionary emergence of human genes through phylostratigraphy uncovered close association between gene age and expression level in RNA sequencing data from The Cancer Genome Atlas for seven solid cancers. Genes conserved with unicellular organisms were strongly up-regulated, whereas genes of metazoan origin were primarily inactivated. These patterns were most consistent for processes known to be important in cancer, implicating both selection and active regulation during malignant transformation. The coordinated expression of strongly interacting multicellularity and unicellularity processes was lost in tumors. This separation of unicellular and multicellular functions appeared to be mediated by 12 highly connected genes, marking them as important general drivers of tumorigenesis. Our findings suggest common principles closely tied to the evolutionary history of genes underlie convergent changes at the cellular process level across a range of solid cancers. We propose altered activity of genes at the interfaces between multicellular and unicellular regions of human gene regulatory networks activate primitive transcriptional programs, driving common hallmark features of cancer. Manipulation of cross-talk between biological processes of different evolutionary origins may thus present powerful and broadly applicable treatment strategies for cancer.


Subject(s)
Evolution, Molecular , Neoplasms/genetics , Animals , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Genome, Human , Humans , Models, Genetic , Neoplasms/etiology , Oncogenes , Phenotype , Stress, Physiological/genetics , Systems Biology
8.
Blood ; 129(21): 2882-2895, 2017 05 25.
Article in English | MEDLINE | ID: mdl-28283481

ABSTRACT

Despite the development of novel drugs, the prospects for many patients with acute myeloid leukemia (AML) remain dismal. This study reveals that the selective inhibitor of RNA polymerase I (Pol I) transcription, CX-5461, effectively treats aggressive AML, including mixed-lineage leukemia-driven AML, and outperforms standard chemotherapies. In addition to the previously characterized mechanism of action of CX-5461 (ie, the induction of p53-dependent apoptotic cell death), the inhibition of Pol I transcription also demonstrates potent efficacy in p53null AML in vivo. This significant survival advantage in both p53WT and p53null leukemic mice treated with CX-5461 is associated with activation of the checkpoint kinases 1/2, an aberrant G2/M cell-cycle progression and induction of myeloid differentiation of the leukemic blasts. The ability to target the leukemic-initiating cell population is thought to be essential for lasting therapeutic benefit. Most strikingly, the acute inhibition of Pol I transcription reduces both the leukemic granulocyte-macrophage progenitor and leukemia-initiating cell (LIC) populations, and suppresses their clonogenic capacity. This suggests that dysregulated Pol I transcription is essential for the maintenance of their leukemia-initiating potential. Together, these findings demonstrate the therapeutic utility of this new class of inhibitors to treat highly aggressive AML by targeting LICs.


Subject(s)
Benzothiazoles/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Naphthyridines/pharmacology , Neoplastic Stem Cells/enzymology , Pol1 Transcription Initiation Complex Proteins/antagonists & inhibitors , Transcription, Genetic/drug effects , Animals , Cell Division/drug effects , Cell Division/genetics , Cell Line, Tumor , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 2/genetics , Checkpoint Kinase 2/metabolism , G2 Phase/drug effects , G2 Phase/genetics , Humans , Leukemia, Myeloid, Acute/epidemiology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Mice, Mutant Strains , Neoplastic Stem Cells/pathology , Pol1 Transcription Initiation Complex Proteins/genetics , Pol1 Transcription Initiation Complex Proteins/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
9.
Int J Cancer ; 142(10): 2139-2152, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29243224

ABSTRACT

Increased CDK4 activity occurs in the majority of melanomas and CDK4/6 inhibitors in combination with BRAF and MEK inhibitors are currently in clinical trials for the treatment of melanoma. We hypothesize that the timing of the addition of CDK4/6 inhibitors to the current BRAF and MEK inhibitor regime will impact on the efficacy of this triplet drug combination. The efficacy of BRAF, MEK and CDK4/6 inhibitors as single agents and in combination was assessed in human BRAF mutant cell lines that were treatment naïve, BRAF inhibitor tolerant or had acquired resistance to BRAF inhibitors. Xenograft studies were then performed to test the in vivo efficacy of the BRAF and CDK4/6 inhibitor combination. Melanoma cells that had developed early reversible tolerance or acquired resistance to BRAF inhibition remained sensitive to palbociclib. In drug-tolerant cells, the efficacy of the combination of palbociclib with BRAF and/or MEK inhibitors was equivalent to single agent palbociclib. Similarly, acquired BRAF inhibitor resistance cells lost efficacy to the palbociclib and BRAF combination. In contrast, upfront treatment of melanoma cells with palbociclib in combination with BRAF and/or MEK inhibitors induced either cell death or senescence and was superior to a BRAF plus MEK inhibitor combination. In vivo palbociclib plus BRAF inhibitor induced rapid and sustained tumor regression without the development of therapy resistance. In summary, upfront dual targeting of CDK4/6 and mutant BRAF signaling enables tumor cells to evade resistance to monotherapy and is required for robust and sustained tumor regression. Melanoma patients whose tumors have acquired resistance to BRAF inhibition are less likely to have favorable responses to subsequent treatment with the triplet combination of BRAF, MEK and CDK4/6 inhibitors.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , MAP Kinase Kinase Kinases/antagonists & inhibitors , Melanoma/drug therapy , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Pyridines/pharmacology , Animals , Cell Line, Tumor , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Drug Resistance, Neoplasm , Drug Synergism , Female , Humans , Indoles/administration & dosage , Indoles/pharmacology , Melanoma/enzymology , Mice , Mice, SCID , Piperazines/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Pyridines/administration & dosage , Sulfonamides/administration & dosage , Sulfonamides/pharmacology , Xenograft Model Antitumor Assays
10.
Br J Cancer ; 118(2): 145-152, 2018 01.
Article in English | MEDLINE | ID: mdl-29337961

ABSTRACT

Neoplastic growth and many of the hallmark properties of cancer are driven by the disruption of molecular networks established during the emergence of multicellularity. Regulatory pathways and molecules that evolved to impose regulatory constraints upon networks established in earlier unicellular organisms enabled greater communication and coordination between the diverse cell types required for multicellularity, but also created liabilities in the form of points of vulnerability in the network that when mutated or dysregulated facilitate the development of cancer. These factors are usually overlooked in genomic analyses of cancer, but understanding where vulnerabilities to cancer lie in the networks of multicellular species would provide important new insights into how core molecular processes and gene regulation change during tumourigenesis. We describe how the evolutionary origins of genes influence their roles in cancer, and how connections formed between unicellular and multicellular genes that act as key regulatory hubs for normal tissue homeostasis can also contribute to malignant transformation when disrupted. Tumours in general are characterised by increased dependence on unicellular processes for survival, and major dysregulation of the control structures imposed on these processes during the evolution of multicellularity. Mounting molecular evidence suggests altered interactions at the interface between unicellular and multicellular genes play key roles in the initiation and progression of cancer. Furthermore, unicellular network regions activated in cancer show high degrees of robustness and plasticity, conferring increased adaptability to tumour cells by supporting effective responses to environmental pressures such as drug exposure. Examining how the links between multicellular and unicellular regions get disrupted in tumours has great potential to identify novel drivers of cancer, and to guide improvements to cancer treatment by identifying more effective therapeutic strategies. Recent successes in targeting unicellular processes by novel compounds underscore the logic of such approaches. Further gains could come from identifying genes at the interface between unicellular and multicellular processes and manipulating the communication between network regions of different evolutionary ages.


Subject(s)
Neoplasms/genetics , Neoplasms/pathology , Animals , Biological Evolution , Gene Regulatory Networks , Humans
11.
Genome Res ; 25(2): 201-12, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25452314

ABSTRACT

Mechanisms to coordinate programs of highly transcribed genes required for cellular homeostasis and growth are unclear. Upstream binding transcription factor (UBTF, also called UBF) is thought to function exclusively in RNA polymerase I (Pol I)-specific transcription of the ribosomal genes. Here, we report that the two isoforms of UBTF (UBTF1/2) are also enriched at highly expressed Pol II-transcribed genes throughout the mouse genome. Further analysis of UBTF1/2 DNA binding in immortalized human epithelial cells and their isogenically matched transformed counterparts reveals an additional repertoire of UBTF1/2-bound genes involved in the regulation of cell cycle checkpoints and DNA damage response. As proof of a functional role for UBTF1/2 in regulating Pol II transcription, we demonstrate that UBTF1/2 is required for recruiting Pol II to the highly transcribed histone gene clusters and for their optimal expression. Intriguingly, lack of UBTF1/2 does not affect chromatin marks or nucleosome density at histone genes. Instead, it results in increased accessibility of the histone promoters and transcribed regions to micrococcal nuclease, implicating UBTF1/2 in mediating DNA accessibility. Unexpectedly, UBTF2, which does not function in Pol I transcription, is sufficient to regulate histone gene expression in the absence of UBTF1. Moreover, depletion of UBTF1/2 and subsequent reduction in histone gene expression is associated with DNA damage and genomic instability independent of Pol I transcription. Thus, we have uncovered a novel role for UBTF1 and UBTF2 in maintaining genome stability through coordinating the expression of highly transcribed Pol I (UBTF1 activity) and Pol II genes (UBTF2 activity).


Subject(s)
Gene Expression Regulation , Genomic Instability , Pol1 Transcription Initiation Complex Proteins/metabolism , RNA Polymerase II/genetics , RNA Polymerase I/genetics , Transcription, Genetic , Animals , Binding Sites , Cell Line, Transformed , Chromatin/metabolism , Chromatin Immunoprecipitation , Computational Biology , DNA Damage , Gene Knockdown Techniques , High-Throughput Nucleotide Sequencing , Histones/genetics , Humans , Mice , Multigene Family , NIH 3T3 Cells , Nucleosomes/metabolism , Pol1 Transcription Initiation Complex Proteins/genetics , Protein Binding , Transcription Initiation Site
12.
Int J Mol Sci ; 18(1)2017 Jan 20.
Article in English | MEDLINE | ID: mdl-28117679

ABSTRACT

Overall survival for patients with ovarian cancer (OC) has shown little improvement for decades meaning new therapeutic options are critical. OC comprises multiple histological subtypes, of which the most common and aggressive subtype is high-grade serous ovarian cancer (HGSOC). HGSOC is characterized by genomic structural variations with relatively few recurrent somatic mutations or dominantly acting oncogenes that can be targeted for the development of novel therapies. However, deregulation of pathways controlling homologous recombination (HR) and ribosome biogenesis has been observed in a high proportion of HGSOC, raising the possibility that targeting these basic cellular processes may provide improved patient outcomes. The poly (ADP-ribose) polymerase (PARP) inhibitor olaparib has been approved to treat women with defects in HR due to germline BRCA mutations. Recent evidence demonstrated the efficacy of targeting ribosome biogenesis with the specific inhibitor of ribosomal RNA synthesis, CX-5461 in v-myc avian myelocytomatosis viral oncogene homolog (MYC)-driven haematological and prostate cancers. CX-5461 has now progressed to a phase I clinical trial in patients with haematological malignancies and phase I/II trial in breast cancer. Here we review the currently available targeted therapies for HGSOC and discuss the potential of targeting ribosome biogenesis as a novel therapeutic approach against HGSOC.


Subject(s)
Benzothiazoles/therapeutic use , Cystadenocarcinoma, Serous/drug therapy , Molecular Targeted Therapy/methods , Naphthyridines/therapeutic use , Ovarian Neoplasms/drug therapy , RNA, Ribosomal/antagonists & inhibitors , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Female , Humans , Models, Genetic , Molecular Targeted Therapy/trends , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Phthalazines/therapeutic use , Piperazines/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism
13.
Biochim Biophys Acta ; 1849(7): 821-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25464032

ABSTRACT

BACKGROUND: Recent studies have highlighted the fundamental role that key oncogenes such as MYC, RAS and PI3K occupy in driving RNA Polymerase I transcription in the nucleolus. In addition to maintaining essential levels of protein synthesis, hyperactivated ribosome biogenesis and nucleolar function plays a central role in suppressing p53 activation in response to oncogenic stress. Consequently, disruption of ribosome biogenesis by agents such as the small molecule inhibitor of RNA Polymerase I transcription, CX-5461, has shown unexpected, potent, and selective effects in killing tumour cells via disruption of nucleolar function leading to activation of p53, independent of DNA damage. SCOPE OF REVIEW: This review will explore the mechanism of DNA damage-independent activation of p53 via the nucleolar surveillance pathway and how this can be utilised to design novel cancer therapies. MAJOR CONCLUSION AND GENERAL SIGNIFICANCE: Non-genotoxic targeting of nucleolar function may provide a new paradigm for treatment of a broad range of oncogene-driven malignancies with improved therapeutic windows. This article is part of a Special Issue entitled: Translation and Cancer.


Subject(s)
Cell Nucleolus/metabolism , Neoplasms/therapy , RNA Polymerase I/metabolism , Ribosomes/metabolism , Transcription, Genetic , Tumor Suppressor Protein p53/metabolism , Animals , Benzothiazoles/pharmacology , Cell Nucleolus/genetics , Cell Nucleolus/pathology , DNA Damage , Humans , Naphthyridines/pharmacology , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , RNA Polymerase I/antagonists & inhibitors , RNA Polymerase I/genetics , Ribosomes/genetics , Ribosomes/pathology , Tumor Suppressor Protein p53/genetics , ras Proteins/genetics , ras Proteins/metabolism
14.
PLoS Genet ; 9(2): e1003279, 2013.
Article in English | MEDLINE | ID: mdl-23408911

ABSTRACT

Ribosome biogenesis underpins cell growth and division. Disruptions in ribosome biogenesis and translation initiation are deleterious to development and underlie a spectrum of diseases known collectively as ribosomopathies. Here, we describe a novel zebrafish mutant, titania (tti(s450)), which harbours a recessive lethal mutation in pwp2h, a gene encoding a protein component of the small subunit processome. The biochemical impacts of this lesion are decreased production of mature 18S rRNA molecules, activation of Tp53, and impaired ribosome biogenesis. In tti(s450), the growth of the endodermal organs, eyes, brain, and craniofacial structures is severely arrested and autophagy is up-regulated, allowing intestinal epithelial cells to evade cell death. Inhibiting autophagy in tti(s450) larvae markedly reduces their lifespan. Somewhat surprisingly, autophagy induction in tti(s450) larvae is independent of the state of the Tor pathway and proceeds unabated in Tp53-mutant larvae. These data demonstrate that autophagy is a survival mechanism invoked in response to ribosomal stress. This response may be of relevance to therapeutic strategies aimed at killing cancer cells by targeting ribosome biogenesis. In certain contexts, these treatments may promote autophagy and contribute to cancer cells evading cell death.


Subject(s)
Autophagy/genetics , Cell Cycle Proteins , Ribosomes , TOR Serine-Threonine Kinases , Tumor Suppressor Protein p53 , Zebrafish Proteins , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Survival , Genes, Lethal/genetics , Mutation , Protein Biosynthesis/genetics , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 18S/metabolism , Ribosomes/genetics , Ribosomes/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/genetics , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
15.
Biochim Biophys Acta ; 1842(6): 802-16, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24389329

ABSTRACT

The contribution of the nucleolus to cancer is well established with respect to its traditional role in facilitating ribosome biogenesis and proliferative capacity. More contemporary studies however, infer that nucleoli contribute a much broader role in malignant transformation. Specifically, extra-ribosomal functions of the nucleolus position it as a central integrator of cellular proliferation and stress signaling, and are emerging as important mechanisms for modulating how oncogenes and tumor suppressors operate in normal and malignant cells. The dependence of certain tumor cells to co-opt nucleolar processes to maintain their cancer phenotypes has now clearly been demonstrated by the application of small molecule inhibitors of RNA Polymerase I to block ribosomal DNA transcription and disrupt nucleolar function (Bywater et al., 2012 [1]). These drugs, which selectively kill tumor cells in vivo while sparing normal cells, have now progressed to clinical trials. It is likely that we have only just begun to scratch the surface of the potential of the nucleolus as a new target for cancer therapy, with "suppression of nucleolar stress" representing an emerging "hallmark" of cancer. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.


Subject(s)
Cell Nucleolus/genetics , DNA, Ribosomal/metabolism , Neoplasms/genetics , RNA Polymerase I/metabolism , Benzothiazoles/pharmacology , Cell Transformation, Neoplastic/genetics , DNA, Ribosomal/genetics , Genes, myc/genetics , Humans , Naphthyridines/pharmacology , Neoplasms/pathology , RNA Polymerase I/antagonists & inhibitors , RNA Polymerase I/genetics , Ribosomes/genetics , Ribosomes/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
16.
Blood ; 121(15): 2964-74, 2013 Apr 11.
Article in English | MEDLINE | ID: mdl-23403624

ABSTRACT

Pharmacological strategies capable of directly targeting MYC are elusive. Previous studies have shown that MYC-driven lymphomagenesis is associated with mammalian target of rapamycin (mTOR) activation and a MYC-evoked DNA damage response (DDR) transduced by phosphatidylinositol-3-kinase (PI3K)-related kinases (DNA-PK, ATM, and ATR). Here we report that BEZ235, a multitargeted pan-PI3K/dual-mTOR inhibitor, potently killed primary Myc-driven B-cell lymphomas and human cell lines bearing IG-cMYC translocations. Using pharmacologic and genetic dissection of PI3K/mTOR signaling, dual DDR/mTORC1 inhibition was identified as a key mediator of apoptosis. Moreover, apoptosis was initiated at drug concentrations insufficient to antagonize PI3K/mTORC2-regulated AKT phosphorylation. p53-independent induction of the proapoptotic BH3-only protein BMF was identified as a mechanism by which dual DDR/mTORC1 inhibition caused lymphoma cell death. BEZ235 treatment induced apoptotic tumor regressions in vivo that correlated with suppression of mTORC1-regulated substrates and reduced H2AX phosphorylation and also with feedback phosphorylation of AKT. These mechanistic studies hold important implications for the use of multitargeted PI3K inhibitors in the treatment of hematologic malignancies. In particular, the newly elucidated role of PI3K-related DDR kinases in response to PI3K inhibitors offers a novel therapeutic opportunity for the treatment of hematologic malignancies with an MYC-driven DDR.


Subject(s)
Apoptosis/drug effects , Imidazoles/pharmacology , Lymphoma, B-Cell/prevention & control , Quinolines/pharmacology , Animals , Blotting, Western , Cell Line , DNA Damage/drug effects , Discoidin Domain Receptor 1 , Dose-Response Relationship, Drug , Flow Cytometry , Histones/metabolism , Humans , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/pathology , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Inbred C57BL , Mice, Knockout , Multiprotein Complexes/antagonists & inhibitors , Multiprotein Complexes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-myc/genetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/metabolism , Survival Analysis , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Tumor Cells, Cultured
17.
PLoS Genet ; 7(12): e1002408, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22194697

ABSTRACT

The ribosome is critical for all aspects of cell growth due to its essential role in protein synthesis. Paradoxically, many Ribosomal proteins (Rps) act as tumour suppressors in Drosophila and vertebrates. To examine how reductions in Rps could lead to tissue overgrowth, we took advantage of the observation that an RpS6 mutant dominantly suppresses the small rough eye phenotype in a cyclin E hypomorphic mutant (cycE(JP)). We demonstrated that the suppression of cycE(JP) by the RpS6 mutant is not a consequence of restoring CycE protein levels or activity in the eye imaginal tissue. Rather, the use of UAS-RpS6 RNAi transgenics revealed that the suppression of cycE(JP) is exerted via a mechanism extrinsic to the eye, whereby reduced Rp levels in the prothoracic gland decreases the activity of ecdysone, the steroid hormone, delaying developmental timing and hence allowing time for tissue and organ overgrowth. These data provide for the first time a rationale to explain the counter-intuitive organ overgrowth phenotypes observed for certain members of the Minute class of Drosophila Rp mutants. They also demonstrate how Rp mutants can affect growth and development cell non-autonomously.


Subject(s)
Cyclin E/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/genetics , Ecdysone/metabolism , Eye/growth & development , Ribosomal Protein S6/genetics , Animals , Animals, Genetically Modified , Cell Proliferation , Cyclin E/genetics , Drosophila melanogaster/metabolism , Endocrine Glands/metabolism , Eye/metabolism , Gene Expression Regulation, Developmental , Organogenesis/genetics , Phenotype , RNA Interference , Ribosomal Protein S6/metabolism
18.
Mol Ther Oncol ; 32(1): 200771, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38596309

ABSTRACT

The high rates of protein synthesis and processing render multiple myeloma (MM) cells vulnerable to perturbations in protein homeostasis. The induction of proteotoxic stress by targeting protein degradation with proteasome inhibitors (PIs) has revolutionized the treatment of MM. However, resistance to PIs is inevitable and represents an ongoing clinical challenge. Our first-in-human study of the selective inhibitor of RNA polymerase I transcription of ribosomal RNA genes, CX-5461, has demonstrated a potential signal for anti-tumor activity in three of six heavily pre-treated MM patients. Here, we show that CX-5461 has potent anti-myeloma activity in PI-resistant MM preclinical models in vitro and in vivo. In addition to inhibiting ribosome biogenesis, CX-5461 causes topoisomerase II trapping and replication-dependent DNA damage, leading to G2/M cell-cycle arrest and apoptotic cell death. Combining CX-5461 with PI does not further enhance the anti-myeloma activity of CX-5461 in vivo. In contrast, CX-5461 shows synergistic interaction with the histone deacetylase inhibitor panobinostat in both the Vk∗MYC and the 5T33-KaLwRij mouse models of MM by targeting ribosome biogenesis and protein synthesis through distinct mechanisms. Our findings thus provide strong evidence to facilitate the clinical development of targeting the ribosome to treat relapsed and refractory MM.

19.
Sci Adv ; 10(10): eadj8803, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457494

ABSTRACT

Philadelphia chromosome-positive B cell acute lymphoblastic leukemia (B-ALL), characterized by the BCR::ABL1 fusion gene, remains a poor prognosis cancer needing new therapeutic approaches. Transcriptomic profiling identified up-regulation of oncogenic transcription factors ERG and c-MYC in BCR::ABL1 B-ALL with ERG and c-MYC required for BCR::ABL1 B-ALL in murine and human models. Profiling of ERG- and c-MYC-dependent gene expression and analysis of ChIP-seq data established ERG and c-MYC coordinate a regulatory network in BCR::ABL1 B-ALL that controls expression of genes involved in several biological processes. Prominent was control of ribosome biogenesis, including expression of RNA polymerase I (POL I) subunits, the importance of which was validated by inhibition of BCR::ABL1 cells by POL I inhibitors, including CX-5461, that prevents promoter recruitment and transcription initiation by POL I. Our results reveal an essential ERG- and c-MYC-dependent transcriptional network involved in regulation of metabolic and ribosome biogenesis pathways in BCR::ABL1 B-ALL, from which previously unidentified vulnerabilities and therapeutic targets may emerge.


Subject(s)
Fusion Proteins, bcr-abl , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Transcriptional Regulator ERG , Animals , Humans , Mice , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Fusion Proteins, bcr-abl/therapeutic use , Gene Regulatory Networks , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Transcription Factors/genetics , Transcriptional Regulator ERG/genetics
20.
Nat Commun ; 14(1): 2697, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37188662

ABSTRACT

Spatial proteomics technologies have revealed an underappreciated link between the location of cells in tissue microenvironments and the underlying biology and clinical features, but there is significant lag in the development of downstream analysis methods and benchmarking tools. Here we present SPIAT (spatial image analysis of tissues), a spatial-platform agnostic toolkit with a suite of spatial analysis algorithms, and spaSim (spatial simulator), a simulator of tissue spatial data. SPIAT includes multiple colocalization, neighborhood and spatial heterogeneity metrics to characterize the spatial patterns of cells. Ten spatial metrics of SPIAT are benchmarked using simulated data generated with spaSim. We show how SPIAT can uncover cancer immune subtypes correlated with prognosis in cancer and characterize cell dysfunction in diabetes. Our results suggest SPIAT and spaSim as useful tools for quantifying spatial patterns, identifying and validating correlates of clinical outcomes and supporting method development.


Subject(s)
Neoplasms , Humans , Algorithms , Image Processing, Computer-Assisted/methods , Proteomics , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL