Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Appl Environ Microbiol ; 84(10)2018 05 15.
Article in English | MEDLINE | ID: mdl-29523542

ABSTRACT

Legionella pneumophila causes water-based infections resulting in severe pneumonia. Recently, we showed that different MLVA-8 (multilocus variable-number tandem-repeat analysis using 8 loci) genotypes dominated different sites of a drinking-water distribution system. Each genotype displayed a unique temperature-dependent growth behavior. Here we compared the pathogenicity potentials of different MLVA-8 genotypes of environmental and clinical strains. The virulence traits studied were hemolytic activity and cytotoxicity toward amoebae and macrophages. Clinical strains were significantly more hemolytic than environmental strains, while their cytotoxicity toward amoebae was significantly lower at 30°C. No significant differences were detected between clinical and environmental strains in cytotoxicity toward macrophages. Significant differences in virulence were observed between the environmental genotypes (Gt). Gt15 strains showed a significantly higher hemolytic activity. In contrast, Gt4 and Gt6 strains were more infective toward Acanthamoeba castellanii Moreover, Gt4 strains exhibited increased cytotoxicity toward macrophages and demonstrated a broader temperature range of amoebal lysis than Gt6 and Gt15 strains. Understanding the virulence traits of Legionella genotypes may improve the assessment of public health risks of Legionella in drinking water.IMPORTANCELegionella pneumophila is the causative agent of a severe form of pneumonia. Here we demonstrated that clinical strains were significantly more cytotoxic toward red blood cells than environmental strains, while their cytotoxicity toward macrophages was similar. Genotype 4 (Gt4) strains were highly cytotoxic toward amoebae and macrophages and lysed amoebae in a broader temperature range than to the other studied genotypes. The results can explain the relatively high success of Gt4 in the environment and in clinical samples; thus, Gt4 strains should be considered a main factor for the assessment of public health risks of Legionella in drinking water. Our findings shed light on the ecology, virulence, and pathogenicity potential of different L. pneumophila genotypes, which can be a valuable parameter for future modeling and quantitative microbial risk assessment of Legionella in drinking-water systems.


Subject(s)
Drinking Water/microbiology , Legionella pneumophila/genetics , Legionella pneumophila/pathogenicity , Legionnaires' Disease/microbiology , Minisatellite Repeats , Amoeba/microbiology , Environmental Microbiology , Genotype , Humans , Legionella pneumophila/classification , Legionella pneumophila/isolation & purification , Macrophages/microbiology , Multilocus Sequence Typing , Phenotype , Phylogeny , Virulence
2.
Appl Environ Microbiol ; 83(8)2017 04 15.
Article in English | MEDLINE | ID: mdl-28159784

ABSTRACT

Legionella pneumophila causes waterborne infections resulting in severe pneumonia. High-resolution genotyping of L. pneumophila isolates can be achieved by multiple-locus variable-number tandem-repeat analysis (MLVA). Recently, we found that different MLVA genotypes of L. pneumophila dominated different sites in a small drinking-water network, with a genotype-related temperature and abundance regime. The present study focuses on understanding the temperature-dependent growth kinetics of the genotypes that dominated the water network. Our aim was to model mathematically the influence of temperature on the growth kinetics of different environmental and clinical L. pneumophila genotypes and to compare it with the influence of their ecological niches. Environmental strains showed a distinct temperature preference, with significant differences among the growth kinetics of the three studied genotypes (Gt4, Gt6, and Gt15). Gt4 strains exhibited superior growth at lower temperatures (25 and 30°C), while Gt15 strains appeared to be best adapted to relatively higher temperatures (42 and 45°C). The temperature-dependent growth traits of the environmental genotypes were consistent with their distribution and temperature preferences in the water network. Clinical isolates exhibited significantly higher growth rates and reached higher maximal cell densities at 37°C and 42°C than the environmental strains. Further research on the growth preferences of L. pneumophila clinical and environmental genotypes will result in a better understanding of their ecological niches in drinking-water systems as well as in the human body.IMPORTANCELegionella pneumophila is a waterborne pathogen that threatens humans in developed countries. The bacteria inhabit natural and man-made freshwater environments. Here we demonstrate that different environmental L. pneumophila genotypes have different temperature-dependent growth kinetics. Moreover, Legionella strains that belong to the same species but were isolated from environmental and clinical sources possess adaptations for growth at different temperatures. These growth preferences may influence the bacterial colonization at specific ecological niches within the drinking-water network. Adaptations for growth at human body temperatures may facilitate the abilities of some L. pneumophila strains to infect and cause illness in humans. Our findings may be used as a tool to improve Legionella monitoring in drinking-water networks. Risk assessment models for predicting the risk of legionellosis should take into account not only Legionella concentrations but also the temperature-dependent growth kinetics of the isolates.


Subject(s)
Environmental Microbiology , Legionella pneumophila/growth & development , Legionella pneumophila/genetics , Minisatellite Repeats , Water Microbiology , Environment , Genotype , Humans , Kinetics , Legionella pneumophila/isolation & purification , Legionnaires' Disease/microbiology , Models, Biological , Temperature
3.
Pathogens ; 10(4)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33915921

ABSTRACT

Legionella pneumophila is the causative agent of Legionnaires' disease. Due to the hot climate and intermittent water supply, the West Bank, Palestine, can be considered a high-risk area for this often fatal atypical pneumonia. L. pneumophila occurs in biofilms of natural and man-made freshwater environments, where it infects and replicates intracellularly within protozoa. To correlate the genetic diversity of the bacteria in the environment with their virulence properties for protozoan and mammalian host cells, 60 genotyped isolates from hospital water systems in the West Bank were analyzed. The L. pneumophila isolates were previously genotyped by high resolution Multi Locus Variable Number of Tandem Repeat Analysis (MLVA-8(12)) and sorted according to their relationship in clonal complexes (VACC). Strains of relevant genotypes and VACCs were compared according to their capacity to infect Acanthamoeba castellanii and THP-1 macrophages, and to mediate pore-forming cytotoxicity in sheep red blood cells (sRBCs). Based on a previous detailed analysis of the biogeographic distribution and abundance of the MLVA-8(12)-genotypes, the focus of the study was on the most abundant L. pneumophila- genotypes Gt4(17), Gt6 (18) and Gt10(93) and the four relevant clonal complexes [VACC1, VACC2, VACC5 and VACC11]. The highly abundant genotypes Gt4(17) and Gt6(18) are affiliated with VACC1 and sequence type (ST)1 (comprising L. pneumophila str. Paris), and displayed seroroup (Sg)1. Isolates of these two genotypes exhibited significantly higher virulence potentials compared to other genotypes and clonal complexes in the West Bank. Endemic for the West Bank was the clonal complex VACC11 (affiliated with ST461) represented by three relevant genotypes that all displayed Sg6. These genotypes unique for the West Bank showed a lower infectivity and cytotoxicity compared to all other clonal complexes and their affiliated genotypes. Interestingly, the L. pneumophila serotypes ST1 and ST461 were previously identified by in situ-sequence based typing (SBT) as main causative agents of Legionnaires' disease (LD) in the West Bank at a comparable level. Overall, this study demonstrates the site-specific regional diversity of L. pneumophila genotypes in the West Bank and suggests that a combination of MLVA, cellular infection assays and hierarchical agglomerative cluster analysis allows an improved genotype-based risk assessment.

4.
Pathogens ; 9(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271905

ABSTRACT

The West Bank can be considered as a high-risk area for Legionella prevalence in drinking water due to high ambient temperature, intermittent water supply, frequent pressure loss, and storage of drinking water in roof containers. To assess occurrence of Legionella species, especially L. pneumophila, in the drinking water of the West Bank, the drinking water distribution systems of eight hospitals were sampled over a period of 2.3 years covering the seasonal cycle and the major geographic regions. To gain insight into potential environmental drivers, a set of physico-chemical and microbiological parameters was recorded. Sampling included drinking water and biofilm analyzed by culture and PCR-based methods. Cultivation led to the isolation of 180 strains of L. pneumophila that were genotyped by Multi-Locus Variable Number of Tandem Repeat Analysis (MLVA). Surprisingly, the abundance of culturable L. pneumophila was low in drinking water of the sampling sites, with only three out of eight sites where Legionella was observed at all (range: 30-500 CFU/liter). By contrast, biofilm and PCR-based analyses showed a higher prevalence. Statistical analyses with physico-chemical parameters revealed a decrease of L. pneumophila abundance for water and biofilm with increasing magnesium concentrations (>30 mg/l). MLVA-genotype analysis of the L. pneumophila isolates and their spatial distribution indicated three niches characterized by distinct physico-chemical parameters and inhabited by specific consortia of genotypes. This study provides novel insights into mechanisms shaping L. pneumophila populations and triggering their abundance leading to an understanding of their genotype-specific niches and ecology in support of improved prevention measures.

5.
Pathogens ; 9(11)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105606

ABSTRACT

The West Bank can be considered a high-risk area for Legionnaires' disease (LD) due to its hot climate, intermittent water supply and roof storage of drinking water. Legionella, mostly L. pneumophila, are responsible for LD, a severe, community-acquired and nosocomial pneumonia. To date, no extensive assessment of Legionella spp and L. pneumophila using cultivation in combination with molecular approaches in the West Bank has been published. Two years of environmental surveillance of Legionella in water and biofilms in the drinking water distribution systems (DWDS) of eight hospitals was carried out; 180 L. pneumophila strains were isolated, mostly from biofilms in DWDS. Most of the isolates were identified as serogroup (Sg) 1 (60%) and 6 (30%), while a minor fraction comprised Sg 8 and 10. Multilocus Variable number of tandem repeats Analysis using 13 loci (MLVA-8(12)) was applied as a high-resolution genotyping method and compared to the standard Sequence Based Typing (SBT). The isolates were genotyped in 27 MLVA-8(12) genotypes (Gt), comprising four MLVA clonal complexes (VACC 1; 2; 5; 11). The major fraction of isolates constituted Sequence Type (ST)1 and ST461. Most of the MLVA-genotypes were highly diverse and often unique. The MLVA-genotype composition showed substantial regional variability. In general, the applied MLVA-method made it possible to reproducibly genotype the isolates, and was consistent with SBT but showed a higher resolution. The advantage of the higher resolution was most evident for the subdivision of the large strain sets of ST1 and ST461; these STs were shown to be highly pneumonia-relevant in a former study. This shows that the resolution by MLVA is advantageous for back-tracking risk sites and for the avoidance of outbreaks of L. pneumophila. Overall, our results provide important insights into the detailed population structure of L. pneumophila, allowing for better risk assessment for DWDS.

6.
Water Res ; 77: 119-132, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25864003

ABSTRACT

Bacteria of the genus Legionella cause water-based infections, resulting in severe pneumonia. To improve our knowledge about Legionella spp. ecology, its prevalence and its relationships with environmental factors were studied. Seasonal samples were taken from both water and biofilm at seven sampling points of a small drinking water distribution system in Israel. Representative isolates were obtained from each sample and identified to the species level. Legionella pneumophila was further determined to the serotype and genotype level. High resolution genotyping of L. pneumophila isolates was achieved by Multiple-Locus Variable number of tandem repeat Analysis (MLVA). Within the studied water system, Legionella plate counts were higher in summer and highly variable even between adjacent sampling points. Legionella was present in six out of the seven selected sampling points, with counts ranging from 1.0 × 10(1) to 5.8 × 10(3) cfu/l. Water counts were significantly higher in points where Legionella was present in biofilms. The main fraction of the isolated Legionella was L. pneumophila serogroup 1. Serogroup 3 and Legionella sainthelensis were also isolated. Legionella counts were positively correlated with heterotrophic plate counts at 37 °C and negatively correlated with chlorine. Five MLVA-genotypes of L. pneumophila were identified at different buildings of the sampled area. The presence of a specific genotype, "MLVA-genotype 4", consistently co-occurred with high Legionella counts and seemed to "trigger" high Legionella counts in cold water. Our hypothesis is that both the presence of L. pneumophila in biofilm and the presence of specific genotypes, may indicate and/or even lead to high Legionella concentration in water. This observation deserves further studies in a broad range of drinking water systems to assess its potential for general use in drinking water monitoring and management.


Subject(s)
Biofilms , Drinking Water/microbiology , Legionella pneumophila/isolation & purification , Legionella/isolation & purification , Water Microbiology , Chlorine/analysis , Colony Count, Microbial , Drinking Water/analysis , Genotype , Israel , Legionella/growth & development , Legionella pneumophila/genetics , Legionella pneumophila/growth & development , Prevalence , Seasons , Serotyping , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL