Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Bioorg Chem ; 144: 107137, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38245951

ABSTRACT

Based on the mimicry of microbial metabolites, functionalized indoles were demonstrated as the ligands and agonists of the pregnane X receptor (PXR). The lead indole, FKK6, displayed PXR-dependent protective effects in DSS-induced colitis in mice and in vitro cytokine-treated intestinal organoid cultures. Here, we report on the initial in vitro pharmacological profiling of FKK6. FKK6-PXR interactions were characterized by hydrogen-deuterium exchange mass spectrometry. Screening FKK6 against potential cellular off-targets (G protein-coupled receptors, steroid and nuclear receptors, ion channels, and xenobiotic membrane transporters) revealed high PXR selectivity. FKK6 has poor aqueous solubility but was highly soluble in simulated gastric and intestinal fluids. A large fraction of FKK6 was bound to plasma proteins and chemically stable in plasma. The partition coefficient of FKK6 was 2.70, and FKK6 moderately partitioned into red blood cells. In Caco2 cells, FKK6 displayed high permeability (A-B: 22.8 × 10-6 cm.s-1) and no active efflux. These data are indicative of essentially complete in vivo absorption of FKK6. The data from human liver microsomes indicated that FKK6 is rapidly metabolized by cytochromes P450 (t1/2 5 min), notably by CYP3A4. Two oxidized FKK6 derivatives, including DC73 (N6-oxide) and DC97 (C19-phenol), were detected, and these metabolites had 5-7 × lower potency as PXR agonists than FKK6. This implies that despite high intestinal absorption, FKK6 is rapidly eliminated by the liver, and its PXR effects are predicted to be predominantly in the intestines. In conclusion, the PXR ligand and agonist FKK6 has a suitable pharmacological profile supporting its potential preclinical development.


Subject(s)
Colitis , Humans , Animals , Mice , Pregnane X Receptor/agonists , Caco-2 Cells , Colitis/chemically induced , Receptors, Cytoplasmic and Nuclear , Anti-Inflammatory Agents/therapeutic use
2.
Mol Biol Evol ; 38(4): 1225-1240, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33247726

ABSTRACT

Although gene duplications provide genetic backup and allow genomic changes under relaxed selection, they may potentially limit gene flow. When different copies of a duplicated gene are pseudofunctionalized in different genotypes, genetic incompatibilities can arise in their hybrid offspring. Although such cases have been reported after manual crosses, it remains unclear whether they occur in nature and how they affect natural populations. Here, we identified four duplicated-gene based incompatibilities including one previously not reported within an artificial Arabidopsis intercross population. Unexpectedly, however, for each of the genetic incompatibilities we also identified the incompatible alleles in natural populations based on the genomes of 1,135 Arabidopsis accessions published by the 1001 Genomes Project. Using the presence of incompatible allele combinations as phenotypes for GWAS, we mapped genomic regions that included additional gene copies which likely rescue the genetic incompatibility. Reconstructing the geographic origins and evolutionary trajectories of the individual alleles suggested that incompatible alleles frequently coexist, even in geographically closed regions, and that their effects can be overcome by additional gene copies collectively shaping the evolutionary dynamics of duplicated genes during population history.


Subject(s)
Arabidopsis/genetics , Gene Duplication , Reproductive Isolation , Alleles , Phylogeography
3.
Plant Cell ; 31(7): 1579-1597, 2019 07.
Article in English | MEDLINE | ID: mdl-31036599

ABSTRACT

The maintenance of genome integrity over cell divisions is critical for plant development and the correct transmission of genetic information to the progeny. A key factor involved in this process is the STRUCTURAL MAINTENANCE OF CHROMOSOME5 (SMC5) and SMC6 (SMC5/6) complex, related to the cohesin and condensin complexes that control sister chromatid alignment and chromosome condensation, respectively. Here, we characterize NON-SMC ELEMENT4 (NSE4) paralogs of the SMC5/6 complex in Arabidopsis (Arabidopsis thaliana). NSE4A is expressed in meristems and accumulates during DNA damage repair. Partial loss-of-function nse4a mutants are viable but hypersensitive to DNA damage induced by zebularine. In addition, nse4a mutants produce abnormal seeds, with noncellularized endosperm and embryos that maximally develop to the heart or torpedo stage. This phenotype resembles the defects in cohesin and condensin mutants and suggests a role for all three SMC complexes in differentiation during seed development. By contrast, NSE4B is expressed in only a few cell types, and loss-of-function mutants do not have any obvious abnormal phenotype. In summary, our study shows that the NSE4A subunit of the SMC5-SMC6 complex is essential for DNA damage repair in somatic tissues and plays a role in plant reproduction.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/embryology , Cell Cycle Proteins/metabolism , DNA Damage , DNA Repair , Protein Subunits/metabolism , Seeds/metabolism , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis Proteins/genetics , Cell Cycle Proteins/genetics , DNA Damage/genetics , DNA Repair/genetics , Gene Duplication , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genome, Plant , Ovule/genetics , Pollen/genetics , Protein Binding , Seeds/genetics , Transcriptome/genetics , Up-Regulation/genetics
4.
Int J Mol Sci ; 23(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36142735

ABSTRACT

Aryl hydrocarbon receptor (AHR) plays pivotal roles in intestinal physiology and pathophysiology. Intestinal AHR is activated by numerous dietary, endogenous, and microbial ligands. Whereas the effects of individual compounds on AHR are mostly known, the effects of real physiological mixtures occurring in the intestine have not been studied. Using reporter gene assays and RT-PCR, we evaluated the combinatorial effects (3520 combinations) of 11 microbial catabolites of tryptophan (MICTs) on AHR. We robustly (n = 30) determined the potencies and relative efficacies of single MICTs. Synergistic effects of MICT binary mixtures were observed between low- or medium-efficacy agonists, in particular for combinations of indole-3-propionate and indole-3-lactate. Combinations comprising highly efficacious agonists such as indole-3-pyruvate displayed rather antagonist effects, caused by saturation of the assay response. These synergistic effects were confirmed by RT-PCR as CYP1A1 mRNA expression. We also tested mimic multicomponent and binary mixtures of MICTs, prepared based on the metabolomic analyses of human feces and colonoscopy aspirates, respectively. In this case, AHR responsiveness did not correlate with type of diet or health status, and the indole concentrations in the mixtures were determinative of gross AHR activity. Future systematic research on the synergistic activation of AHR by microbial metabolites and other ligands is needed.


Subject(s)
Receptors, Aryl Hydrocarbon , Tryptophan , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Humans , Indoles/metabolism , Indoles/pharmacology , Intestines , Ligands , Propionates , Pyruvates , RNA, Messenger/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Tryptophan/metabolism , Tryptophan/pharmacology
5.
Bioorg Chem ; 109: 104661, 2021 04.
Article in English | MEDLINE | ID: mdl-33636438

ABSTRACT

Microbial metabolite mimicry is a new concept that promises to deliver compounds that have minimal liabilities and enhanced therapeutic effects in a host. In a previous publication, we have shown that microbial metabolites of L-tryptophan, indoles, when chemically altered, yielded potent anti-inflammatory pregnane X Receptor (PXR)-targeting lead compounds, FKK5 and FKK6, targeting intestinal inflammation. Our aim in this study was to further define structure-activity relationships between indole analogs and PXR, we removed the phenyl-sulfonyl group or replaced the pyridyl residue with imidazolopyridyl of FKK6. Our results showed that while removal of the phenyl-sulfonyl group from FKK6 (now called CVK003) shifts agonist activity away from PXR towards the aryl hydrocarbon receptor (AhR), the imidazolopyridyl addition preserves PXR activity in vitro. However, when these compounds are administered to mice, that unlike the parent molecule, FKK6, they exhibit poor induction of PXR target genes in the intestines and the liver. These data suggest that modifications of FKK6 specifically in the pyridyl moiety can result in compounds with weak PXR activity in vivo. These observations are a significant step forward for understanding the structure-activity relationships (SAR) between indole mimics and receptors, PXR and AhR.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Indoles/chemistry , Indoles/pharmacology , Pregnane X Receptor/metabolism , Adenocarcinoma , Animals , Cell Line, Tumor , Colonic Neoplasms , Drug Design , Female , Hepatocytes , Humans , Intestines , Liver , Male , Mice , Middle Aged , Models, Molecular , Molecular Mimicry , Molecular Structure , Pregnane X Receptor/chemistry , Protein Conformation , Structure-Activity Relationship
6.
Int J Mol Sci ; 21(8)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316498

ABSTRACT

The efforts for therapeutic targeting of the aryl hydrocarbon receptor (AhR) have emerged in recent years. We investigated the effects of available antimigraine triptan drugs, having an indole core in their structure, on AhR signaling in human hepatic and intestinal cells. Activation of AhR in reporter gene assays was observed for Avitriptan and to a lesser extent for Donitriptan, while other triptans were very weak or no activators of AhR. Using competitive binding assay and by homology docking, we identified Avitriptan as a low-affinity ligand of AhR. Avitriptan triggered nuclear translocation of AhR and increased binding of AhR in CYP1A1 promotor DNA, as revealed by immune-fluorescence microscopy and chromatin immune-precipitation assay, respectively. Strong induction of CYP1A1 mRNA was achieved by Avitriptan in wild type but not in AhR-knockout, immortalized human hepatocytes, implying that induction of CYP1A1 is AhR-dependent. Increased levels of CYP1A1 mRNA by Avitriptan were observed in human colon carcinoma cells LS180 but not in primary cultures of human hepatocytes. Collectively, we show that Avitriptan is a weak ligand and activator of human AhR, which induces the expression of CYP1A1 in a cell-type specific manner. Our data warrant the potential off-label therapeutic application of Avitriptan as an AhR-agonist drug.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cytochrome P-450 CYP1A1/genetics , Hepatocytes/metabolism , Intestinal Mucosa/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Sulfonamides/pharmacology , Tryptamines/pharmacology , Basic Helix-Loop-Helix Transcription Factors/agonists , Basic Helix-Loop-Helix Transcription Factors/chemistry , Cells, Cultured , Drug Repositioning , Enzyme Activation/drug effects , Humans , Ligands , Models, Molecular , Molecular Docking Simulation , Organ Specificity , Promoter Regions, Genetic/drug effects , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/chemistry , Up-Regulation
7.
Int J Mol Sci ; 21(7)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32283770

ABSTRACT

We examined the effects of gut microbial catabolites of tryptophan on the aryl hydrocarbon receptor (AhR). Using a reporter gene assay, we show that all studied catabolites are low-potency agonists of human AhR. The efficacy of catabolites differed substantially, comprising agonists with no or low (i3-propionate, i3-acetate, i3-lactate, i3-aldehyde), medium (i3-ethanol, i3-acrylate, skatole, tryptamine), and high (indole, i3-acetamide, i3-pyruvate) efficacies. We displayed ligand-selective antagonist activities by i3-pyruvate, i3-aldehyde, indole, skatole, and tryptamine. Ligand binding assay identified low affinity (skatole, i3-pyruvate, and i3-acetamide) and very low affinity (i3-acrylate, i3-ethanol, indole) ligands of the murine AhR. Indole, skatole, tryptamine, i3-pyruvate, i3-acrylate, and i3-acetamide induced CYP1A1 mRNA in intestinal LS180 and HT-29 cells, but not in the AhR-knockout HT-29 variant. We observed a similar CYP1A1 induction pattern in primary human hepatocytes. The most AhR-active catabolites (indole, skatole, tryptamine, i3-pyruvate, i3-acrylate, i3-acetamide) elicited nuclear translocation of the AhR, followed by a formation of AhR-ARNT heterodimer and enhanced binding of the AhR to the CYP1A1 gene promoter. Collectively, we comprehensively characterized the interactions of gut microbial tryptophan catabolites with the AhR, which may expand the current understanding of their potential roles in intestinal health and disease.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/agonists , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gastrointestinal Microbiome , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/metabolism , Tryptophan/metabolism , Animals , Cell Line, Tumor , Cytochrome P-450 CYP1A1/genetics , Gastrointestinal Microbiome/drug effects , Gene Expression , Genes, Reporter , Humans , Indoles , Ligands , Metabolic Networks and Pathways , Mice , Promoter Regions, Genetic , Protein Binding , Protein Multimerization
8.
J Med Chem ; 65(9): 6859-6868, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35416668

ABSTRACT

Targeting the aryl hydrocarbon receptor (AhR) is an emerging therapeutic strategy for multiple diseases (e.g., inflammatory bowel disease). Thermosporothrix hazakensis microbial metabolite 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is a putative AhR endogenous ligand. To improve the chemical stability, we synthesized a series of ITE chemical mimics. Using a series of in vitro assays, we identified 2-(1H-indole-3-carbonyl)-N-methyl thiazole-4-carboxamide (ITE-CONHCH3) as a highly potent (EC50 = 1.6 nM) AhR agonist with high affinity (Ki = 88 nM). ITE-CONHCH3 triggered AhR nuclear translocation and dimerization of AhR-ARNT, enhanced AhR binding in the CYP1A1 promoter, and induced AhR-regulated genes in an AhR-dependent manner. The metabolic stability of ITE-CONHCH3 in a cell culture was 10 times higher than that of ITE. Finally, we observed protective effects of ITE-CONHCH3 in mice with DSS-induced colitis. Overall, we demonstrate and validate a concept of microbial metabolite mimicry in the therapeutic targeting of AhR.


Subject(s)
Colitis , Receptors, Aryl Hydrocarbon , Animals , Colitis/chemically induced , Colitis/drug therapy , Cytochrome P-450 CYP1A1 , Indoles/pharmacology , Indoles/therapeutic use , Mice , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Thiazoles/pharmacology
9.
Toxicol Lett ; 334: 87-93, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33002526

ABSTRACT

The interplays between the metabolic products of intestinal microbiota and the host signaling through xenobiotic receptors, including pregnane X receptor (PXR), are of growing interest, in the context of intestinal health and disease. A distinct class of microbial catabolites is formed from dietary tryptophan, having the indole scaffold in their core structure, which is a biologically active entity. In the current study, we examined a series of ten tryptophan microbial catabolites for their interactions with PXR signaling. Utilizing a reporter gene assay, we identified indole (IND) and indole-3-acetamide (IAD) as PXR agonists. IND and IAD induced PXR-regulated genes CYP3A4 and MDR1 in human intestinal cancer cells. Using time-resolved fluorescence resonance energy transfer, we show that IND (IC50 292 µM) and IAD (IC50 10 µM) are orthosteric ligands of PXR. Binding of PXR in its DNA response elements was enhanced by IND and IAD, as revealed by chromatin immunoprecipitation assay. We demonstrate that tryptophan microbial intestinal metabolites IND and IAD are ligands and agonists of human PXR. These findings are of particular importance in understanding the roles of microbial catabolites in human physiology and pathophysiology. Furthermore, these results are seminal in expanding potential drug repertoire through microbial metabolic mimicry.


Subject(s)
Gastrointestinal Microbiome , Indoleacetic Acids/metabolism , Indoles/metabolism , Intestinal Mucosa , Pregnane X Receptor/agonists , Tryptophan/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Cell Line, Tumor , Cells, Cultured , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Genes, Reporter , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Ligands , Male , Pregnane X Receptor/genetics , Protein Binding , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL