Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Eur J Neurosci ; 37(10): 1682-90, 2013 May.
Article in English | MEDLINE | ID: mdl-23406314

ABSTRACT

Wallerian degeneration (WD) comprises a series of events that includes activation of non-neuronal cells and recruitment of immune cells, creating an inflammatory milieu that leads to extensive nerve fragmentation and subsequent clearance of the myelin debris, both of which are necessary prerequisites for effective nerve regeneration. Previously, we documented accelerated axon regeneration in animals lacking galectin-3 (Gal-3), a molecule associated with myelin clearance. To clarify the mechanisms underlying this enhanced regeneration, we focus here on the early steps of WD following sciatic nerve crush in Gal-3(-/-) mice. Using an in vivo model of nerve degeneration, we observed that removal of myelin debris is more efficient in Gal-3(-/-) than in wild-type (WT) mice; we next used an in vitro phagocytosis assay to document that the phagocytic potential of macrophages and Schwann cells was enhanced in the Gal-3(-/-) mice. Moreover, both RNA and protein levels for the pro-inflammatory cytokines IL-1ß and TNF-α, as well as for Toll-like receptor (TLR)-2 and -4, show robust increases in injured nerves from Gal-3(-/-) mice compared to those from WT mice. Collectively, these data indicate that the lack of Gal-3 results in an augmented inflammatory profile that involves the TLR-cytokine pathway, and increases the phagocytic capacity of Schwann cells and macrophages, which ultimately contributes to speeding the course of WD.


Subject(s)
Cytokines/metabolism , Galectin 3/genetics , Sciatic Nerve/injuries , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Wallerian Degeneration/metabolism , Animals , Cytokines/genetics , Galectin 3/metabolism , Macrophages/metabolism , Macrophages/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin Sheath/metabolism , Nerve Crush , Phagocytosis , Schwann Cells/metabolism , Schwann Cells/physiology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/genetics , Transcription, Genetic , Wallerian Degeneration/genetics
2.
Front Immunol ; 14: 886601, 2023.
Article in English | MEDLINE | ID: mdl-36960058

ABSTRACT

Introduction: Pulmonary fibrosis is a destructive, progressive disease that dramatically reduces life quality of patients, ultimately leading to death. Therapeutic regimens for pulmonary fibrosis have shown limited benefits, hence justifying the efforts to evaluate the outcome of alternative treatments. Methods: Using a mouse model of bleomycin (BLM)-induced lung fibrosis, in the current work we asked whether treatment with pro-resolution molecules, such as pro-resolving lipid mediators (SPMs) could ameliorate pulmonary fibrosis. To this end, we injected aspirin-triggered resolvin D1 (7S,8R,17R-trihydroxy-4Z,9E,11E,13Z,15E19Z-docosahexaenoic acid; ATRvD1; i.v.) 7 and 10 days after BLM (intratracheal) challenge and samples were two weeks later. Results and discussion: Assessment of outcome in the lung tissues revealed that ATRvD1 partially restored lung architecture, reduced leukocyte infiltration, and inhibited formation of interstitial edema. In addition, lung tissues from BLM-induced mice treated with ATRvD1 displayed reduced levels of TNF-α, MCP-1, IL-1-ß, and TGF-ß. Of further interest, ATRvD1 decreased lung tissue expression of MMP-9, without affecting TIMP-1. Highlighting the beneficial effects of ATRvD1, we found reduced deposition of collagen and fibronectin in the lung tissues. Congruent with the anti-fibrotic effects that ATRvD1 exerted in lung tissues, α-SMA expression was decreased, suggesting that myofibroblast differentiation was inhibited by ATRvD1. Turning to culture systems, we next showed that ATRvD1 impaired TGF-ß-induced fibroblast differentiation into myofibroblast. After showing that ATRvD1 hampered extracellular vesicles (EVs) release in the supernatants from TGF-ß-stimulated cultures of mouse macrophages, we verified that ATRvD1 also inhibited the release of EVs in the bronco-alveolar lavage (BAL) fluid of BLM-induced mice. Motivated by studies showing that BLM-induced lung fibrosis is linked to angiogenesis, we asked whether ATRvD1 could blunt BLM-induced angiogenesis in the hamster cheek pouch model (HCP). Indeed, our intravital microscopy studies confirmed that ATRvD1 abrogates BLM-induced angiogenesis. Collectively, our findings suggest that treatment of pulmonary fibrosis patients with ATRvD1 deserves to be explored as a therapeutic option in the clinical setting.


Subject(s)
Pulmonary Fibrosis , Humans , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Aspirin/pharmacology , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/therapeutic use , Lung/pathology , Bleomycin/pharmacology , Transforming Growth Factor beta/metabolism
3.
J Invest Dermatol ; 139(5): 1161-1170, 2019 05.
Article in English | MEDLINE | ID: mdl-30465800

ABSTRACT

Wound healing is a well-coordinated process that involves inflammatory mediators and cellular responses; however, if any disturbances are present during this process, tissue repair is impaired. Chronic wounds are one of the serious long-term complications associated with diabetes mellitus. The chemokine receptor CCR4 and its respective ligands, CCL17 and CCL22, are involved in regulatory T cell recruitment and activation in inflamed skin; however, the role of regulatory T cells in wounds is still not clear. Our aim was to investigate the role of CCR4 and regulatory T cells in cutaneous wound healing in diabetic mice. Alloxan-induced diabetic wild- type mice (diabetic) developed wounds that were difficult to heal, differently from CCR4-/- diabetic mice (CCR4-/- diabetic), and also from anti-CCL17/22 or anti-CD25-injected diabetic mice that presented with accelerated wound healing and fewer regulatory T cells in the wound bed. Consequently, CCR4-/- diabetic mice also presented with alteration on T cells population in the wound and draining lymph nodes; on day 14, these mice also displayed an increase of collagen fiber deposition. Still, cytokine levels were decreased in the wounds of CCR4-/- diabetic mice on day 2. Our data suggest that the receptor CCR4 and regulatory T cells negatively affect wound healing in diabetic mice.


Subject(s)
Chemokine CCL17/antagonists & inhibitors , Chemokine CCL22/antagonists & inhibitors , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Receptors, CCR4/metabolism , Wound Healing/drug effects , Alloxan/pharmacology , Analysis of Variance , Animals , Biopsy, Needle , Chemokine CCL17/pharmacology , Chemokine CCL22/pharmacology , Chemokines/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/drug therapy , Humans , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Knockout , Real-Time Polymerase Chain Reaction/methods , Wound Healing/physiology
4.
PLoS One ; 10(7): e0133227, 2015.
Article in English | MEDLINE | ID: mdl-26197455

ABSTRACT

Sepsis is a deadly disease characterized by an overwhelming release of inflammatory mediators and the activation of different types of cells. This altered state of cell activation, termed leukocyte reprogramming, contributes to patient outcome. However, the understanding of the process underlying sepsis and the role of regulatory T cells (Tregs) in sepsis remains to be elucidated. In this study, we investigated the role of CCR4, the CCL17/CCL22 chemokine receptor, in the innate and acquired immune responses during severe sepsis and the role of Tregs in effecting the outcome. In contrast with wild-type (WT) mice subjected to cecal ligation and puncture (CLP) sepsis, CCR4-deficient (CCR4-/-) septic mice presented an increased survival rate, significant neutrophil migration toward the infection site, a low bacterial count in the peritoneum, and reduced lung inflammation and serum cytokine levels. Thus, a better early host response may favor an adequate long-term response. Consequently, the CCR4-/- septic mice were not susceptible to secondary fungal infection, in contrast with the WT septic mice. Furthermore, Tregs cells from the CCR4-/- septic mice showed reduced suppressive effects on neutrophil migration (both in vivo and in vitro), lymphocyte proliferation and ROS production from activated neutrophils, in contrast with what was observed for Tregs from the WT septic mice. These data show that CCR4 is involved in immunosuppression after severe sepsis and suggest that CCR4+ Tregs negatively modulate the short and long-term immune responses.


Subject(s)
Receptors, CCR4/immunology , Sepsis/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Female , Gene Deletion , Interleukin-10/immunology , Male , Mice , Mice, Inbred C57BL , Neutrophil Activation , Reactive Oxygen Species/immunology , Receptors, CCR4/genetics , Sepsis/genetics , Sepsis/pathology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/pathology , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL