Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
J Infect Dis ; 226(3): 474-484, 2022 08 26.
Article in English | MEDLINE | ID: mdl-35091739

ABSTRACT

BACKGROUND: A protective antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial to decrease morbidity and mortality from severe coronavirus disease 2019 (COVID-19) disease. The effects of preexisting anti-human coronavirus (HCoV) antibodies on the SARS-CoV-2-specific immunoglobulin G (IgG) responses and severity of disease are currently unclear. METHODS: We profiled anti-spike (S), S1, S2, and receptor-binding domain IgG antibodies against SARS-CoV-2 and 6 HCoVs using a multiplex assay (mPLEX-CoV) with serum samples from SARS-CoV-2 infected (n = 155) and pre-COVID-19 (n = 188) cohorts. RESULTS: COVID-19 subjects showed significantly increased anti-S SARS-CoV-2 IgG levels that were highly correlated with IgG antibodies against OC43 and HKU1 S proteins. However, OC43 and HKU1 anti-S antibodies in pre-COVID-19 era sera did not cross-react with SARS-CoV-2. Unidirectional cross-reactive antibodies elicited by SARS-CoV-2 infection were distinct from the bidirectional cross-reactive antibodies recognizing homologous strains RaTG13 and SARS-CoV-1. High anti-OC43 and anti-S2 antibody levels were associated with both a rapid anti-SARS-CoV-2 antibody response and increased disease severity. Subjects with increased sequential organ failure assessment (SOFA) scores developed a higher ratio of S2- to S1-reactive antibodies. CONCLUSIONS: Early and rapid emergence of OC43 S- and S2-reactive IgG after SARS-CoV-2 infection correlates with COVID-19 disease severity.


Subject(s)
COVID-19 , Antibodies, Viral , Cross Reactions , Humans , Immunoglobulin G , SARS-CoV-2 , Severity of Illness Index , Spike Glycoprotein, Coronavirus
2.
J Infect Dis ; 225(1): 121-129, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34107037

ABSTRACT

BACKGROUND: The distribution of Clostridioides difficile strains and transmission dynamics in the United States are not well defined. Whole-genome sequencing across 2 Centers for Disease Control and Prevention Emerging Infections Program C. difficile infection (CDI) surveillance regions (Minnesota and New York) was performed to identify predominant multilocus sequence types (MLSTs) in community-associated (CA) and healthcare-associated (HCA) disease and assess transmission. METHODS: Whole-genome sequencing was performed on C. difficile isolates from patients with CDI over 3 months between 2016 and 2017. Patients were residents of the catchment area without a positive C. difficile test in the preceding 8 weeks. CDI cases were epidemiologically classified as HCA or CA. RESULTS: Of 422 isolates, 212 (50.2%) were HCA and 203 (48.1%) were CA. Predominant MLSTs were sequence type (ST) 42 (9.3%), ST8 (7.8%), and ST2 (8.1%). MLSTs associated with HCA-CDI included ST1 (76%), ST53 (83.3%), and ST43 (80.0%), while those associated with CA-CDI included ST3 (76.9%) and ST41 (77.8%). ST1 was more frequent in New York than in Minnesota (10.8% vs 3.1%). Thirty-three pairs were closely related genomically, 14 of which had potential patient-to-patient transmission supported by record review. CONCLUSIONS: The genomic epidemiology of C. difficile across 2 regions of the United States indicates the presence of a diverse strain profile and limited direct transmission.


Subject(s)
Clostridioides difficile/genetics , Clostridium Infections/epidemiology , Clostridium Infections/transmission , Hospitalization/statistics & numerical data , Whole Genome Sequencing , Clostridioides , Clostridium Infections/microbiology , Cross Infection/epidemiology , Genome , Genomics , Humans , Infectious Disease Transmission, Patient-to-Professional , Infectious Disease Transmission, Professional-to-Patient , Minnesota/epidemiology , Multilocus Sequence Typing , New York/epidemiology , Population Surveillance , United States/epidemiology
3.
Antimicrob Agents Chemother ; 65(7): e0082521, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33972240

ABSTRACT

Infections caused by extended-spectrum-ß-lactamase (ESBL)-producing Escherichia coli are a significant cause of morbidity and health care costs. Globally, the prevailing clonal type is ST131 in association with the blaCTX-M-15 ß-lactamase gene. However, other ESBLs, such as blaCTX-M-14 and blaCTX-M-27, can also be prevalent in some regions. We identified ST38 ESBL-producing E. coli from different regions in the United States which carry blaCTX-M-27 embedded on two distinct plasmid types, suggesting the potential emergence of new ESBL lineages.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Escherichia coli/genetics , Escherichia coli Infections/drug therapy , Escherichia coli Proteins/genetics , Humans , Plasmids/genetics , United States , beta-Lactamases/genetics
4.
J Clin Microbiol ; 59(2)2021 01 21.
Article in English | MEDLINE | ID: mdl-33139422

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has highlighted the challenges inherent to the serological detection of a novel pathogen such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Serological tests can be used diagnostically and for surveillance, but their usefulness depends on their throughput, sensitivity, and specificity. Here, we describe a multiplex fluorescent microsphere-based assay, 3Flex, that can detect antibodies to three major SARS-CoV-2 antigens-spike (S) protein, the spike ACE2 receptor-binding domain (RBD), and nucleocapsid (NP). Specificity was assessed using 213 prepandemic samples. Sensitivity was measured and compared to that of the Abbott Architect SARS-CoV-2 IgG assay using serum samples from 125 unique patients equally binned (n = 25) into 5 time intervals (≤5, 6 to 10, 11 to 15, 16 to 20, and ≥21 days from symptom onset). With samples obtained at ≤5 days from symptom onset, the 3Flex assay was more sensitive (48.0% versus 32.0%), but the two assays performed comparably using serum obtained ≥21 days from symptom onset. A larger collection (n = 534) of discarded sera was profiled from patients (n = 140) whose COVID-19 course was characterized through chart review. This revealed the relative rise, peak (S, 23.8; RBD, 23.6; NP, 16.7 [in days from symptom onset]), and decline of the antibody response. Considerable interperson variation was observed with a subset of extensively sampled intensive care unit (ICU) patients. Using soluble ACE2, inhibition of antibody binding was demonstrated for S and RBD, and not for NP. Taking the data together, this study described the performance of an assay built on a flexible and high-throughput serological platform that proved adaptable to the emergence of a novel infectious agent.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Microspheres , SARS-CoV-2/isolation & purification , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/pathology , Coronavirus Nucleocapsid Proteins/immunology , Female , Fluoroimmunoassay , Humans , Immunoglobulin G/blood , Kinetics , Male , Middle Aged , Phosphoproteins/immunology , SARS-CoV-2/immunology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
5.
Clin Chem ; 67(9): 1188-1200, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34470034

ABSTRACT

BACKGROUND: The clinical laboratory continues to play a critical role in managing the coronavirus pandemic. Numerous US Food and Drug Administration emergency use authorization (EUA) and laboratory-developed test (LDT) serologic assays have become available. The performance characteristics of these assays and their clinical utility continue to be defined in real time during this pandemic. The AACC convened a panel of experts from clinical chemistry, microbiology, and immunology laboratories; the in vitro diagnostics industry; and regulatory agencies to provide practical recommendations for implementation and interpretation of these serologic tests in clinical laboratories. CONTENT: The currently available EUA serologic tests and platforms, information on assay design, antibody classes including neutralizing antibodies, and the humoral immune responses to SARS-CoV-2 are discussed. Verification and validation of EUA and LDT assays are described, along with a quality management approach. Four indications for serologic testing are outlined. Recommendations for result interpretation, reporting comments, and the role of orthogonal testing are also presented. SUMMARY: This document aims to provide a comprehensive reference for laboratory professionals and healthcare workers to appropriately implement SARS-CoV-2 serologic assays in the clinical laboratory and to interpret test results during this pandemic. Given the more frequent occurrence of outbreaks associated with either vector-borne or respiratory pathogens, this document will be a useful resource in planning for similar scenarios in the future.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Laboratories/standards , SARS-CoV-2/isolation & purification , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , COVID-19/virology , Humans , SARS-CoV-2/immunology
6.
Article in English | MEDLINE | ID: mdl-31332071

ABSTRACT

Bacterial keratitis causes significant blindness, yet antimicrobial resistance has rendered current treatments ineffective. Polymyxin B-trimethoprim (PT) plus rifampin has potent in vitro activity against Staphylococcus aureus and Pseudomonas aeruginosa, two important causes of keratitis. Here we further characterize this combination against P. aeruginosa in a murine keratitis model. PT plus rifampin performed comparably to or better than moxifloxacin, the gold standard, suggesting that the combination may be a promising therapy for bacterial keratitis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Eye Infections, Bacterial/drug therapy , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Animals , Cornea/drug effects , Cornea/microbiology , Drug Resistance, Multiple, Bacterial/drug effects , Drug Therapy, Combination/methods , Eye Infections, Bacterial/microbiology , Female , Keratitis/drug therapy , Keratitis/microbiology , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests/methods , Polymyxin B/pharmacology , Rifampin/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Trimethoprim/pharmacology
7.
Article in English | MEDLINE | ID: mdl-30530605

ABSTRACT

New Delhi metallo-beta-lactamases (NDMs) are an uncommon but emerging cause of carbapenem resistance in the United States. Genomic factors promoting their domestic spread remain poorly characterized. A prospective genomic surveillance program among Boston-area hospitals identified multiple new occurrences of NDM-carrying strains of Escherichia coli and Enterobacter cloacae complex in inpatient and outpatient settings, representing the first occurrences of NDM-mediated resistance since initiating genomic surveillance in 2011. Cases included domestic patients with no international exposures. PacBio sequencing of isolates identified strain characteristics, resistance genes, and the complement of mobile vectors mediating spread. Analyses revealed a common 3,114-bp region containing the blaNDM gene, with carriage of this conserved region among unique strains by diverse transposon and plasmid backbones. Functional studies revealed a broad capacity for blaNDM transmission by conjugation, transposition, and complex interplasmid recombination events. NDMs represent a rapidly spreading form of drug resistance that can occur in inpatient and outpatient settings and in patients without international exposures. In contrast to Tn4401-based spread of Klebsiella pneumoniae carbapenemases (KPCs), diverse transposable elements mobilize NDM enzymes, commonly with other resistance genes, enabling naive strains to acquire multi- and extensively drug-resistant profiles with single transposition or plasmid conjugation events. Genomic surveillance provides effective means to rapidly identify these gene-level drivers of resistance and mobilization in order to inform clinical decisions to prevent further spread.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenems/pharmacology , Enterobacter cloacae/drug effects , Escherichia coli/drug effects , beta-Lactamases/genetics , Boston , Conjugation, Genetic/genetics , Drug Resistance, Bacterial/genetics , Enterobacter cloacae/genetics , Enterobacter cloacae/isolation & purification , Escherichia coli/genetics , Escherichia coli/isolation & purification , Gene Transfer, Horizontal/genetics , Humans , Multilocus Sequence Typing , Polymorphism, Single Nucleotide/genetics
8.
Article in English | MEDLINE | ID: mdl-30910904

ABSTRACT

Klebsiella aerogenes is a nosocomial pathogen associated with drug resistance and outbreaks in intensive care units. In a 5-month period in 2017, we experienced an increased incidence of cultures for carbapenem-resistant K. aerogenes (CR-KA) from an adult cardiothoracic intensive care unit (CICU) involving 15 patients. Phylogenomic analysis following whole-genome sequencing (WGS) identified the outbreak CR-KA isolates to group together as a tight monoclonal cluster (with no more than six single nucleotide polymorphisms [SNPs]), suggestive of a protracted intraward transmission event. No clonal relationships were identified between the CICU CR-KA strains and additional hospital CR-KA patient isolates from different wards and/or previous years. Carbapenemase-encoding genes and drug-resistant plasmids were absent in the outbreak strains, and carbapenem resistance was attributed to mutations impacting AmpD activity and membrane permeability. The CICU outbreak strains harbored an integrative conjugative element (ICE) which has been associated with pathogenic Klebsiella pneumoniae lineages (ICEKp10). Comparative genomics with global K. aerogenes genomes showed our outbreak strains to group closely with global sequence type 4 (ST4) strains, which, along with ST93, likely represent dominant K. aerogenes lineages associated with human infections. For poorly characterized pathogens, scaling analyses to include sequenced genomes from public databases offer the opportunity to identify emerging trends and dominant clones associated with specific attributes, syndromes, and geographical locations.


Subject(s)
Carbapenems/pharmacology , Enterobacter aerogenes/pathogenicity , High-Throughput Nucleotide Sequencing/methods , Enterobacter aerogenes/drug effects , Hospitals , Microbial Sensitivity Tests , Multilocus Sequence Typing , Porins/genetics , Porins/metabolism , Virulence
12.
Infect Control Hosp Epidemiol ; 45(5): 630-634, 2024 May.
Article in English | MEDLINE | ID: mdl-38234188

ABSTRACT

OBJECTIVE: Many providers use severe acute respiratory coronavirus virus 2 (SARS-CoV-2) cycle thresholds (Ct values) as approximate measures of viral burden in association with other clinical data to inform decisions about treatment and isolation. We characterized temporal changes in Ct values for non-SARS-CoV-2 respiratory viruses as a first step to determine whether cycle thresholds could play a similar role in the management of non-SARS-CoV-2 respiratory viruses. DESIGN: Retrospective cohort study. SETTING: Brigham and Women's Hospital, Boston. METHODS: We retrospectively identified all adult patients with positive nasopharyngeal PCRs for influenza, respiratory syncytial virus (RSV), parainfluenza, human metapneumovirus (HMPV), rhinovirus, or adenovirus between January 2022 and March 2023. We plotted Ct distributions relative to days since symptom onset, and we assessed whether distributions varied by immunosuppression and other comorbidities. RESULTS: We analyzed 1,863 positive samples: 506 influenza, 502 rhinovirus, 430 RSV, 219 HMPV, 180 parainfluenza, 26 adenovirus. Ct values were generally 25-30 on the day of symptom onset, lower over the ensuing 1-3 days, and progressively higher thereafter with Ct values ≥30 after 1 week for most viruses. Ct values were generally higher and more stable over time for rhinovirus. There was no association between immunocompromised status and median intervals from symptom onset until Ct values were ≥30. CONCLUSIONS: Ct values relative to symptom onset for influenza, RSV, and other non-SARS-CoV-2 respiratory viruses generally mirror patterns seen with SARS-CoV-2. Further data on associations between Ct values and viral viability, transmissibility, host characteristics, and response to treatment for non-SARS-CoV-2 respiratory viruses are needed to determine how clinicians and infection preventionists might integrate Ct values into treatment and isolation decisions.


Subject(s)
COVID-19 , Influenza, Human , Metapneumovirus , Paramyxoviridae Infections , Respiratory Tract Infections , Virus Diseases , Viruses , Adult , Humans , Female , SARS-CoV-2 , Retrospective Studies , Virus Diseases/diagnosis , Respiratory Syncytial Viruses , Rhinovirus , Adenoviridae
13.
Article in English | MEDLINE | ID: mdl-38415089

ABSTRACT

The past 10 years have brought paradigm-shifting changes to clinical microbiology. This paper explores the top 10 transformative innovations across the diagnostic spectrum, including not only state of the art technologies but also preanalytic and post-analytic advances. Clinical decision support tools have reshaped testing practices, curbing unnecessary tests. Innovations like broad-range polymerase chain reaction and metagenomic sequencing, whole genome sequencing, multiplex molecular panels, rapid phenotypic susceptibility testing, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry have all expanded our diagnostic armamentarium. Rapid home-based testing has made diagnostic testing more accessible than ever. Enhancements to clinician-laboratory interfaces allow for automated stewardship interventions and education. Laboratory restructuring and consolidation efforts are reshaping the field of microbiology, presenting both opportunities and challenges for the future of clinical microbiology laboratories. Here, we review key innovations of the last decade.

14.
Open Forum Infect Dis ; 11(3): ofae048, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38434615

ABSTRACT

Background: Bacillus cereus is a ubiquitous gram-positive rod-shaped bacterium that can cause sepsis and neuroinvasive disease in patients with acute leukemia or neutropenia. Methods: A single-center retrospective review was conducted to evaluate patients with acute leukemia, positive blood or cerebrospinal fluid test results for B cereus, and abnormal neuroradiographic findings between January 2018 and October 2022. Infection control practices were observed, environmental samples obtained, a dietary case-control study completed, and whole genome sequencing performed on environmental and clinical Bacillus isolates. Results: Five patients with B cereus neuroinvasive disease were identified. All patients had acute myeloid leukemia (AML), were receiving induction chemotherapy, and were neutropenic. Neurologic involvement included subarachnoid or intraparenchymal hemorrhage or brain abscess. All patients were treated with ciprofloxacin and survived with limited or no neurologic sequelae. B cereus was identified in 7 of 61 environmental samples and 1 of 19 dietary protein samples-these were unrelated to clinical isolates via sequencing. No point source was identified. Ciprofloxacin was added to the empiric antimicrobial regimen for patients with AML and prolonged or recurrent neutropenic fevers; no new cases were identified in the ensuing year. Conclusions: B cereus is ubiquitous in the hospital environment, at times leading to clusters with unrelated isolates. Fastidious infection control practices addressing a range of possible exposures are warranted, but their efficacy is unknown and they may not be sufficient to prevent all infections. Thus, including B cereus coverage in empiric regimens for patients with AML and persistent neutropenic fever may limit the morbidity of this pathogen.

15.
Access Microbiol ; 5(10)2023.
Article in English | MEDLINE | ID: mdl-37970081

ABSTRACT

Extra-intestinal infection with non-O1/non-O139 strains of Vibrio cholerae (NOVC) is rare, though bacteremia and hepatobiliary manifestations have been reported. Reduced stomach acid, or hypochlorhydria, can increase risk of V. cholerae infection. We describe a 42-year-old woman with hypochlorhydria due to untreated Helicobacter pylori infection, gastric-bypass surgery, and chronic proton pump inhibitors (PPI) exposure, who developed acute diarrhoea following raw oyster consumption. Her symptoms were attributed to rapid gastric emptying (dumping syndrome) after a negative limited stool work-up. She had persistent diarrhoea, weight loss, and after 5 months was admitted with acute cholecystitis and NOVC bacteremia, requiring cholecystectomy. This is the first reported case of NOVC bacteremia and cholecystitis in a patient with gastric bypass. This case highlights the potential for NOVC biliary carriage, the role of hypochlorhydria as a risk factor for Vibrio infection, and the importance of excluding infectious diarrhoea in patients with new onset of symptoms compatible with dumping syndrome and a relevant travel history.

16.
Microbiol Spectr ; 10(2): e0250721, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35389244

ABSTRACT

The multiplex capabilities of the new xMAP INTELLIFLEX DR-SE flow analyzer were explored by modifying a serological assay previously used to characterize the IgG antibody to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The goal was to examine the instrument's performance and to simultaneously measure IgM and IgG antibody responses against multiple SARS-CoV-2 antigens in a single assay. Specific antibodies against the SARS-CoV-2 spike (S), receptor binding domain (RBD), and nucleocapsid (N) proteins were investigated in 310 symptomatic case patients using a fluorescent microsphere immunoassay and simultaneous detection of IgM and IgG. Neutralization potential was studied using the addition of soluble angiotensin-converting enzyme 2 (ACE2) to block antibody binding. A profile extending to 180 days from symptom onset (DFSO) was described for antibodies specific to each viral antigen. Generally, IgM levels peaked and declined rapidly ∼3-4 weeks following infection, whereas S- and RBD-specific IgG plateaued at 80 DFSO. ACE2 more effectively prevented IgM and IgG binding in convalescent cases > 30 DFSO, suggesting those antibodies had greater neutralization potential. This work highlighted the multiplex and multi-analyte potential of the xMAP INTELLIFLEX DR-SE, and provided further evidence for antigen-specific IgM and IgG trajectories in acute and convalescent cases. IMPORTANCE The xMAP INTELLIFLEX DR-SE enabled simultaneous and semi-quantitative detection of both IgM and IgG to three different SARS-CoV-2 antigens in a single assay. The assay format is advantageous for rapid and medium-throughput profiling using a small volume of specimen. The xMAP INTELLIFLEX DR-SE technology demonstrated the potential to include numerous SARS-CoV-2 antigens; future work could incorporate multiple spike protein variants in a single assay. This could be an important feature for assessing the serological response to emerging variants of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , Humans , Immunoglobulin G , Immunoglobulin M , Nucleocapsid , Spike Glycoprotein, Coronavirus
17.
Infect Immun ; 79(2): 663-73, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21078852

ABSTRACT

The success of Mycobacterium tuberculosis as a pathogen relies on its ability to regulate the host immune response. M. tuberculosis can manipulate adaptive T cell responses indirectly by modulating antigen-presenting cell (APC) function or by directly interacting with T cells. Little is known about the role of M. tuberculosis molecules in direct regulation of T cell function. Using a biochemical approach, we identified lipoproteins LprG and LpqH as major molecules in M. tuberculosis lysate responsible for costimulation of primary human CD4(+) T cells. In the absence of APCs, activation of memory CD4(+) T cells with LprG or LpqH in combination with anti-CD3 antibody induces Th1 cytokine secretion and cellular proliferation. Lipoprotein-induced T cell costimulation was inhibited by blocking antibodies to Toll-like receptor 2 (TLR2) and TLR1, indicating that human CD4(+) T cells can use TLR2/TLR1 heterodimers to directly respond to M. tuberculosis products. M. tuberculosis lipoproteins induced NF-κB activation in CD4(+) T cells in the absence of TCR co-engagement. Thus, TLR2/TLR1 engagement alone by M. tuberculosis lipoprotein triggered intracellular signaling, but upregulation of cytokine production and proliferation required co-engagement of the TCR. In conclusion, our results demonstrate that M. tuberculosis lipoproteins LprG and LpqH participate in the regulation of adaptive immunity not only by inducing cytokine secretion and costimulatory molecules in innate immune cells but also through directly regulating the activation of memory T lymphocytes.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Lipoproteins/metabolism , Lymphocyte Activation/physiology , Mycobacterium tuberculosis/metabolism , Toll-Like Receptor 1/metabolism , Toll-Like Receptor 2/metabolism , Acylation , Adult , Cells, Cultured , Gene Expression Regulation , Humans , Immunologic Memory/physiology , Lipoproteins/genetics , Lipoproteins/immunology , Middle Aged , Mycobacterium tuberculosis/immunology , Toll-Like Receptor 1/genetics , Toll-Like Receptor 2/genetics , Young Adult
18.
J Virol ; 84(17): 8549-60, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20592078

ABSTRACT

Mycobacterium tuberculosis is a leading killer of HIV-infected individuals worldwide, particularly in sub-Saharan Africa, where it is responsible for up to 50% of HIV-related deaths. Infection by HIV predisposes individuals to M. tuberculosis infection, and coinfection accelerates the progression of both diseases. In contrast to most other opportunistic infections associated with HIV, an increased risk of M. tuberculosis infection occurs during early-stage HIV disease, long before CD4 T cell counts fall below critical levels. We hypothesized that M. tuberculosis infection contributes to HIV pathogenesis by interfering with dendritic cell (DC)-mediated immune control. DCs carry pathogens like M. tuberculosis and HIV from sites of infection into lymphoid tissues, where they process and present antigenic peptides to CD4 T cells. Paradoxically, DCs can also deliver infectious HIV to T cells without first becoming infected, a process known as trans-infection. Lipopolysaccharide (LPS)-activated DCs sequester HIV in pocketlike membrane invaginations that remain open to the cell surface, and individual virions are delivered from the pocket into T cells at the site of contact during trans-infection. Here we report that M. tuberculosis exposure increases HIV trans-infection and induces viral sequestration within surface-accessible compartments identical to those seen in LPS-stimulated DCs. At the same time, M. tuberculosis dramatically decreases the degradative processing and major histocompatibility complex class II (MHC-II) presentation of HIV antigens to CD4 T cells. Our data suggest that M. tuberculosis infection promotes a shift in the dynamic balance between antigen processing and intact virion presentation, favoring DC-mediated amplification of HIV infections.


Subject(s)
Antigen Presentation , Dendritic Cells/immunology , Down-Regulation , HIV Infections/immunology , HIV-1/physiology , Histocompatibility Antigens Class II/immunology , Mycobacterium tuberculosis/physiology , Tuberculosis, Pulmonary/immunology , Cell Line , Cells, Cultured , Dendritic Cells/virology , HIV-1/immunology , Humans , Monocytes/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/complications
19.
J Vis Exp ; (170)2021 04 06.
Article in English | MEDLINE | ID: mdl-33900295

ABSTRACT

The COVID-19 pandemic has underscored the need for rapid high-throughput methods for sensitive and specific serological detection of infection with novel pathogens, such as SARS-CoV-2. Multiplex serological testing can be particularly useful because it can simultaneously analyze antibodies to multiple antigens that optimizes pathogen coverage, and controls for variability in the organism and the individual host response. Here we describe a SARS-CoV-2 IgG 3-plex fluorescent microsphere-based assay that can detect both IgM and IgG antibodies to three major SARS-CoV-2 antigens-the spike (S) protein, spike angiotensin-converting enzyme-2 (ACE2) receptor-binding domain (RBD), and nucleocapsid (Nc). The assay was shown to have comparable performance to a SARS-CoV-2 reference assay for IgG in serum obtained at ≥21 days from symptom onset but had higher sensitivity with samples collected at ≤5 days from symptom onset. Further, using soluble ACE2 in a neutralization assay format, inhibition of antibody binding was demonstrated for S and RBD.


Subject(s)
Antibodies, Neutralizing/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Flow Cytometry/methods , Immunoglobulin G/blood , Immunoglobulin M/blood , SARS-CoV-2/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , Humans , Spike Glycoprotein, Coronavirus/immunology
20.
PLoS One ; 16(5): e0250975, 2021.
Article in English | MEDLINE | ID: mdl-33939761

ABSTRACT

Staphylococcus aureus is a major cause of ocular infections, often resulting in devastating vision loss. Despite the significant morbidity associated with these infections, little is yet known regarding the specific strain types that may have a predilection for ocular tissues nor the set of virulence factors that drive its pathogenicity in this specific biological niche. Whole genome sequencing (WGS) can provide valuable insight in this regard by providing a prospective, comprehensive assessment of the strain types and virulence factors driving disease among specific subsets of clinical isolates. As such, a set of 163-member S. aureus ocular clinical strains were sequenced and assessed for both common strain types (multilocus sequence type (MLST), spa, agr) associated with ocular infections as well as the presence/absence of 235 known virulence factors in a high throughput manner. This ocular strain set was then directly compared to a fully sequenced 116-member non-ocular S. aureus strain set curated from NCBI in order to identify key differences between ocular and non-ocular S. aureus isolates. The most common sequence types found among ocular S. aureus isolates were ST5, ST8 and ST30, generally reflecting circulating non-ocular pathogenic S. aureus strains. However, importantly, ocular isolates were found to be significantly enriched for a set of enterotoxins, suggesting a potential role for this class of virulence factors in promoting ocular disease. Further genomic analysis revealed that these enterotoxins are located on mobile pathogenicity islands, thus horizontal gene transfer may promote the acquisition of enterotoxins, potentially amplifying S. aureus virulence in ocular tissues.


Subject(s)
Eye/microbiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Genes, Bacterial/genetics , Genomics/methods , Genotype , Humans , Infant , Infant, Newborn , Male , Microbial Sensitivity Tests , Middle Aged , Virulence/genetics , Virulence Factors/genetics , Whole Genome Sequencing/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL