Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Article in English | MEDLINE | ID: mdl-34185680

ABSTRACT

Translation of open reading frame 1b (ORF1b) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires a programmed -1 ribosomal frameshift (-1 PRF) promoted by an RNA pseudoknot. The extent to which SARS-CoV-2 replication may be sensitive to changes in -1 PRF efficiency is currently unknown. Through an unbiased, reporter-based high-throughput compound screen, we identified merafloxacin, a fluoroquinolone antibacterial, as a -1 PRF inhibitor for SARS-CoV-2. Frameshift inhibition by merafloxacin is robust to mutations within the pseudoknot region and is similarly effective on -1 PRF of other betacoronaviruses. Consistent with the essential role of -1 PRF in viral gene expression, merafloxacin impedes SARS-CoV-2 replication in Vero E6 cells, thereby providing proof-of-principle for targeting -1 PRF as a plausible and effective antiviral strategy for SARS-CoV-2 and other coronaviruses.


Subject(s)
Antiviral Agents/pharmacology , Frameshifting, Ribosomal/drug effects , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Betacoronavirus , Chlorocebus aethiops , Fluoroquinolones/pharmacology , Frameshifting, Ribosomal/genetics , Mutation , Nucleic Acid Conformation , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/physiology , Vero Cells
2.
J Virol ; 96(13): e0057722, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35730977

ABSTRACT

Despite effective antiretroviral therapy, HIV-1 persistence in latent reservoirs remains a major obstacle to a cure. We postulate that HIV-1 silencing factors suppress HIV-1 reactivation and that inhibition of these factors will increase HIV-1 reactivation. To identify HIV-1 silencing factors, we conducted a genome-wide CRISPR inhibition (CRISPRi) screen using four CRISPRi-ready, HIV-1-d6-GFP-infected Jurkat T cell clones with distinct integration sites. We sorted cells with increased green fluorescent protein (GFP) expression and captured single guide RNAs (sgRNAs) via targeted deep sequencing. We identified 18 HIV-1 silencing factors that were significantly enriched in HIV-1-d6-GFPhigh cells. Among them, SLTM (scaffold attachment factor B-like transcription modulator) is an epigenetic and transcriptional modulator having both DNA and RNA binding capacities not previously known to affect HIV-1 transcription. Knocking down SLTM by CRISPRi significantly increased HIV-1-d6-GFP expression (by 1.9- to 4.2-fold) in three HIV-1-d6-GFP-Jurkat T cell clones. Furthermore, SLTM knockdown increased the chromatin accessibility of HIV-1 and the gene in which HIV-1 is integrated but not the housekeeping gene POLR2A. To test whether SLTM inhibition can reactivate HIV-1 and further induce cell death of HIV-1-infected cells ex vivo, we established a small interfering RNA (siRNA) knockdown method that reduced SLTM expression in CD4+ T cells from 10 antiretroviral therapy (ART)-treated, virally suppressed, HIV-1-infected individuals ex vivo. Using limiting dilution culture, we found that SLTM knockdown significantly reduced the frequency of HIV-1-infected cells harboring inducible HIV-1 by 62.2% (0.56/106 versus 1.48/106 CD4+ T cells [P = 0.029]). Overall, our study indicates that SLTM inhibition reactivates HIV-1 in vitro and induces cell death of HIV-1-infected cells ex vivo. Our study identified SLTM as a novel therapeutic target. IMPORTANCE HIV-1-infected cells, which can survive drug treatment and immune cell killing, prevent an HIV-1 cure. Immune recognition of infected cells requires HIV-1 protein expression; however, HIV-1 protein expression is limited in infected cells after long-term therapy. The ways in which the HIV-1 provirus is blocked from producing protein are unknown. We identified a new host protein that regulates HIV-1 gene expression. We also provided a new method of studying HIV-1-host factor interactions in cells from infected individuals. These improvements may enable future strategies to reactivate HIV-1 in infected individuals so that infected cells can be killed by immune cells, drug treatment, or the virus itself.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Virus Activation , Antiretroviral Therapy, Highly Active , CD4-Positive T-Lymphocytes , Chromatin/genetics , Chromatin/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Knockdown Techniques , HIV Infections/physiopathology , HIV Seropositivity/genetics , HIV-1/physiology , Humans , Jurkat Cells , Matrix Attachment Region Binding Proteins/antagonists & inhibitors , Matrix Attachment Region Binding Proteins/metabolism , Virus Activation/genetics
3.
J Clin Invest ; 130(5): 2202-2205, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32217834

ABSTRACT

The pandemic coronavirus infectious disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is rapidly spreading across the globe. In this issue of the JCI, Chen and colleagues compared the clinical and immunological characteristics between moderate and severe COVID-19. The authors found that respiratory distress on admission is associated with unfavorable outcomes. Increased cytokine levels (IL-6, IL-10, and TNF-α), lymphopenia (in CD4+ and CD8+ T cells), and decreased IFN-γ expression in CD4+ T cells are associated with severe COVID-19. Overall, this study characterized the cytokine storm in severe COVID-19 and provides insights into immune therapeutics and vaccine design.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Cytokines/immunology , Pneumonia, Viral/immunology , Age Factors , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/physiopathology , Coronavirus Infections/virology , Cytokines/blood , Disease Progression , Humans , Lymphocytes/cytology , Lymphocytes/immunology , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/physiopathology , Pneumonia, Viral/virology , Respiratory Distress Syndrome/etiology , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL