Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
Add more filters

Publication year range
1.
N Engl J Med ; 390(1): 44-54, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38169489

ABSTRACT

BACKGROUND: Household air pollution is associated with stunted growth in infants. Whether the replacement of biomass fuel (e.g., wood, dung, or agricultural crop waste) with liquefied petroleum gas (LPG) for cooking can reduce the risk of stunting is unknown. METHODS: We conducted a randomized trial involving 3200 pregnant women 18 to 34 years of age in four low- and middle-income countries. Women at 9 to less than 20 weeks' gestation were randomly assigned to use a free LPG cookstove with continuous free fuel delivery for 18 months (intervention group) or to continue using a biomass cookstove (control group). The length of each infant was measured at 12 months of age, and personal exposures to fine particulate matter (particles with an aerodynamic diameter of ≤2.5 µm) were monitored starting at pregnancy and continuing until the infants were 1 year of age. The primary outcome for which data are presented in the current report - stunting (defined as a length-for-age z score that was more than two standard deviations below the median of a growth standard) at 12 months of age - was one of four primary outcomes of the trial. Intention-to-treat analyses were performed to estimate the relative risk of stunting. RESULTS: Adherence to the intervention was high, and the intervention resulted in lower prenatal and postnatal 24-hour personal exposures to fine particulate matter than the control (mean prenatal exposure, 35.0 µg per cubic meter vs. 103.3 µg per cubic meter; mean postnatal exposure, 37.9 µg per cubic meter vs. 109.2 µg per cubic meter). Among 3061 live births, 1171 (76.2%) of the 1536 infants born to women in the intervention group and 1186 (77.8%) of the 1525 infants born to women in the control group had a valid length measurement at 12 months of age. Stunting occurred in 321 of the 1171 infants included in the analysis (27.4%) of the infants born to women in the intervention group and in 299 of the 1186 infants included in the analysis (25.2%) of those born to women in the control group (relative risk, 1.10; 98.75% confidence interval, 0.94 to 1.29; P = 0.12). CONCLUSIONS: An intervention strategy starting in pregnancy and aimed at mitigating household air pollution by replacing biomass fuel with LPG for cooking did not reduce the risk of stunting in infants. (Funded by the National Institutes of Health and the Bill and Melinda Gates Foundation; HAPIN ClinicalTrials.gov number, NCT02944682.).


Subject(s)
Air Pollution, Indoor , Petroleum , Infant , Female , Humans , Pregnancy , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Biomass , Particulate Matter/adverse effects , Particulate Matter/analysis , Cooking , Growth Disorders/epidemiology , Growth Disorders/etiology , Growth Disorders/prevention & control
2.
N Engl J Med ; 390(1): 32-43, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38169488

ABSTRACT

BACKGROUND: Exposure to household air pollution is a risk factor for severe pneumonia. The effect of replacing biomass cookstoves with liquefied petroleum gas (LPG) cookstoves on the incidence of severe infant pneumonia is uncertain. METHODS: We conducted a randomized, controlled trial involving pregnant women 18 to 34 years of age and between 9 to less than 20 weeks' gestation in India, Guatemala, Peru, and Rwanda from May 2018 through September 2021. The women were assigned to cook with unvented LPG stoves and fuel (intervention group) or to continue cooking with biomass fuel (control group). In each trial group, we monitored adherence to the use of the assigned cookstove and measured 24-hour personal exposure to fine particulate matter (particles with an aerodynamic diameter of ≤2.5 µm [PM2.5]) in the women and their offspring. The trial had four primary outcomes; the primary outcome for which data are presented in the current report was severe pneumonia in the first year of life, as identified through facility surveillance or on verbal autopsy. RESULTS: Among 3200 pregnant women who had undergone randomization, 3195 remained eligible and gave birth to 3061 infants (1536 in the intervention group and 1525 in the control group). High uptake of the intervention led to a reduction in personal exposure to PM2.5 among the children, with a median exposure of 24.2 µg per cubic meter (interquartile range, 17.8 to 36.4) in the intervention group and 66.0 µg per cubic meter (interquartile range, 35.2 to 132.0) in the control group. A total of 175 episodes of severe pneumonia were identified during the first year of life, with an incidence of 5.67 cases per 100 child-years (95% confidence interval [CI], 4.55 to 7.07) in the intervention group and 6.06 cases per 100 child-years (95% CI, 4.81 to 7.62) in the control group (incidence rate ratio, 0.96; 98.75% CI, 0.64 to 1.44; P = 0.81). No severe adverse events were reported to be associated with the intervention, as determined by the trial investigators. CONCLUSIONS: The incidence of severe pneumonia among infants did not differ significantly between those whose mothers were assigned to cook with LPG stoves and fuel and those whose mothers were assigned to continue cooking with biomass stoves. (Funded by the National Institutes of Health and the Bill and Melinda Gates Foundation; HAPIN ClinicalTrials.gov number, NCT02944682.).


Subject(s)
Air Pollution, Indoor , Biomass , Cooking , Inhalation Exposure , Petroleum , Pneumonia , Female , Humans , Infant , Pregnancy , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Cooking/methods , Particulate Matter/adverse effects , Particulate Matter/analysis , Petroleum/adverse effects , Pneumonia/etiology , Adolescent , Young Adult , Adult , Internationality , Inhalation Exposure/adverse effects , Inhalation Exposure/analysis , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/etiology
3.
N Engl J Med ; 387(19): 1735-1746, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36214599

ABSTRACT

BACKGROUND: Exposure during pregnancy to household air pollution caused by the burning of solid biomass fuel is associated with adverse health outcomes, including low birth weight. Whether the replacement of a biomass cookstove with a liquefied petroleum gas (LPG) cookstove would result in an increase in birth weight is unclear. METHODS: We performed a randomized, controlled trial involving pregnant women (18 to <35 years of age and at 9 to <20 weeks' gestation as confirmed on ultrasonography) in Guatemala, India, Peru, and Rwanda. The women were assigned in a 1:1 ratio to use a free LPG cookstove and fuel (intervention group) or to continue using a biomass cookstove (control group). Birth weight, one of four prespecified primary outcomes, was the primary outcome for this report; data for the other three outcomes are not yet available. Birth weight was measured within 24 hours after birth. In addition, 24-hour personal exposures to fine particulate matter (particles with a diameter of ≤2.5 µm [PM2.5]), black carbon, and carbon monoxide were measured at baseline and twice during pregnancy. RESULTS: A total of 3200 women underwent randomization; 1593 were assigned to the intervention group, and 1607 to the control group. Uptake of the intervention was nearly complete, with traditional biomass cookstoves being used at a median rate of less than 1 day per month. After randomization, the median 24-hour personal exposure to fine particulate matter was 23.9 µg per cubic meter in the intervention group and 70.7 µg per cubic meter in the control group. Among 3061 live births, a valid birth weight was available for 94.9% of the infants born to women in the intervention group and for 92.7% of infants born to those in the control group. The mean (±SD) birth weight was 2921±474.3 g in the intervention group and 2898±467.9 g in the control group, for an adjusted mean difference of 19.6 g (95% confidence interval, -10.1 to 49.2). CONCLUSIONS: The birth weight of infants did not differ significantly between those born to women who used LPG cookstoves and those born to women who used biomass cookstoves. (Funded by the National Institutes of Health and the Bill and Melinda Gates Foundation; HAPIN ClinicalTrials.gov number, NCT02944682.).


Subject(s)
Air Pollution, Indoor , Birth Weight , Cooking , Particulate Matter , Petroleum , Female , Humans , Pregnancy , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Biomass , Cooking/methods , Particulate Matter/adverse effects , Particulate Matter/analysis , Petroleum/adverse effects , Petroleum/analysis , Infant, Newborn , Adolescent , Young Adult , Adult
4.
Environ Sci Technol ; 58(23): 10162-10174, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38810212

ABSTRACT

Residential biomass burning is an important source of black carbon (BC) exposure among rural communities in low- and middle-income countries. We collected 7165 personal BC samples and individual/household level information from 3103 pregnant women enrolled in the Household Air Pollution Intervention Network trial. Women in the intervention arm received free liquefied petroleum gas stoves and fuel throughout pregnancy; women in the control arm continued the use of biomass stoves. Median (IQR) postintervention BC exposures were 9.6 µg/m3 (5.2-14.0) for controls and 2.8 µg/m3 (1.6-4.8) for the intervention group. Using mixed models, we characterized predictors of BC exposure and assessed how exposure contrasts differed between arms by select predictors. Primary stove type was the strongest predictor (R2 = 0.42); the models including kerosene use, kitchen location, education, occupation, or stove use hours also provided additional explanatory power from the base model adjusted only for the study site. Our full, trial-wide, model explained 48% of the variation in BC exposures. We found evidence that the BC exposure contrast between arms differed by study site, adherence to the assigned study stove, and whether the participant cooked. Our findings highlight factors that may be addressed before and during studies to implement more impactful cookstove intervention trials.


Subject(s)
Cooking , Humans , Female , Pregnancy , Adult , Air Pollution, Indoor , Soot , Carbon , Air Pollutants , Environmental Exposure
5.
Biometrics ; 79(3): 2592-2604, 2023 09.
Article in English | MEDLINE | ID: mdl-35788984

ABSTRACT

Exposure to air pollution is associated with increased morbidity and mortality. Recent technological advancements permit the collection of time-resolved personal exposure data. Such data are often incomplete with missing observations and exposures below the limit of detection, which limit their use in health effects studies. In this paper, we develop an infinite hidden Markov model for multiple asynchronous multivariate time series with missing data. Our model is designed to include covariates that can inform transitions among hidden states. We implement beam sampling, a combination of slice sampling and dynamic programming, to sample the hidden states, and a Bayesian multiple imputation algorithm to impute missing data. In simulation studies, our model excels in estimating hidden states and state-specific means and imputing observations that are missing at random or below the limit of detection. We validate our imputation approach on data from the Fort Collins Commuter Study. We show that the estimated hidden states improve imputations for data that are missing at random compared to existing approaches. In a case study of the Fort Collins Commuter Study, we describe the inferential gains obtained from our model including improved imputation of missing data and the ability to identify shared patterns in activity and exposure among repeated sampling days for individuals and among distinct individuals.


Subject(s)
Algorithms , Models, Statistical , Humans , Bayes Theorem , Time Factors , Data Interpretation, Statistical , Computer Simulation
6.
Am J Respir Crit Care Med ; 205(2): 183-197, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34662531

ABSTRACT

Rationale: Pneumonia is the leading cause of death in children worldwide. Identifying and appropriately managing severe pneumonia in a timely manner improves outcomes. Little is known about the readiness of healthcare facilities to manage severe pediatric pneumonia in low-resource settings. Objectives: As part of the HAPIN (Household Air Pollution Intervention Network) trial, we sought to identify healthcare facilities that were adequately resourced to manage severe pediatric pneumonia in Jalapa, Guatemala (J-GUA); Puno, Peru (P-PER); Kayonza, Rwanda (K-RWA); and Tamil Nadu, India (T-IND). We conducted a facility-based survey of available infrastructure, staff, equipment, and medical consumables. Facilities were georeferenced, and a road network analysis was performed. Measurements and Main Results: Of the 350 healthcare facilities surveyed, 13% had adequate resources to manage severe pneumonia, 37% had pulse oximeters, and 44% had supplemental oxygen. Mean (±SD) travel time to an adequately resourced facility was 41 ± 19 minutes in J-GUA, 99 ± 64 minutes in P-PER, 40 ± 19 minutes in K-RWA, and 31 ± 19 minutes in T-IND. Expanding pulse oximetry coverage to all facilities reduced travel time by 44% in J-GUA, 29% in P-PER, 29% in K-RWA, and 11% in T-IND (all P < 0.001). Conclusions: Most healthcare facilities in low-resource settings of the HAPIN study area were inadequately resourced to care for severe pediatric pneumonia. Early identification of cases and timely referral is paramount. The provision of pulse oximeters to all health facilities may be an effective approach to identify cases earlier and refer them for care and in a timely manner.


Subject(s)
Child Health Services/organization & administration , Child Health Services/statistics & numerical data , Health Services Accessibility/organization & administration , Health Services Accessibility/statistics & numerical data , Pneumonia/diagnosis , Pneumonia/therapy , Rural Health Services/organization & administration , Rural Health Services/statistics & numerical data , Adolescent , Child , Child, Preschool , Female , Geography , Guatemala , Humans , India , Infant , Infant, Newborn , Male , Oximetry , Peru , Poverty/statistics & numerical data , Rural Population/statistics & numerical data , Rwanda
7.
Int J Obes (Lond) ; 46(3): 494-501, 2022 03.
Article in English | MEDLINE | ID: mdl-34754067

ABSTRACT

BACKGROUND: Prenatal exposure to ambient air pollution and traffic have been related to a lower birth weight and may be associated with greater adiposity in childhood. We aimed to examine associations of maternal exposure to ambient air pollution and traffic during pregnancy with indicators of adiposity in early childhood. METHODS: We included 738 participants of the Colorado-based Healthy Start study whose height, weight, waist circumference and/or fat mass were measured at age 4-6 years. We estimated residential exposure to ambient concentrations of fine particulate matter (PM2.5) and ozone (O3) averaged by trimester and throughout pregnancy via inverse distance-weighted interpolation of central site monitoring data. We assessed the distance to the nearest major roadway and traffic density in multiple buffers surrounding the participants' homes. Associations of prenatal exposure to air pollution and traffic with overweight, waist circumference, percent fat mass and fat mass index (FMI) were assessed by logistic and linear regression. RESULTS: Associations of exposure to PM2.5 and O3 at the residential address during pregnancy with percent fat mass and FMI at age 4-6 years were inconsistent across trimesters. For example, second trimester PM2.5 was associated with a higher percent fat mass (adjusted difference 0.70% [95% CI 0.05, 1.35%] per interquartile range (IQR; 1.3 µg/m3) increase), while third trimester PM2.5 was associated with a lower percent fat mass (adjusted difference -1.17% [95% CI -1.84, -0.50%] per IQR (1.3 µg/m3) increase). Residential proximity to a highway during pregnancy was associated with higher odds of being overweight at age 4-6 years. We observed no associations of prenatal exposure to PM2.5 and O3 with overweight and waist circumference. CONCLUSIONS: We found limited evidence of associations of prenatal exposure to ambient PM2.5 and O3 with indicators of adiposity at age 4-6 years. Suggestive relationships between residential proximity to a highway during pregnancy and greater adiposity merit further investigation.


Subject(s)
Air Pollutants , Air Pollution , Prenatal Exposure Delayed Effects , Adiposity , Air Pollutants/toxicity , Air Pollution/statistics & numerical data , Child , Child, Preschool , Female , Humans , Maternal Exposure/statistics & numerical data , Obesity , Overweight , Particulate Matter/toxicity , Pregnancy , Prenatal Exposure Delayed Effects/epidemiology
8.
Environ Res ; 208: 112756, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35065931

ABSTRACT

BACKGROUND: The Household Air Pollution Intervention Network (HAPIN) trial is an ongoing multi-center randomized controlled trial assessing the impact of a liquified petroleum gas (LPG) cookstove and fuel intervention on health. Given the potential impacts of household air pollution (HAP) exposure from burning solid fuels on cardiovascular health during pregnancy, we sought to determine whether baseline exposures to particulate matter with an aerodynamic diameter ≤2.5 µm (PM2.5), black carbon (BC) and carbon monoxide (CO) were associated with blood pressure among 799 pregnant women in Tamil Nadu, India, one of the HAPIN trial centers. METHODS: Multivariable linear regression models were used to examine the association between 24-h personal exposure to PM2.5/BC/CO and systolic and diastolic blood pressure, controlling for maternal age, body mass index (BMI), mother's education, household wealth, gestational age, and season. At the time of measurement, women were between 9- and 20-weeks of gestation. RESULTS: We found that systolic blood pressure (SBP) and diastolic blood pressure (DBP) were higher in pregnant women exposed to higher levels of HAP, though only the result for CO and DBP reached conventional statistical significance (p < 0.05). We observed a positive association between CO and DBP among the entire study cohort: a 1-log µg/m3 increase in CO exposure was associated with 0.36 mmHg higher DBP (95% confidence interval [CI]: 0.02 to 0.70). The effect was stronger in pregnant women with higher CO exposures (in the 3rd [≥ 0.9 and < 2.1 ppm] and 4th quartiles [≥ 2.1 and ≤ 46.9 ppm]). We also found that pregnant women with PM2.5 exposures in the highest quartile (≥ 129.9 and ≤ 2100 µg/m3) had a borderline significant association (p = 0.054) with DBP compared to those who had PM2.5 exposures in the lowest quartile (≥ 9.4 and < 47.7 µg/m3). No evidence of association was observed for BC exposure and blood pressure. CONCLUSION: This study contributes to limited evidence regarding the relationship between HAP exposure and blood pressure among women during pregnancy, a critical window for both mother and child's life-course health. Results from this cross-sectional study suggest that exposures to PM2.5 and CO from solid fuel use are associated with higher blood pressure in pregnant women during their first or second trimester.


Subject(s)
Air Pollution, Indoor , Blood Pressure , Cooking , Maternal Exposure , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Blood Pressure/physiology , Carbon Monoxide/analysis , Carbon Monoxide/toxicity , Cooking/methods , Cross-Sectional Studies , Female , Gestational Age , Humans , Hypertension/chemically induced , Hypertension/epidemiology , India/epidemiology , Maternal Exposure/adverse effects , Maternal Exposure/statistics & numerical data , Particulate Matter/analysis , Particulate Matter/toxicity , Pregnancy , Pregnancy Complications, Cardiovascular/chemically induced , Pregnancy Complications, Cardiovascular/epidemiology , Rural Health/statistics & numerical data
9.
Environ Res ; 214(Pt 2): 113869, 2022 11.
Article in English | MEDLINE | ID: mdl-35820656

ABSTRACT

Traditional cooking with solid fuels (biomass, animal dung, charcoals, coal) creates household air pollution that leads to millions of premature deaths and disability worldwide each year. Exposure to household air pollution is highest in low- and middle-income countries. Using data from a stepped-wedge randomized controlled trial of a cookstove intervention among 230 households in Honduras, we analyzed the impact of household and personal variables on repeated 24-h measurements of fine particulate matter (PM2.5) and black carbon (BC) exposure. Six measurements were collected approximately six-months apart over the course of the three-year study. Multivariable mixed models explained 37% of variation in personal PM2.5 exposure and 49% of variation in kitchen PM2.5 concentrations. Additionally, multivariable models explained 37% and 47% of variation in personal and kitchen BC concentrations, respectively. Stove type, season, presence of electricity, primary stove location, kitchen enclosure type, stove use time, and presence of kerosene for lighting were all associated with differences in geometric mean exposures. Stove type explained the most variability of the included variables. In future studies of household air pollution, tracking the cooking behaviors and daily activities of participants, including outdoor exposures, may explain exposure variation beyond the household and personal variables considered here.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution, Indoor/analysis , Animals , Carbon , Cooking , Environmental Monitoring , Honduras , Humans , Particulate Matter/analysis , Rural Population , Soot
10.
Environ Res ; 214(Pt 4): 114121, 2022 11.
Article in English | MEDLINE | ID: mdl-36029836

ABSTRACT

Elevated blood pressure (BP) is a leading risk factor for the global burden of disease. Household air pollution (HAP), resulting from the burning of biomass fuels, may be an important cause of elevated BP in resource-poor communities. We examined the exposure-response relationship of personal exposures to HAP -fine particulate matter (PM2.5), carbon monoxide (CO), and black carbon (BC) - with BP measures in women aged 40-79 years across four resource-poor settings in Guatemala, Peru, India and Rwanda. BP was obtained within a day of 24-h personal exposure measurements at baseline, when participants were using biomass for cooking. We used generalized additive models to characterize the shape of the association between BP and HAP, accounting for the interaction of personal exposures and age and adjusting for a priori identified confounders. A total of 418 women (mean age 52.2 ± 7.9 years) were included in this analysis. The interquartile range of exposures to PM2.5 was 42.9-139.5 µg/m3, BC was 6.4-16.1 µg/m3, and CO was 0.5-2.9 ppm. Both SBP and PP were positively associated with PM2.5 exposure in older aged women, achieving statistical significance around 60 years of age. The exact threshold varied by BP measure and PM2.5 exposures being compared. For example, SBP of women aged 65 years was on average 10.8 mm Hg (95% CI 1.0-20.6) higher at 232 µg/m3 of PM2.5 exposure (90th percentile) when compared to that of women of the same age with personal exposures of 10 µg/m3. PP in women aged 65 years was higher for exposures ≥90 µg/m3, with mean differences of 6.1 mm Hg (95% CI 1.8-10.5) and 9.2 mm Hg (95% CI 3.3-15.1) at 139 (75th percentile) and 232 µg/m3 (90th percentile) respectively, when compared to that of women of the same age with PM2.5 exposures of 10 µg/m3. Our findings suggest that reducing HAP exposures may help to reduce BP, particularly among older women.


Subject(s)
Air Pollution, Indoor , Environmental Exposure , Hypertension , Adult , Aged , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Blood Pressure , Cooking , Cross-Sectional Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Female , Humans , Hypertension/epidemiology , Middle Aged , Particulate Matter/analysis , Soot
11.
Environ Res ; 214(Pt 1): 113881, 2022 11.
Article in English | MEDLINE | ID: mdl-35835166

ABSTRACT

BACKGROUND: Prenatal exposure to ambient air pollution has been associated with adverse offspring health outcomes. Childhood health effects of prenatal exposures may be mediated through changes to DNA methylation detectable at birth. METHODS: Among 429 non-smoking women in a cohort study of mother-infant pairs in Colorado, USA, we estimated associations between prenatal exposure to ambient fine particulate matter (PM2.5) and ozone (O3), and epigenome-wide DNA methylation of umbilical cord blood cells at delivery (2010-2014). We calculated average PM2.5 and O3 in each trimester of pregnancy and the full pregnancy using inverse-distance-weighted interpolation. We fit linear regression models adjusted for potential confounders and cell proportions to estimate associations between air pollutants and methylation at each of 432,943 CpGs. Differentially methylated regions (DMRs) were identified using comb-p. Previously in this cohort, we reported positive associations between 3rd trimester O3 exposure and infant adiposity at 5 months of age. Here, we quantified the potential for mediation of that association by changes in DNA methylation in cord blood. RESULTS: We identified several DMRs for each pollutant and period of pregnancy. The greatest number of significant DMRs were associated with third trimester PM2.5 (21 DMRs). No single CpGs were associated with air pollutants at a false discovery rate <0.05. We found that up to 8% of the effect of 3rd trimester O3 on 5-month adiposity may be mediated by locus-specific methylation changes, but mediation estimates were not statistically significant. CONCLUSIONS: Differentially methylated regions in cord blood were identified in association with maternal exposure to PM2.5 and O3. Genes annotated to the significant sites played roles in cardiometabolic disease, immune function and inflammation, and neurologic disorders. We found limited evidence of mediation by DNA methylation of associations between third trimester O3 exposure and 5-month infant adiposity.


Subject(s)
Air Pollutants , Air Pollution , Prenatal Exposure Delayed Effects , Adiposity , Child , Cohort Studies , DNA Methylation , Female , Fetal Blood , Humans , Infant , Infant, Newborn , Maternal Exposure , Obesity , Particulate Matter , Pregnancy
12.
Int J Environ Health Res ; 32(3): 565-578, 2022 Mar.
Article in English | MEDLINE | ID: mdl-32615777

ABSTRACT

Household air pollution is a leading risk factor for morbidity and premature mortality. Numerous cookstoves have been developed to reduce household air pollution, but it is unclear whether such cookstoves meaningfully improve health. In a controlled exposure study with a crossover design, we assessed the effect of pollution emitted from multiple cookstoves on acute differences in blood lipids and inflammatory biomarkers. Participants (n = 48) were assigned to treatment sequences of exposure to air pollution emitted from five cookstoves and a filtered-air control. Blood lipids and inflammatory biomarkers were measured before and 0, 3, and 24 hours after treatments. Many of the measured outcomes had inconsistent results. However, compared to control, intercellular adhesion molecule-1 was higher 3 hours after all treatments, and C-reactive protein and serum amyloid-A were higher 24 hours after the highest treatment. Our results suggest that short-term exposure to cookstove air pollution can increase inflammatory biomarkers within 24 hours.


Subject(s)
Air Pollution, Indoor , Air Pollution , Air Pollution, Indoor/analysis , Biomarkers , Cooking , Humans , Lipids
13.
Epidemiology ; 32(3): 315-326, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33591048

ABSTRACT

BACKGROUND: Although injuries experienced during hurricanes and other tropical cyclones have been relatively well-characterized through traditional surveillance, less is known about tropical cyclones' impacts on noninjury morbidity, which can be triggered through pathways that include psychosocial stress or interruption in medical treatment. METHODS: We investigated daily emergency Medicare hospitalizations (1999-2010) in 180 US counties, drawing on an existing cohort of high-population counties. We classified counties as exposed to tropical cyclones when storm-associated peak sustained winds were ≥21 m/s at the county center; secondary analyses considered other wind thresholds and hazards. We matched storm-exposed days to unexposed days by county and seasonality. We estimated change in tropical cyclone-associated hospitalizations over a storm period from 2 days before to 7 days after the storm's closest approach, compared to unexposed days, using generalized linear mixed-effect models. RESULTS: For 1999-2010, 175 study counties had at least one tropical cyclone exposure. Cardiovascular hospitalizations decreased on the storm day, then increased following the storm, while respiratory hospitalizations were elevated throughout the storm period. Over the 10-day storm period, cardiovascular hospitalizations increased 3% (95% confidence interval = 2%, 5%) and respiratory hospitalizations increased 16% (95% confidence interval = 13%, 20%) compared to matched unexposed periods. Relative risks varied across tropical cyclone exposures, with strongest association for the most restrictive wind-based exposure metric. CONCLUSIONS: In this study, tropical cyclone exposures were associated with a short-term increase in cardiorespiratory hospitalization risk among the elderly, based on a multi-year/multi-site investigation of US Medicare beneficiaries ≥65 years.


Subject(s)
Cyclonic Storms , Aged , Hospitalization , Hospitals , Humans , Medicare , United States/epidemiology , Wind
14.
BMC Med Res Methodol ; 21(1): 68, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33845785

ABSTRACT

RATIONALE: The spread of severe acute respiratory syndrome coronavirus-2 has suspended many non-COVID-19 related research activities. Where restarting research activities is permitted, investigators need to evaluate the risks and benefits of resuming data collection and adapt procedures to minimize risk. OBJECTIVES: In the context of the multicountry Household Air Pollution Intervention (HAPIN) trial conducted in rural, low-resource settings, we developed a framework to assess the risk of each trial activity and to guide protective measures. Our goal is to maximize the integrity of reseach aims while minimizing infection risk based on the latest scientific understanding of the virus. METHODS: We drew on a combination of expert consultations, risk assessment frameworks, institutional guidance and literature to develop our framework. We then systematically graded clinical, behavioral, laboratory and field environmental health research activities in four countries for both adult and child subjects using this framework. National and local government recommendations provided the minimum safety guidelines for our work. RESULTS: Our framework assesses risk based on staff proximity to the participant, exposure time between staff and participants, and potential viral aerosolization while performing the activity. For each activity, one of four risk levels, from minimal to unacceptable, is assigned and guidance on protective measures is provided. Those activities that can potentially aerosolize the virus are deemed the highest risk. CONCLUSIONS: By applying a systematic, procedure-specific approach to risk assessment for each trial activity, we were able to protect our participants and research team and to uphold our ability to deliver on the research commitments we have made to our staff, participants, local communities, and funders. This framework can be tailored to other research studies conducted in similar settings during the current pandemic, as well as potential future outbreaks with similar transmission dynamics. The trial is registered with clinicaltrials.gov NCT02944682 on October 26. 2016 .


Subject(s)
Biomedical Research/trends , COVID-19/prevention & control , Pandemics , Risk Assessment/methods , Communicable Disease Control/methods , Humans , Randomized Controlled Trials as Topic , Research Design
15.
Environ Res ; 197: 111165, 2021 06.
Article in English | MEDLINE | ID: mdl-33857458

ABSTRACT

BACKGROUND: Air pollution exposure during pregnancy has been associated with adverse pregnancy and birth outcomes. Inflammation has been proposed as a potential link. We estimated associations between air pollution exposure during pregnancy and inflammatory biomarkers in maternal and cord blood. We evaluated whether maternal inflammation was associated with infant outcomes. METHODS: Among 515 mother-infant dyads in the Healthy Start study (2009-2014), trimester-long, 7- and 30-day average concentrations of particulate matter ≤2.5 µm (PM2.5) and ozone (O3) during pregnancy were estimated, using inverse-distance-weighted interpolation. Inflammatory biomarkers were measured in maternal blood in mid-pregnancy (C-reactive protein [CRP], Interleukin [IL]-6, and tumor necrosis factor-α [TNFα]) and in cord blood at delivery (CRP, IL-6, IL-8, IL-10, monocyte chemoattractant protein-1 [MCP-1], and TNFα). We used linear regression to estimate associations between pollutants and inflammatory biomarkers and maternal inflammatory biomarkers and infant weight and body composition. RESULTS: There were positive associations between PM2.5 during certain exposure periods and maternal IL-6 and TNFα. There were negative associations between recent O3 and maternal CRP, IL-6, and TNFα and positive associations between trimester-long O3 exposure and maternal inflammatory biomarkers, though some 95% confidence intervals included the null. Patterns were inconsistent for associations between PM2.5 and O3 and cord blood inflammatory biomarkers. No consistent associations between maternal inflammatory biomarkers and infant outcomes were identified. CONCLUSIONS: Air pollution exposure during pregnancy may impact maternal inflammation. Further investigations should examine the health consequences for women and infants of elevated inflammatory biomarkers associated with air pollution exposure during pregnancy.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/adverse effects , Biomarkers , Female , Fetal Blood/chemistry , Humans , Infant , Maternal Exposure/adverse effects , Particulate Matter/analysis , Particulate Matter/toxicity , Pregnancy
16.
J Public Health Manag Pract ; 27(6): 598-606, 2021.
Article in English | MEDLINE | ID: mdl-34554996

ABSTRACT

CONTEXT: Colorado is experiencing dramatic changes related to population growth, climate change, and expanded industrial activity. Local and state public health professionals are trying to address a growing array of unique public health issues with stagnant or limited resources. OBJECTIVES: To understand, through perspectives from local and state public health professionals, the alignment of contemporary environmental and community health issues with state and local capacity and state environmental public health-tracking priorities. DESIGN: During 2014-2015, we conducted semistructured interviews which informed the development of a statewide survey of Colorado's professionals from public health, emergency management, forestry, and transportation. SETTING: This work took place in Colorado. PARTICIPANTS: Fifteen professionals from public (n = 9), academic (n = 4), and private (n = 2) sectors were interviewed. Forty-seven professionals, representing 34 counties and 40 public agencies, completed the 25-minute online survey. MAIN OUTCOME MEASURES: Environmental and community health concerns; contributing factors to environmental concerns; strengths and limitations of capacity to respond to issues; and frequency of community engagement activities. RESULTS: Top environmental health concerns were indoor air pollution (eg, radon), outdoor air pollution, and waste management. Transportation, extreme weather (eg, wildfires), and oil and gas development were most frequently reported as major contributing factors to concerns. Obesity, physical inactivity, and mental illness were the top community health concerns. To remain prepared for emerging challenges, professionals cited a need for more spatiotemporal-refined data related to their top concerns in the environmental public health-tracking database, and support from local, state, and federal agencies, in addition to personnel and funding. To address concerns, participants reported frequently working with government officials, advisory committees, and media outlets. CONCLUSIONS: This project illuminates opportunities to strengthen connections between the state's environmental public health-tracking priorities and local-level capacity related to professionals' top concerns. It also suggests reinforcing and broadening partnerships to improve data infrastructure and inform environmental public health priorities.


Subject(s)
Environmental Health , Public Health , Colorado , Community Participation , Government Agencies , Humans
17.
Epidemiology ; 31(3): 319-326, 2020 05.
Article in English | MEDLINE | ID: mdl-32079832

ABSTRACT

BACKGROUND: On 21-22 July 2012, Beijing, China, suffered its heaviest rainfall in 60 years. Two studies have estimated the fatality toll of this disaster using a traditional surveillance approach. However, traditional surveillance can miss disaster-related deaths, including a substantial number of deaths from natural causes triggered by disaster exposure. Here, we investigated community-wide mortality risk during this flood compared with rates in unexposed reference periods. METHODS: We compared community-wide mortality rates on the peak flood day and the four following days to seasonally matched nonflood days in previous years (2008-2011), controlling for potential confounders, to estimate the relative risks (RRs) of daily mortality among Beijing residents associated with this flood. RESULTS: On 21 July 2012, the flood-associated RRs were 1.34 (95% confidence interval = 1.11, 1.61) for all-cause, 1.37 (1.01, 1.85) for circulatory, and 4.40 (2.98, 6.51) for accidental mortality, compared with unexposed periods. We observed no evidence of increased risk of respiratory mortality. For the flood period of 21-22 July 2012, we estimated a total of 79 excess deaths among Beijing residents; by contrast, only 34 deaths were reported among Beijing residents in a study using a traditional surveillance approach. CONCLUSIONS: To our knowledge, this is the first study analyzing community-wide changes in mortality rates during the 2012 flood in Beijing and one of the first to do so for any major flood worldwide. This study offers critical evidence on flood-related health impacts, as urban flooding is expected to become more frequent and severe in China.


Subject(s)
Disasters , Floods , Mortality , Beijing/epidemiology , Floods/mortality , Humans , Mortality/trends
18.
Environ Res ; 182: 109130, 2020 03.
Article in English | MEDLINE | ID: mdl-32069764

ABSTRACT

BACKGROUND: Prenatal exposures to ambient air pollution and traffic have been associated with adverse birth outcomes, and may also lead to an increased risk of obesity. Obesity risk may be reflected in changes in body composition in infancy. OBJECTIVE: To estimate associations between prenatal ambient air pollution and traffic exposure, and infant weight and adiposity in a Colorado-based prospective cohort study. METHODS: Participants were 1125 mother-infant pairs with term births. Birth weight was recorded from medical records and body composition measures (fat mass, fat-free mass, and adiposity [percent fat mass]) were evaluated via air displacement plethysmography at birth (n = 951) and at ~5 months (n = 574). Maternal residential address was used to calculate distance to nearest roadway, traffic density, and ambient concentrations of fine particulate matter (PM2.5) and ozone (O3) via inverse-distance weighted interpolation of stationary monitoring data, averaged by trimester and throughout pregnancy. Adjusted linear regression models estimated associations between exposures and infant weight and body composition. RESULTS: Participants were urban residents and diverse in race/ethnicity and socioeconomic status. Average ambient air pollutant concentrations were generally low; the median, interquartile range (IQR), and range of third trimester concentrations were 7.3 µg/m3 (IQR: 1.3, range: 3.3-12.7) for PM2.5 and 46.3 ppb (IQR: 18.4, range: 21.7-63.2) for 8-h maximum O3. Overall there were few associations between traffic and air pollution exposures and infant outcomes. Third trimester O3 was associated with greater adiposity at follow-up (2.2% per IQR, 95% CI 0.1, 4.3), and with greater rates of change in fat mass (1.8 g/day, 95% CI 0.5, 3.2) and adiposity (2.1%/100 days, 95% CI 0.4, 3.7) from birth to follow-up. CONCLUSIONS: We found limited evidence of an association between prenatal traffic and ambient air pollution exposure and infant body composition. Suggestive associations between prenatal ozone exposure and early postnatal changes in body composition merit further investigation.


Subject(s)
Adiposity , Air Pollutants , Air Pollution , Birth Weight , Prenatal Exposure Delayed Effects , Vehicle Emissions , Air Pollutants/toxicity , Female , Humans , Infant , Male , Obesity , Particulate Matter , Pregnancy , Prospective Studies , Vehicle Emissions/toxicity
19.
Environ Res ; 180: 108831, 2020 01.
Article in English | MEDLINE | ID: mdl-31648072

ABSTRACT

Household air pollution emitted from solid-fuel cookstoves used for domestic cooking is a leading risk factor for morbidity and premature mortality globally. There have been attempts to design and distribute lower emission cookstoves, yet it is unclear if they meaningfully improve health. Using a crossover design, we assessed differences in central aortic hemodynamics and arterial stiffness following controlled exposures to air pollution emitted from five different cookstove technologies compared to a filtered air control. Forty-eight young, healthy participants were assigned to six 2-h controlled treatments of pollution from five different cookstoves and a filtered air control. Each treatment had a target concentration for fine particulate matter: filtered air control = 0 µg/m3, liquefied petroleum gas = 10 µg/m3, gasifier = 35 µg/m3, fan rocket = 100 µg/m3, rocket elbow = 250 µg/m3, three stone fire = 500 µg/m3. Pulse wave velocity (PWV), central augmentation index (AIx), and central pulse pressure (CPP) were measured before and at three time points after each treatment (0, 3, and 24 h). Linear mixed models were used to assess differences in the outcomes for each cookstove treatment compared to control. PWV and CPP were marginally higher 24 h after all cookstove treatments compared to control. For example, PWV was 0.15 m/s higher (95% confidence interval: -0.02, 0.31) and CPP was 0.6 mmHg higher (95% confidence interval: -0.8, 2.1) 24 h after the three stone fire treatment compared to control. The magnitude of the differences compared to control was similar across all cookstove treatments. PWV and CPP had no consistent trends at the other post-treatment time points (0 and 3 h). No consistent trends were observed for AIx at any post-treatment time point. Our findings suggest higher levels of PWV and CPP within 24 h after 2-h controlled treatments of pollution from five different cookstove technologies. The similar magnitude of the differences following each cookstove treatment compared to control may indicate that acute exposures from even the cleanest cookstove technologies can adversely impact these subclinical markers of cardiovascular health, although differences were small and may not be clinically meaningful.


Subject(s)
Air Pollution, Indoor , Air Pollution , Pulse Wave Analysis , Smoke , Adult , Blood Pressure , Cooking , Female , Humans , Male , Smoke/adverse effects , Volunteers , Young Adult
20.
Indoor Air ; 30(1): 24-30, 2020 01.
Article in English | MEDLINE | ID: mdl-31539172

ABSTRACT

Household air pollution (HAP) is estimated to be an important risk factor for cardiovascular disease, but little clinical evidence exists and collecting biomarkers of disease risk is difficult in low-resource settings. Among 54 Nicaraguan women with woodburning cookstoves, we evaluated cross-sectional associations between 48-hour measures of HAP (eg, fine particulate matter, PM2.5 ) and C-reactive protein (CRP) via dried blood spots; secondary analyses included seven additional biomarkers of systemic injury and inflammation. We conducted sub-studies to calculate the intraclass correlation coefficient (ICC) in biomarkers collected over four consecutive days in Nicaragua and to assess the validity of measuring biomarkers in dried blood by calculating the correlation with paired venous-drawn samples in Colorado. Measures of HAP were associated with CRP (eg, a 25% increase in indoor PM2.5 was associated with a 7.4% increase in CRP [95% confidence interval: 0.7, 14.5]). Most of the variability in CRP concentrations over the 4-day period was between-person (ICC: 0.88), and CRP concentrations were highly correlated between paired dried blood and venous-drawn serum (Spearman ρ = .96). Results for secondary biomarkers were primarily consistent with null associations, and the sub-study ICCs and correlations were lower. Assessing CRP via dried blood spots provides a feasible approach to elucidate the association between HAP and cardiovascular disease risk.


Subject(s)
Air Pollution, Indoor/statistics & numerical data , C-Reactive Protein/metabolism , Inhalation Exposure/statistics & numerical data , Adult , Air Pollution , Biomarkers/blood , Colorado , Cooking/methods , Cooking/statistics & numerical data , Female , Humans , Inhalation Exposure/analysis , Middle Aged , Nicaragua
SELECTION OF CITATIONS
SEARCH DETAIL