Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Knee Surg Sports Traumatol Arthrosc ; 32(4): 864-871, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38454816

ABSTRACT

PURPOSE: To investigate the forces on a medial collateral ligament (MCL) reconstruction (MCLR) relative to the valgus alignment of the knee. METHODS: Eight fresh-frozen human cadaveric knees were subjected to dynamic valgus loading at 400 N using a custom-made kinematics rig. After resection of the superficial medial collateral ligament, a single-bundle MCLR with a hamstring tendon autograft was performed. A medial opening wedge distal femoral osteotomy was performed and fixed with an external fixator to gradually adjust the alignment in 5° increments from 0° to 10° valgus. For each degree of valgus deformity, the resulting forces acting on the MCLR were measured through a force sensor and captured in 15° increments from 0° to 60° of knee flexion. RESULTS: Irrespective of the degree of knee flexion, increasing valgus malalignment resulted in significantly increased forces acting on the MCLR compared to neutral alignment (p < 0.05). Dynamic loading at 5° valgus resulted in increased forces on the MCLR at all flexion angles ranging between 16.2 N and 18.5 N (p < 0.05 from 0° to 30°; p < 0.01 from 45° to 60°). A 10° valgus malalignment further increased the forces on the MCLR at all flexion angles ranging between 29.4 N and 40.0 N (p < 0.01 from 0° to 45°, p < 0.05 at 60°). CONCLUSION: Valgus malalignment of the knee caused increased forces acting on the reconstructed MCL. In cases of chronic medial instabilities accompanied by a valgus deformity ≥ 5°, a realigning osteotomy should be considered concomitantly to the MCLR to protect the graft and potentially reduce graft failures. LEVEL OF EVIDENCE: Level III.


Subject(s)
Collateral Ligaments , Hamstring Tendons , Humans , Cadaver , Knee Joint/surgery , Biomechanical Phenomena , Collateral Ligaments/surgery
2.
Article in English | MEDLINE | ID: mdl-38932622

ABSTRACT

PURPOSE: The purpose of this study was to analyse the influence of coronal lower limb alignment on collateral ligament strain. METHODS: Twelve fresh-frozen human cadaveric knees were used. Long-leg standing radiographs were obtained to assess lower limb alignment. Specimens were axially loaded in a custom-made kinematics rig with 200 and 400 N, and dynamic varus/valgus angulation was simulated in 0°, 30°, and 60° of knee flexion. The changes in varus/valgus angulation and strain within different fibre regions of the collateral ligaments were captured using a three-dimensional optical measuring system to examine the axis-dependent strain behaviour of the superficial medial collateral ligament (sMCL) and lateral collateral ligament (LCL) at intervals of 2°. RESULTS: The LCL and sMCL were exposed to the highest strain values at full extension (p < 0.001). Regardless of flexion angle and extent of axial loading, the ligament strain showed a strong and linear association with varus (all Pearson's r ≥ 0.98; p < 0.001) and valgus angulation (all Pearson's r ≥ -0.97; p < 0.01). At full extension and 400 N of axial loading, the anterior and posterior LCL fibres exceeded 4% ligament strain at 3.9° and 4.0° of varus, while the sMCL showed corresponding strain values of more than 4% at a valgus angle of 6.8°, 5.4° and 4.9° for its anterior, middle and posterior fibres, respectively. CONCLUSION: The strain within the native LCL and sMCL was linearly related to coronal lower limb alignment. Strain levels associated with potential ultrastructural damages to the ligaments of more than 4% were observed at 4° of varus and about 5° of valgus malalignment, respectively. When reconstructing the collateral ligaments, an additional realigning osteotomy should be considered in cases of chronic instability with a coronal malalignment exceeding 4°-5° to protect the graft and potentially reduce failures. LEVEL OF EVIDENCE: There is no level of evidence as this study was an experimental laboratory study.

3.
Knee Surg Sports Traumatol Arthrosc ; 32(4): 881-888, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38469949

ABSTRACT

PURPOSE: The purpose of this study was to retrospectively analyse the pattern of injury to the medial knee structures in anterior cruciate ligament (ACL) injured patients. It was hypothesised that anteromedial injuries would be more common than posteromedial lesions. METHODS: One hundred and twenty subjects aged 18-25 years with a primary ACL injury were included. Patients were excluded if the time between injury and magnetic resonance imaging (MRI) was more than 28 days or if a knee dislocation or fracture was present. The MRIs were analysed with particular emphasis on injuries to the medial knee structures, menisci and bone bruise patterns. Injuries to the ligaments and anteromedial retinaculum (AMR) were graded according to severity, ranging from periligamentous oedema (grade I), partial fibre disruption of less or more than 50% (grade IIa or IIb) to complete tears (grade III). RESULTS: AMR injury was seen in 87 subjects (72.5%) on the coronal plane and in 88 (73.3%) on the axial plane, with grade III lesions observed in 27 (22.5%) and 29 knees (24.2%). Injuries to the superficial medial collateral ligament (sMCL), deep MCL (dMCL) and posterior oblique ligament (POL) were detected in 60 patients (50%), 93 patients (77.5%) and 38 patients (31.6%). However, grade III injuries to the POL were observed in only seven knees (5.8%). Medial meniscus injuries were associated with lesions of the sMCL and AMR (p < 0.05), while lateral meniscus injuries were significantly more common in patients with dMCL rupture (p < 0.05). CONCLUSION: Data from this study suggest that injuries to the AMR are much more common than posteromedial lesions in subjects with ACL injuries. LEVEL OF EVIDENCE: Level IV.


Subject(s)
Anterior Cruciate Ligament Injuries , Knee Injuries , Adult , Humans , Adolescent , Young Adult , Anterior Cruciate Ligament , Retrospective Studies , Knee Injuries/etiology , Knee Injuries/complications , Knee Joint/diagnostic imaging , Anterior Cruciate Ligament Injuries/complications , Anterior Cruciate Ligament Injuries/epidemiology , Rupture/complications
4.
Acta Orthop ; 95: 290-297, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874493

ABSTRACT

BACKGROUND AND PURPOSE: Recommendations regarding fragment-size-dependent screw fixation trajectory for coronal plane fractures of the posterior femoral condyles (Hoffa fractures) are lacking. The aim of this study was to compare the biomechanical properties of anteroposterior (AP) and crossed posteroanterior (PA) screw fixations across differently sized Hoffa fractures on human cadaveric femora. PATIENTS AND METHODS: 4 different sizes of lateral Hoffa fractures (n = 12 x 4) were created in 48 distal human femora according to the Letenneur classification: (i) type I, (ii) type IIa, (ii) type IIb, and (iv) type IIc. Based on bone mineral density (BMD), specimens were assigned to the 4 fracture clusters and each cluster was further assigned to fixation with either AP (n = 6) or crossed PA screws (n = 6) to ensure homogeneity of BMD values and comparability between the different test conditions. All specimens were biomechanically tested under progressively increasing cyclic loading until failure, capturing the interfragmentary movements via motion tracking. RESULTS: For Letenneur type I fractures, kilocycles to failure (mean difference [∆] 2.1, 95% confidence interval [CI] -1.3 to 5.5), failure load (∆ 105 N, CI -83 to 293), axial displacement (∆ 0.3 mm, CI -0.8 to 1.3), and fragment rotation (∆ 0.5°, CI -3.2 to 2.1) over 5.0 kilocycles did not differ significantly between the 2 screw trajectories. For each separate subtype of Letenneur type II fractures, fixation with crossed PA screws resulted in significantly higher kilocycles to failure (∆ 6.7, CI 3.3-10.1 to ∆ 8.9, CI 5.5-12.3) and failure load (∆ 275 N, CI 87-463 to ∆ 438, CI 250-626), as well as, less axial displacement from 3.0 kilocycles onwards (∆ 0.4°, CI 0.03-0.7 to ∆ 0.5°, CI 0.01-0.9) compared with AP screw fixation. CONCLUSION: Irrespective of the size of Letenneur type II fractures, crossed PA screw fixation provided greater biomechanical stability than AP-configured screws, whereas both screw fixation techniques demonstrated comparable biomechanical competence for Letenneur type I fractures. Fragment-size-dependent treatment strategies might be helpful to determine not only the screw configuration but also the surgical approach.


Subject(s)
Bone Screws , Cadaver , Femoral Fractures , Fracture Fixation, Internal , Humans , Fracture Fixation, Internal/methods , Fracture Fixation, Internal/instrumentation , Biomechanical Phenomena , Femoral Fractures/surgery , Aged , Female , Male , Bone Density , Middle Aged , Aged, 80 and over , Cohort Studies
5.
Unfallchirurgie (Heidelb) ; 127(1): 18-26, 2024 Jan.
Article in German | MEDLINE | ID: mdl-37848564

ABSTRACT

Different medial structures are responsible for restraining valgus rotation, external rotation, and anteromedial rotation. When injured this can result in various degrees of isolated and combined instabilities. In contrast to earlier speculation, the posterior oblique ligament (POL) is no longer considered to be the main stabilizer of anteromedial rotatory instability (AMRI). Acute proximal medial ruptures are typically managed conservatively with very good clinical results. Conversely, acute distal ruptures usually require a surgical intervention. Chronic instabilities mostly occur in combination with instabilities of the anterior cruciate ligament (ACL). The clinical examination is a particularly important component in these cases to determine the indications for surgery for an additional medial reconstruction. In cases of severe medial and anteromedial instabilities, surgical treatment should be considered. Biomechanically, a combined medial and anteromedial reconstruction appears to be superior to other reconstruction methods; however, there is currently a lack of clinical studies to confirm this biomechanical advantage.


Subject(s)
Anterior Cruciate Ligament Injuries , Joint Instability , Humans , Anterior Cruciate Ligament Injuries/surgery , Range of Motion, Articular , Joint Instability/etiology , Biomechanical Phenomena , Knee Joint/diagnostic imaging , Rupture
6.
Orthop J Sports Med ; 12(3): 23259671241236783, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38532766

ABSTRACT

Background: Bone staples have been shown previously to be a viable modality for cortical tendon graft fixation in ligament knee surgery. However, soft tissue reactions have been reported, making implant removal necessary. Magnesium alloys are a promising material for biodegradable orthopaedic implants, with mechanical properties closely resembling those of human bone. Purpose: To compare the primary stability of a biodegradable bone staple prototype made from magnesium to bone staples made from metal in the cortical fixation of tendon grafts during knee surgery. Study Design: Controlled laboratory study. Methods: Primary stability of peripheral tendon graft fixation was assessed in a porcine model of medial collateral ligament reconstruction. Two commercially available metal bone staples (Richards fixation staple with spikes [Me1] and spiked ligament staple [Me2]) were compared with a magnesium bone staple prototype for soft tissue fixation. Primary stability was assessed using a uniaxial materials testing machine. Cyclic loading at 50 and 100 N was applied for 500 cycles each, followed by load-to-failure testing. Results: After 500 cycles at 50 N, elongation was 1.5 ± 0.5 mm in the Me1 group, 1.9 ± 0.5 mm in the Me2 group, and 1.8 ± 0.4 mm in the magnesium group. After 1000 cycles of loading (500 cycles at 50 N and 500 at 100 N), elongation was 3.6 ± 0.9 mm in the Me1 group, 3.5 ± 0.6 mm in the Me2 group, and 4.1 ± 1.0 mm in the magnesium group. No significant differences regarding elongation were found between the groups. Load to failure was 352 ± 115 N in the Me1 group, 373 ± 77 N in the Me2 group, and 449 ± 92 N in the magnesium group, with no significant difference between the groups. Conclusion: In this study, the magnesium bone staples provided appropriate time-zero biomechanical primary stability in comparison with metal bone staples and may therefore be a feasible alternative for cortical fixation of tendon grafts in knee surgery. Clinical Relevance: The biodegradability of magnesium bone staples would eliminate the need for later implant removal.

7.
Am J Sports Med ; 52(4): 928-935, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38343294

ABSTRACT

BACKGROUND: Conflicting evidence has been reported regarding the biomechanical relevance of ramp lesions (RLs) on knee kinematics. Furthermore, the influence of the defect size of the RLs on anterior tibial translation (ATT) and external rotation (ER) is currently unknown. PURPOSE: To evaluate the influence of RL defect size on knee kinematics in anterior cruciate ligament (ACL) deficiency and after simulated ACL reconstruction (sACLR). STUDY DESIGN: Controlled laboratory study. METHODS: Eight cadaveric knee specimens were tested in a 6 degrees of freedom robotic test setup. Force-controlled clinical laxity tests were performed with 200 N of axial compression in 0°, 30°, 60°, and 90° of flexion: 5 N·m internal rotation (IR)/ER torque, 134 N ATT force, and an anteromedial drawer test consisting of 134 N ATT force under 5 N·m ER torque. After determining the native knee kinematics, the ACL was cut at the tibial insertion, followed by a transosseous refixation to simulate a surgical repair or reconstruction (simulated ACL reconstruction; sACLR). An RL was sequentially created with a length of 1, 2, and 3 cm. Each state of the RL was evaluated in the ACL-deficient state and after sACLR. RESULTS: In the ACL-deficient state, only an RL of 3 cm length resulted in a significant increase of ATT in 30° of flexion (mean difference 0.73 mm; 95% CI, 0.36-1.1 mm). After sACLR, an RL had no significant effect. When looking at ER, an RL significantly increased ER in full extension in the ACL-deficient state in 2 cm (mean difference 0.9°; 95% CI, 0.08°-1.74°) and 3 cm length (mean difference 1.9°; 95% CI, 0.57-3.25). Furthermore, a 3-cm RL significantly increased IR in 0° of flexion in the ACL-deficient state (mean difference 1.9°; 95% CI, 0.2°-3.6°). No effect of ramp lesions on rotation was found after sACLR. CONCLUSION: RLs result in a small increase in ATT, ER, and IR in ACL-deficient knees at early flexion angles, but not after sACLR. CLINICAL RELEVANCE: Small RLs did not change time-zero knee kinematics and may, therefore, be left untreated, especially when the ACL is reconstructed.


Subject(s)
Anterior Cruciate Ligament Injuries , Joint Instability , Robotic Surgical Procedures , Humans , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament Injuries/surgery , Cadaver , Joint Instability/surgery , Knee Joint/surgery , Range of Motion, Articular , Biomechanical Phenomena
8.
J Bone Joint Surg Am ; 106(9): 809-816, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38377221

ABSTRACT

BACKGROUND: The current literature lacks recommendations regarding surgical approaches to best visualize and reduce Hoffa fractures. The aims of this study were to (1) define surgical corridors to the posterior portions of the lateral and medial femoral condyles and (2) compare the articular surface areas visible with different approaches. METHODS: Eight fresh-frozen human cadaveric knees (6 male and 2 female donors; mean age, 68.2 ± 10.2 years) underwent dissection simulating 6 surgical approaches to the distal femur. The visible articular surface areas for each approach were marked using an electrocautery device and subsequently analyzed using image-processing software. The labeled areas of each femoral condyle were statistically compared. RESULTS: At 30° of flexion, visualization of the posterior portions of the lateral and medial femoral condyles was not possible by lateral and medial parapatellar approaches, as only the anterior 29.4% ± 2.1% of the lateral femoral condyle and 25.6% ± 2.8% of the medial condyle were exposed. Visualization of the lateral femoral condyle was limited by the posterolateral ligamentous structures, hence a posterolateral approach only exposed its central (13.1% ± 1.3%) and posterior (12.4% ± 1.1%) portions. Posterolateral extension by an osteotomy of the lateral femoral epicondyle significantly improved the exposure to 53.4% ± 2.7% and, when combined with a Gerdy's tubercle osteotomy, to 70.9% ± 4.1% (p < 0.001). For the posteromedial approach, an arthrotomy between the anteromedial retinaculum and the superficial medial collateral ligament, and one between the posterior oblique ligament and the medial gastrocnemius tendon, allowed visualization of the central (13.5% ± 2.2%) and the posterior (14.6% ± 2.3%) portions of the medial femoral condyle, while a medial femoral epicondyle osteotomy significantly improved visualization to 66.1% ± 5.5% (p < 0.001). CONCLUSIONS: Visualization of the posterior portions of the femoral condyles is limited by the specific anatomy of each surgical corridor. Extension by osteotomy of the femoral epicondyles and Gerdy's tubercle significantly improved articular surface exposure of the femoral condyles. CLINICAL RELEVANCE: Knowledge of the surgical approach-specific visualization of the articular surface of the femoral condyles might be helpful to properly reduce small Hoffa fragments.


Subject(s)
Cadaver , Femoral Fractures , Humans , Female , Male , Aged , Femoral Fractures/surgery , Knee Joint/surgery , Middle Aged , Femur/surgery , Femur/anatomy & histology , Aged, 80 and over , Dissection/methods
9.
J Clin Med ; 12(14)2023 Jul 09.
Article in English | MEDLINE | ID: mdl-37510682

ABSTRACT

INTRODUCTION: The Purpose of the present study was to assess the outcome of anterior cruciate ligament reconstruction (ACLR) with an accelerated rehabilitation protocol and to compare it to a conservative rehabilitation protocol. It was hypothesized that an accelerated rehabilitation protocol, including brace-free early weight bearing, would result in a higher rate of recurrent instability and revision surgery compared to a conservative rehabilitation protocol. METHODS: From 2016 to 2017, two different rehabilitation protocols for isolated ACLR were used at a high-volume knee surgery center. A total of 65 consecutive patients with isolated hamstring ACLR, of whom n = 33 had been treated with an accelerated (AccRehab) and n = 32 with a conservative rehabilitation protocol (ConRehab), were retrospectively included in the study. Patients were evaluated for recurrent instability, revision surgery, and other complications at a mean follow-up period of 64 ± 7.4 months. In addition, Tegner Activity Scale, Lysholm Score, and IKDC-subjective Score were evaluated. Statistical comparison between the two groups was performed utilizing Fisher's exact test and Student's t-test. RESULTS: Mean age (29.3 vs. 26.6 years) and preoperative Tegner Score (6.4 vs. 5.9) were comparable between both groups. At 64 ± 7.4 months after ACLR, six cases of recurrent instability were reported in the AccRehab group (18%) in comparison to three cases (9%) in the ConRehab group (p = n.s.). There was no significant difference regarding revision surgery and further complications. Furthermore, no significant difference was found between both groups regarding Tegner (5.5 ± 1.9 vs. 5.5 ± 1.2), Lysholm (93.6 ± 6.3 vs. 89.3 ± 10.7), and IKDC score (89.7 ± 7.9 vs. 86.7 ± 12.1). CONCLUSION: No significant disadvantage of an accelerated rehabilitation protocol following ACLR was found in terms of recurrent instability rate, revision surgery, or patient-reported outcome. However, a trend towards a higher reinstability rate was found for an accelerated rehabilitation protocol. Future level one trials evaluating brace-free early weight bearing following ACLR are desirable.

10.
Orthop J Sports Med ; 11(1): 23259671221143478, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36636032

ABSTRACT

Background: The tibial fixation site is considered the weak link in anterior cruciate ligament (ACL) reconstruction, and conflicting results regarding the biomechanical properties of various fixation methods have been reported. Purpose: To examine knots tied over a bone bridge and its biomechanical properties as a suitable tibial fixation method in ACL reconstruction. Study Design: Controlled laboratory study. Methods: We divided 40 fresh-frozen porcine tibiae into 4 equal groups to evaluate flexor tendon grafts set with standard tibial fixation techniques: (1) bone bridge (BB group), (2) suspension button (SB group), (3) combined interference screw and bone bridge (IFS/BB group), and (4) combined interference screw and suspension button (IFS/SB group). Each construct was subjected to cyclic loading (1500 cycles, 50-250 N, 1 Hz) with a servohydraulic materials testing machine to measure elongation; load-to-failure testing (displacement rate: 25 mm/s) was then performed. Load to failure, stiffness, and yield load were compared between constructs using 1-way analysis of variance. Results: The hybrid fixation constructs (IFS/BB and IFS/SB groups) showed significantly better biomechanical properties than the isolated extracortical fixation constructs (BB and SB groups) (P < .05 for all). There were no differences between the isolated extracortical fixation constructs or between the hybrid fixation constructs in elongation or load to failure; however, stiffness of the IFS/BB group was significantly higher than that of the IFS/SB group (175.3 ± 16.6 vs 144.9 ± 20.1 N/mm, respectively; P < .05). Stiffness between the SB and BB groups was not significantly different. Conclusion: Hybrid fixation had superior biomechanical performance compared with isolated extracortical fixation. However, tibial graft fixation using a bone bridge either as isolated extracortical fixation or combined with an interference screw for hybrid fixation showed equivalent biomechanical properties compared with suspension button-based graft fixation. Clinical Relevance: The clinical use of a bone bridge for tibial graft fixation could reduce the cost for ACL reconstruction and lower the rate of implant-associated issues.

11.
Life (Basel) ; 13(5)2023 May 12.
Article in English | MEDLINE | ID: mdl-37240824

ABSTRACT

INTRODUCTION: Osteochondrosis dissecans (OCD) is a disease affecting the subchondral bone and the overlying articular cartilage. The etiology is most likely a combination of biological and mechanical factors. The incidence is highest in children >12 years old and it predominantly affects the knee. In high-grade OCD lesions, free osteochondral fragments usually are refixed via titanium screws or biodegradable screws or pins. In this case, headless compression screws made from magnesium were used for refixation. CASE REPORT: A thirteen-year-old female patient with a two-year history of knee pain was diagnosed with an OCD lesion of the medial femoral condyle. After initial conservative treatment, displacement of the osteochondral fragment occurred. Refixation was performed using two headless magnesium compression screws. At the 6 months follow up, the patient was pain free, and the fragment showed progressive healing while the implants were biodegrading. DISCUSSION: Existing implants for refixation of OCD lesions either require subsequent removal or show less stability and possible inflammatory reactions. The new generation of magnesium screws used in this case did not lead to a gas release, as described for previous magnesium implants, while maintaining stability during continuous biodegradation. CONCLUSIONS: The data available to date on magnesium implants for the treatment of OCD are promising. However, the evidence on the magnesium implants in refixation surgery of OCD lesions is still limited. Further research needs to be conducted to provide data on outcomes and possible complications.

12.
Am J Sports Med ; 51(14): 3732-3741, 2023 12.
Article in English | MEDLINE | ID: mdl-37936394

ABSTRACT

BACKGROUND: Hinge fractures are considered risk factors for delayed or nonunion of the osteotomy gap in distal femoral osteotomies (DFOs). Limited evidence exists regarding the treatment of hinge fractures after DFO, which could improve stability and thus bone healing. PURPOSE: To (1) examine the effect of hinge fractures on the biomechanical properties of the bone-implant construct, (2) evaluate the biomechanical advantages of an additional fixation of a hinge fracture, and (3) test the biomechanical properties of different types of varisation DFOs. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 32 fresh-frozen human distal femora equally underwent medial closing wedge DFO or lateral opening wedge DFO using a unilateral locking compression plate. The following conditions were serially tested: (1) preserved hinge; (2) hinge fracture along the osteotomy plane; (3) screw fixation of the hinge fracture; and (4) locking T-plate fixation of the hinge fracture. Using a servo-hydraulic materials testing machine, we subjected each construct to 15 cycles of axial compression (400 N; 20 N/s) and internal and external rotational loads (10 N·m; 0.5 N·m/s) to evaluate the stiffness. The axial and torsional hinge displacement was recorded using a 3-dimensional optical measuring system. Repeated-measures 1-way analysis of variance and post hoc Bonferroni correction were used for multiple comparisons. Statistical significance was set at P < .05. RESULTS: Independent from the type of osteotomy, a fractured hinge significantly (P < .001) increased rotational displacement and reduced stiffness of the bone-implant construct, resulting in ≥1.92 mm increased displacement and ≥70% reduced stiffness in each rotational direction, while the axial stiffness remained unchanged. For both procedures, neither a screw nor a plate could restore intact rotational stiffness (P < .01), while only the plate was able to restore intact rotational displacement. However, the plate always performed better compared with the screw, with significantly higher and lower values for stiffness (+38% to +53%; P < .05) and displacement (-55% to -72%; P < .01), respectively, in ≥1 rotational direction. At the same time, the type of osteotomy did not significantly affect axial and torsional stability. CONCLUSION: Hinge fractures after medial closing wedge DFO and lateral opening wedge DFO caused decreased bone-implant construct rotational stiffness and increased fracture-site displacement. In contrast, the axial stiffness remained unchanged in the cadaveric model. CLINICAL RELEVANCE: When considering an osteosynthesis of a hinge fracture in a DFO, an additional plate fixation was the construct with the highest stiffness and least displacement, which could restore intact hinge rotational displacement.


Subject(s)
Femoral Fractures , Fractures, Bone , Humans , Bone Plates , Osteotomy/methods , Fracture Fixation, Internal/methods , Femur/surgery , Biomechanical Phenomena , Femoral Fractures/surgery
13.
J Exp Orthop ; 10(1): 103, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37815666

ABSTRACT

PURPOSE: Biodegradable interference screws (IFS) can be manufactured from different biomaterials. Magnesium was previously shown to possess osteoinductive properties, making it a promising material to promote graft-bone healing in anterior cruciate ligament reconstruction (ACLR). The purpose of this study was to compare IFS made from magnesium to a contemporary biocomposite IFS. METHODS: In a porcine model of ACL reconstruction, deep porcine flexor tendons were trimmed to a diameter of 8 mm, sutured in Krackow technique, and fixed with either 8 × 30 mm biocomposite IFS (Bc-IFS) or 8 × 30 mm magnesium IFS (Mg-IFS) in an 8 mm diameter bone tunnel in porcine tibiae. Cyclic loading for 1000 cycles from 0 to 250 N was applied, followed by load to failure testing. Elongation, load to failure and stiffness of the tested constructs was determined. RESULTS: After 1000 cycles at 250 N, elongation was 4.8 mm ± 1.5 in the Bc-IFS group, and 4.9 mm ± 1.5 in the Mg-IFS group. Load to failure was 649.5 N ± 174.3 in the Bc-IFS group, and 683.8 N ± 116.5 in the Mg-IFS group. Stiffness was 125.3 N/mm ± 21.9 in the Bc-IFS group, and 122.5 N/mm ± 20.3 in the Mg-IFS group. No significant differences regarding elongation, load to failure and stiffness between Bc-IFS and Mg-IFS were observed. CONCLUSION: Magnesium IFS show comparable biomechanical primary stability in comparison to biocomposite IFS and may therefore be an alternative to contemporary biodegradable IFS.

14.
Unfallchirurgie (Heidelb) ; 125(7): 535-541, 2022 Jul.
Article in German | MEDLINE | ID: mdl-35394156

ABSTRACT

Fracture dislocations of the proximal tibia are associated with a markedly high incidence of ligament ruptures. Despite knowledge on the frequency of accompanying ligament injuries, even now neither adequate diagnostics nor targeted treatment of associated ligament injuries are the gold standard in the treatment algorithm for tibial plateau fractures. To be able to assess the risk and the type of accompanying ligament injuries in tibial plateau fractures, it is recommended to decidedly analyze the fracture morphology. For example, flexion varus fractures are very frequently associated with injuries to the anterior cruciate ligament, whereas valgus fractures are prone to ruptures of the medial collateral ligament and (hyper)extension fractures facilitate ruptures of the posterior cruciate ligament and the posterolateral corner. In order not to overlook high-grade instability, magnetic resonance imaging or intraoperative dynamic fluoroscopy can be carried out after completing osteosynthesis. Bony avulsions should either be addressed directly during osteosynthesis or indirectly retained via interfragmentary compression. In cases of direct visualization or relevant instability, intraligamentous tears should at least be intraoperatively reduced. If patients suffer from persistent instability a secondary ligament reconstruction with autologous tendons can be carried out following bony consolidation of the tibial plateau fracture.


Subject(s)
Anterior Cruciate Ligament Injuries , Posterior Cruciate Ligament , Tibial Fractures , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament Injuries/complications , Humans , Posterior Cruciate Ligament/injuries , Tibia/injuries , Tibial Fractures/diagnostic imaging
15.
Orthop J Sports Med ; 10(11): 23259671221134818, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36419479

ABSTRACT

Background: In the current literature, studies on the anatomy of the anteromedial region of the knee are scarce. However, the anteromedial structures, especially the longitudinal medial patellar retinaculum (MPR), may play an important role in restraining external tibial rotation. Purpose: To conduct a layer-by-layer dissection of the anteromedial side of the knee and describe qualitatively and quantitatively the MPR anatomy pertaining to surgically relevant landmarks. Study Design: Descriptive laboratory study. Methods: A total of 10 fresh-frozen human cadaveric knees (mean age 81 ± 16.3 years) without history of previous ligament injury were used in this study. A layer-by-layer dissection was performed, and measurements were obtained using a tactile 3-dimensional (3-D) measuring arm to define the anatomy of the MPR in relation to surgically relevant landmarks, such as the superficial medial collateral ligament (sMCL) and medial patellofemoral ligament (MPFL). The 3-D datasets were used for multiplanar reconstruction. Results: The tibial and femoral attachment of the MPR were identified in 100% of cases. Layer-by-layer dissection confirmed its close topography to the sMCL. The mean length of the MPR was 84.9 ± 9.1 mm. The average width of the tibial and femoral attachment was 23.8 ± 3.1 mm and 69.2 ± 8.2 mm, respectively. The distance from the midpoint of the MPR tibial attachment to the midpoint of the distal tibial attachment of the sMCL was 27.2 ± 5.8 mm. Femorally, the MPR attached at the anterior border of the MPFL over a mean distance of 52.3 ± 9.4 mm. Conclusion: The MPR is a distinct tibiofemoral structure with well-defined tibial and femoral attachments, which could be consistently identified. Layer-by-layer dissection confirmed its close topography to the sMCL and MPFL. Clinical Relevance: As injuries to the anteromedial side of the knee may contribute to anteromedial rotational rotatory instability (AMRI), precise knowledge of the underlying anatomy of the MPR may be necessary to perform an anatomic reconstruction of the anteromedial side of the knee.

16.
Am J Sports Med ; 50(14): 3827-3831, 2022 12.
Article in English | MEDLINE | ID: mdl-36322386

ABSTRACT

BACKGROUND: The promising biomechanical stability of bone staples (BSs) in cortical fixation of tendon grafts for medial collateral ligament (MCL) reconstruction has been revealed by a previous investigation. However, it is currently unknown if the biomechanical stability of cortical fixation of tendon grafts depends on the BS design. PURPOSE: To assess the biomechanical stability of cortical fixation of tendon grafts in knee surgery using 4 different BS designs. STUDY DESIGN: Controlled laboratory study. METHODS: Cortical fixation of tendon grafts was performed in a porcine knee model at the tibial insertion area of the MCL using 4 different BS designs (n = 40): 8-mm width without spikes (n = 10), 8-mm width with spikes (n = 10), 14-mm width with spikes (n = 10), and 13 mm-wide 4-prong staples with spikes (n = 10). Specimens were mounted in a materials testing machine, and cyclic loading was applied to the tendon graft (500 cycles at 50 and 100 N, respectively), followed by load-to-failure testing. The Kruskal-Wallis test was performed for statistical analysis (P < .05), and the post hoc Dunn test was performed for multiple comparisons. RESULTS: In 4 of 10 specimens with graft fixation using BSs without spikes, slippage of the tendon underneath the BS led to failure of the construct during cyclic loading to 100 N. In the other groups, no fixation failure was observed during cyclic loading. Furthermore, graft fixation using BSs without spikes was found to have significantly more elongation during cyclic loading (8.2 ± 1.9 mm) and a lower ultimate failure load (170 ± 120 N) compared with graft fixation using narrow BSs with spikes (3.4 ± 1.2 mm [P < .0001] and 364 ± 85 N [P < .05], respectively) and graft fixation using broad BSs with spikes (4.5 ± 1.4 mm [P < .05] and 429 ± 67 N [P < .001], respectively). No statistical differences in elongation during cyclic loading or ultimate failure load were found between 4-prong staples with spikes (5.0 ± 1.3 mm and 304 ± 85 N) and narrow or broad staples with spikes. CONCLUSION: The biomechanical stability of cortical fixation of an MCL graft was comparable between each BS design with spikes (narrow, broad, and 4-prong) in a porcine knee model, whereas BSs without spikes led to failure of the fixation construct during cyclic loading in 4 of 10 specimens and increased elongation and lower ultimate failure loads in the remainder of the group. BSs without spikes may therefore not be recommended for graft fixation. CLINICAL RELEVANCE: The use of BSs can help to avoid the conflict of converging tunnels in multiligament reconstruction surgery. An implant design with spikes yields significantly higher biomechanical stability than BSs without spikes.


Subject(s)
Collateral Ligaments , Research Design , Animals , Swine
17.
Am J Sports Med ; 50(12): 3256-3264, 2022 10.
Article in English | MEDLINE | ID: mdl-36005281

ABSTRACT

BACKGROUND: Technical innovation has led to the renaissance of anterior cruciate ligament (ACL) repair in the past decade. PURPOSE/HYPOTHESIS: The present study aimed to compare instrumented knee joint laxity and patient-reported outcomes (PROs) after ACL repair with those after primary ACL reconstruction for acute isolated ACL tears. It was hypothesized that ACL repair would lead to comparable knee joint stability and PROs at 5 years postoperatively in comparison with ACL reconstruction. STUDY DESIGN: Randomized controlled trial; Level of evidence, 1. METHODS: A total of 85 patients with acute ACL tears were randomized to undergo either ACL repair using dynamic intraligamentary stabilization (DIS) or primary ACL reconstruction with a semitendinosus tendon autograft. The primary outcome was the side-to-side difference in anterior tibial translation (ΔATT) assessed by Rolimeter testing at 5 years postoperatively. Follow-up examinations were performed at 1, 2, and 5 years. PROs were assessed using the Tegner activity scale, the International Knee Documentation Committee (IKDC) subjective score, and the Lysholm score. Furthermore, the rates of recurrent instability, other complications, and revision surgery were recorded. A power analysis was performed a priori, and the Friedman test, Mann-Whitney U test, and Bonferroni correction were applied for statistical comparisons with significance set at P < .05. RESULTS: The mean age at inclusion was 28.3 ± 11.5 years in the ACL repair group and 27.1 ± 11.5 years in the ACL reconstruction group. At 5 years postoperatively, a total of 64 patients (ACL repair: n = 34 of 43 [79%]; ACL reconstruction: n = 30 of 42 [71%]) were available for follow-up. At 5 years, ΔATT was 1.7 ± 1.6 mm in the ACL repair group and 1.4 ± 1.3 mm in the ACL reconstruction group (P = .334). Preinjury PROs were restored as soon as 1 year after surgery and plateaued until 2 and 5 years postoperatively in both groups. At the 5-year follow-up, the mean Lysholm score was 97.0 ± 5.4 versus 94.5 ± 5.5 (P = .322), respectively, and the mean IKDC subjective score was 94.1 ± 9.9 versus 89.9 ± 7.8 (P = .047), respectively, in the ACL repair group versus ACL reconstruction group. At 5 years postoperatively, 12 patients in the ACL repair group (35%; age <25 years: n = 10/12; Tegner score ≥7: n = 10/12) had recurrent instability, of whom 10 underwent single-stage revision ACL reconstruction. In the ACL reconstruction group, there were 6 patients with recurrent instability (20%; age <25 years: n = 6/6; Tegner score ≥7: n = 5/6); however, in 5 patients, staged revision was required. Differences between both groups regarding recurrent instability (P = .09) or ACL revision surgery (P = .118) were not statistically significant. Recurrent instability was associated with age <25 years and Tegner score >7 in both groups. CONCLUSION: At 5 years after ACL repair with DIS, instrumented knee joint laxity and PROs were comparable with those after ACL reconstruction. Although no significant difference was found between repair and reconstruction, a critical appraisal of the rates of recurrent instability (35% vs 20%, respectively) and revision surgery (38% vs 27%, respectively) is needed. Young age and a high preinjury activity level were the main risk factors for recurrent instability in both groups. However, single-stage revision ACL reconstruction was possible in each case in the ACL repair group. Although ACL reconstruction remains the gold standard in the treatment of ACL tears, the present study supports the use of ACL repair with DIS as a feasible option to treat acute ACL tears in patients aged ≥25 years with low to moderate activity levels (Tegner score <7). REGISTRATION: DRKS00015466 (German Clinical Trials Register).


Subject(s)
Anterior Cruciate Ligament Injuries , Joint Instability , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament Injuries/surgery , Follow-Up Studies , Humans , Joint Instability/surgery , Knee Joint/surgery , Patient Reported Outcome Measures , Treatment Outcome
18.
Z Orthop Unfall ; 158(2): 208-213, 2020 Apr.
Article in English, German | MEDLINE | ID: mdl-31533164

ABSTRACT

BACKGROUND: Olecranon fractures are common injuries that can occur in patients of any age. To assess the postoperative outcome, multiple scoring systems like the DASH, MEPS und Morrey Score have been described. The goal of this paper is to compare the subjective elbow value (SEV) to these commonly used scoring systems. We hypothesized that the SEV would have a high correlation and practicability for the evaluation of elbow function after isolated olecranon injury. PATIENTS AND METHODS: Clinical data of 40 patients were collected and retrospectively analysed. All patients suffered an isolated olecranon fracture and were surgically treated by tension band wiring or plate fixation. In the follow-up examinations the Mayo Score, DASH Score, Morrey Score and SEV were measured for correlation purposes. RESULTS: The mean follow-up time was 70.5 ± 45.6 months. The median DASH Score was 9.9 (4.1 - 20.4) and 100 (85 - 100) for the MEPS. The median Morrey Score was 98 (92 - 100). The median SEV was 90% (80 - 95%). The Pearson correlation between the DASH and SEV was -0.85 and 0.80 between the MEPS and the SEV. CONCLUSIONS: The SEV shows a high correlation to the most commonly used scoring systems for outcome evaluation after elbow injury. It is easy to use and can be seen as a valuable tool to assess patients after olecranon fractures.


Subject(s)
Elbow Joint , Olecranon Process , Ulna Fractures , Elbow , Fracture Fixation, Internal , Humans , Range of Motion, Articular , Retrospective Studies , Treatment Outcome
19.
J Orthop ; 18: 69-75, 2020.
Article in English | MEDLINE | ID: mdl-32189887

ABSTRACT

OBJECTIVE: Olecranon fractures are common injuries in patients of any age. The vast majority are treated with two operation techniques: a plate fixation (PF) or tension band wiring (TBW). The objective of this study is to compare the outcomes of surgically treated olecranon fractures with plate fixation or tension band wiring. We hypothesise that PF patients would show significantly inferior outcomes due to more complex injuries. PATIENTS AND METHODS: Between 2010 and 2017, a total of 108 patients were treated with plate fixation and or tension band wiring. Clinical data of 40 surgically treated olecranon fractures were collected and analysed. Clinical and functional evaluations were performed using Mayo-Score, DASH-Score, Weseley -Score and subject elbow value (SEV). Furthermore, complication rates, time to return to work and operation duration were documented. RESULTS: The mean follow-up was 70.5 ±â€¯45.6 months. Time of return to work was 6.5 ±â€¯2.2 weeks in the TBW group and 10.9 ±â€¯6,6 in the PF group (p = 0.372). The mean duration of surgery was 95.2 ±â€¯47.0 min in the TBW group and 192.5 ±â€¯113.0 min in the PF group (p = 0.001). In the TBW group, the mean hospitalisation period was 7.9 ±â€¯10.1 days and 11.2 ±â€¯9.8 days in the PF group. Revisions were required in 0.3 ±â€¯0.6 of cases (0.2 ±â€¯0.5 in TBE and 0.4 ±â€¯0.7 in PF). The median DASH Score was 7.0 (3.6-13.7) in the TBW group and 12.1 (5.5-24.8) in the PF group (p = 0.948). CONCLUSION: Tension band wiring and plate fixation are both practical treatment options with mostly positive outcomes, even though high complication rates can occur. There were no significant differences in either group concerning functional outcome or time back to work. The duration of surgery was significantly higher in the PF group, whereas the incidence of metalwork-associated complications was higher in the TBW group.

SELECTION OF CITATIONS
SEARCH DETAIL