Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(11): 2878-2895.e20, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33979654

ABSTRACT

The activities of RNA polymerase and the spliceosome are responsible for the heterogeneity in the abundance and isoform composition of mRNA in human cells. However, the dynamics of these megadalton enzymatic complexes working in concert on endogenous genes have not been described. Here, we establish a quasi-genome-scale platform for observing synthesis and processing kinetics of single nascent RNA molecules in real time. We find that all observed genes show transcriptional bursting. We also observe large kinetic variation in intron removal for single introns in single cells, which is inconsistent with deterministic splice site selection. Transcriptome-wide footprinting of the U2AF complex, nascent RNA profiling, long-read sequencing, and lariat sequencing further reveal widespread stochastic recursive splicing within introns. We propose and validate a unified theoretical model to explain the general features of transcription and pervasive stochastic splice site selection.


Subject(s)
RNA Precursors/genetics , RNA Splice Sites/physiology , Transcription, Genetic , Exons/genetics , Humans , Introns/genetics , RNA Precursors/metabolism , RNA Splice Sites/genetics , RNA Splicing/genetics , RNA Splicing/physiology , RNA, Messenger/metabolism , Spliceosomes/metabolism , Transcriptome
2.
Cell ; 176(6): 1502-1515.e10, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30799036

ABSTRACT

Several general principles of global 3D genome organization have recently been established, including non-random positioning of chromosomes and genes in the cell nucleus, distinct chromatin compartments, and topologically associating domains (TADs). However, the extent and nature of cell-to-cell and cell-intrinsic variability in genome architecture are still poorly characterized. Here, we systematically probe heterogeneity in genome organization. High-throughput optical mapping of several hundred intra-chromosomal interactions in individual human fibroblasts demonstrates low association frequencies, which are determined by genomic distance, higher-order chromatin architecture, and chromatin environment. The structure of TADs is variable between individual cells, and inter-TAD associations are common. Furthermore, single-cell analysis reveals independent behavior of individual alleles in single nuclei. Our observations reveal extensive variability and heterogeneity in genome organization at the level of individual alleles and demonstrate the coexistence of a broad spectrum of genome configurations in a cell population.


Subject(s)
Chromatin Assembly and Disassembly/physiology , Chromatin/genetics , Genome Components/physiology , Cell Line , Cell Nucleus/genetics , Chromosomes , Fibroblasts/physiology , Genome/genetics , Genome Components/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Single-Cell Analysis
3.
Genes Dev ; 38(9-10): 415-435, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38866555

ABSTRACT

The association of genomic loci to the nuclear periphery is proposed to facilitate cell type-specific gene repression and influence cell fate decisions. However, the interplay between gene position and expression remains incompletely understood, in part because the proteins that position genomic loci at the nuclear periphery remain unidentified. Here, we used an Oligopaint-based HiDRO screen targeting ∼1000 genes to discover novel regulators of nuclear architecture in Drosophila cells. We identified the heterochromatin-associated protein Stonewall (Stwl) as a factor promoting perinuclear chromatin positioning. In female germline stem cells (GSCs), Stwl binds and positions chromatin loci, including GSC differentiation genes, at the nuclear periphery. Strikingly, Stwl-dependent perinuclear positioning is associated with transcriptional repression, highlighting a likely mechanism for Stwl's known role in GSC maintenance and ovary homeostasis. Thus, our study identifies perinuclear anchors in Drosophila and demonstrates the importance of gene repression at the nuclear periphery for cell fate.


Subject(s)
Cell Differentiation , Cell Nucleus , Chromatin , Drosophila Proteins , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Chromatin/metabolism , Chromatin/genetics , Cell Nucleus/metabolism , Cell Nucleus/genetics , Female , Cell Differentiation/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Gene Expression Regulation, Developmental/genetics , Drosophila/genetics , Germ Cells/metabolism
4.
Cell ; 162(4): 911-23, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26276637

ABSTRACT

Genomes are arranged non-randomly in the 3D space of the cell nucleus. Here, we have developed HIPMap, a high-precision, high-throughput, automated fluorescent in situ hybridization imaging pipeline, for mapping of the spatial location of genome regions at large scale. High-throughput imaging position mapping (HIPMap) enabled an unbiased siRNA screen for factors involved in genome organization in human cells. We identify 50 cellular factors required for proper positioning of a set of functionally diverse genomic loci. Positioning factors include chromatin remodelers, histone modifiers, and nuclear envelope and pore proteins. Components of the replication and post-replication chromatin re-assembly machinery are prominently represented among positioning factors, and timely progression of cells through replication, but not mitosis, is required for correct gene positioning. Our results establish a method for the large-scale mapping of genome locations and have led to the identification of a compendium of cellular factors involved in spatial genome organization.


Subject(s)
Cell Nucleus/genetics , Genes , Genetic Techniques , Cell Line , DNA Replication , Humans , Image Processing, Computer-Assisted/methods , In Situ Hybridization, Fluorescence/methods , Single-Cell Analysis/methods
5.
Mol Cell ; 75(6): 1161-1177.e11, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31421980

ABSTRACT

Genes are transcribed in a discontinuous pattern referred to as RNA bursting, but the mechanisms regulating this process are unclear. Although many physiological signals, including glucocorticoid hormones, are pulsatile, the effects of transient stimulation on bursting are unknown. Here we characterize RNA synthesis from single-copy glucocorticoid receptor (GR)-regulated transcription sites (TSs) under pulsed (ultradian) and constant hormone stimulation. In contrast to constant stimulation, pulsed stimulation induces restricted bursting centered around the hormonal pulse. Moreover, we demonstrate that transcription factor (TF) nuclear mobility determines burst duration, whereas its bound fraction determines burst frequency. Using 3D tracking of TSs, we directly correlate TF binding and RNA synthesis at a specific promoter. Finally, we uncover a striking co-bursting pattern between TSs located at proximal and distal positions in the nucleus. Together, our data reveal a dynamic interplay between TF mobility and RNA bursting that is responsive to stimuli strength, type, modality, and duration.


Subject(s)
Glucocorticoids/pharmacology , Promoter Regions, Genetic , RNA/biosynthesis , Receptors, Glucocorticoid/metabolism , Transcription Initiation Site , Transcription, Genetic/drug effects , Animals , Mice , RNA/genetics
6.
J Cell Sci ; 136(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-37129573

ABSTRACT

Restricting the localization of the evolutionarily conserved centromeric histone H3 variant CENP-A to centromeres prevents chromosomal instability (CIN). The mislocalization of CENP-A to non-centromeric regions contributes to CIN in yeasts, flies and human cells. Even though overexpression and mislocalization of CENP-A have been reported in cancers, the mechanisms responsible for its mislocalization remain poorly understood. Here, we used an imaging-based high-throughput RNAi screen to identify factors that prevent mislocalization of overexpressed YFP-tagged CENP-A (YFP-CENP-A) in HeLa cells. Among the top five candidates in the screen - the depletion of which showed increased nuclear YFP-CENP-A fluorescence - were the histone chaperones CHAF1B (or p60) and CHAF1A (or p150). Follow-up validation and characterization experiments showed that CHAF1B-depleted cells exhibited CENP-A mislocalization, CIN phenotypes and increased enrichment of CENP-A in chromatin fractions. The depletion of DAXX, a histone H3.3 chaperone, suppressed CENP-A mislocalization and CIN in CHAF1B-depleted cells. We propose that in CHAF1B-depleted cells, DAXX promotes mislocalization of the overexpressed CENP-A to non-centromeric regions, resulting in CIN. In summary, we identified regulators of CENP-A localization and defined a role for CHAF1B in preventing DAXX-dependent CENP-A mislocalization and CIN.


Subject(s)
Chromosomal Proteins, Non-Histone , Histones , Humans , Histones/genetics , Centromere Protein A/genetics , HeLa Cells , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromatin , Centromere/metabolism , Molecular Chaperones/metabolism , Chromosomal Instability , Autoantigens/genetics , Chromatin Assembly Factor-1/genetics
7.
RNA ; 28(9): 1263-1278, 2022 09.
Article in English | MEDLINE | ID: mdl-35764396

ABSTRACT

Measurement of gene expression at the single-cell level has advanced the study of transcriptional regulation programs in healthy and disease states. In particular, single-cell approaches have shed light on the high level of transcriptional heterogeneity of individual cells, both at baseline and in response to experimental or environmental perturbations. We have developed a method for high-content imaging (HCI)-based quantification of relative changes in transcript abundance at the single-cell level in human primary immune cells and have validated its performance under multiple experimental conditions to demonstrate its general applicability. This method, named hcHCR, combines the sensitivity of the hybridization chain reaction (HCR) for the visualization of RNA in single cells, with the speed, scalability, and reproducibility of HCI. We first tested eight cell attachment substrates for short-term culture of primary human B cells, T cells, monocytes, or neutrophils. We then miniaturized HCR in 384-well format and documented the ability of the method to detect changes in transcript abundance at the single-cell level in thousands of cells for each experimental condition by HCI. Furthermore, we demonstrated the feasibility of multiplexing gene expression measurements by simultaneously assaying the abundance of three transcripts per cell at baseline and in response to an experimental stimulus. Finally, we tested the robustness of the assay to technical and biological variation. We anticipate that hcHCR will be suitable for low- to medium-throughput chemical or functional genomics screens in primary human cells, with the possibility of performing screens on cells obtained from patients with a specific disease.


Subject(s)
Gene Expression Regulation , Genomics , Humans , RNA, Messenger/genetics , Reproducibility of Results
8.
Histochem Cell Biol ; 162(1-2): 65-77, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38724854

ABSTRACT

The spatial arrangement of the genome within the nucleus is a pivotal aspect of cellular organization and function with implications for gene expression and regulation. While all genome organization features, such as loops, domains, and radial positioning, are nonrandom, they are characterized by a high degree of single-cell variability. Imaging approaches are ideally suited to visualize, measure, and study single-cell heterogeneity in genome organization. Here, we describe two methods for the detection of DNA and RNA of individual gene alleles by fluorescence in situ hybridization (FISH) in a high-throughput format. We have optimized combined DNA/RNA FISH approaches either using simultaneous or sequential detection of DNA and nascent RNA. These optimized DNA and RNA FISH protocols were implemented in a 384-well plate format alongside automated image and data analysis and enable accurate detection of individual gene alleles and their gene expression status across a large cell population. We successfully visualized MYC and EGFR DNA and nascent RNA with allele-level resolution in multiple cell types, and we determined the radial position of active and inactive MYC and EGFR alleles. These optimized DNA/RNA detection approaches are versatile and sensitive tools for mapping of chromatin features and gene activity at the single-allele level and at high throughput.


Subject(s)
Alleles , Chromatin , In Situ Hybridization, Fluorescence , Chromatin/metabolism , Chromatin/chemistry , Chromatin/genetics , Humans , Transcription, Genetic , High-Throughput Screening Assays , RNA/analysis , RNA/metabolism , RNA/genetics , DNA/analysis
9.
Nucleic Acids Res ; 50(22): e130, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36243969

ABSTRACT

Splicing factors play an essential role in regulation of alternative pre-mRNA splicing. While much progress has been made in delineating the mechanisms of the splicing machinery, the identity of signal transduction pathways and upstream factors that regulate splicing factor activity is largely unknown. A major challenge in the discovery of upstream regulatory factors of pre-mRNA splicing is the scarcity of functional genomics screening methods to monitor splicing outcomes of endogenous genes. Here, we have developed HiFENS (high throughput FISH detection of endogenous splicing isoforms), a high-throughput imaging assay based on hybridization chain reaction (HCR) and used HiFENS to screen for cellular factors that regulate alternative splicing of endogenous genes. We demonstrate optimized detection with high specificity of endogenous splicing isoforms and multiplexing of probes for accurate detection of splicing outcomes with single cell resolution. As proof-of-principle, we perform an RNAi screen of 702 human kinases and identify potential candidate upstream splicing regulators of the FGFR2 gene. HiFENS should be a useful tool for the unbiased delineation of cellular pathways involved in alternative splicing regulation.


Subject(s)
Alternative Splicing , In Situ Hybridization, Fluorescence , RNA Precursors , Humans , Exons , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Interference , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing Factors/metabolism , In Situ Hybridization, Fluorescence/methods
10.
Nucleic Acids Res ; 50(14): 7906-7924, 2022 08 12.
Article in English | MEDLINE | ID: mdl-35819192

ABSTRACT

Chromatin insulators are DNA-protein complexes that can prevent the spread of repressive chromatin and block communication between enhancers and promoters to regulate gene expression. In Drosophila, the gypsy chromatin insulator complex consists of three core proteins: CP190, Su(Hw), and Mod(mdg4)67.2. These factors concentrate at nuclear foci termed insulator bodies, and changes in insulator body localization have been observed in mutants defective for insulator function. Here, we identified NURF301/E(bx), a nucleosome remodeling factor, as a novel regulator of gypsy insulator body localization through a high-throughput RNAi imaging screen. NURF301 promotes gypsy-dependent insulator barrier activity and physically interacts with gypsy insulator proteins. Using ChIP-seq, we found that NURF301 co-localizes with insulator proteins genome-wide, and NURF301 promotes chromatin association of Su(Hw) and CP190 at gypsy insulator binding sites. These effects correlate with NURF301-dependent nucleosome repositioning. At the same time, CP190 and Su(Hw) both facilitate recruitment of NURF301 to chromatin. Finally, Oligopaint FISH combined with immunofluorescence revealed that NURF301 promotes 3D contact between insulator bodies and gypsy insulator DNA binding sites, and NURF301 is required for proper nuclear positioning of gypsy binding sites. Our data provide new insights into how a nucleosome remodeling factor and insulator proteins cooperatively contribute to nuclear organization.


Subject(s)
Chromatin , Chromosomal Proteins, Non-Histone/metabolism , Drosophila Proteins/metabolism , Animals , Chromatin/genetics , Chromatin/metabolism , DNA/metabolism , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Insulator Elements/genetics , Microtubule-Associated Proteins/metabolism , Nuclear Proteins/metabolism , Nucleosomes/genetics , Nucleosomes/metabolism
11.
Genes Dev ; 29(13): 1393-402, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26104467

ABSTRACT

Chromosome translocations are well-established hallmarks of cancer cells and often occur at nonrandom sites in the genome. The molecular features that define recurrent chromosome breakpoints are largely unknown. Using a combination of bioinformatics, biochemical analysis, and cell-based assays, we identify here specific histone modifications as facilitators of chromosome breakage and translocations. We show enrichment of several histone modifications over clinically relevant translocation-prone genome regions. Experimental modulation of histone marks sensitizes genome regions to breakage by endonuclease challenge or irradiation and promotes formation of chromosome translocations of endogenous gene loci. Our results demonstrate that histone modifications predispose genome regions to chromosome breakage and translocations.


Subject(s)
Chromosome Breakage , Genome, Human/genetics , Histones/metabolism , Translocation, Genetic , Cell Line, Tumor , Computational Biology , DNA Breaks, Double-Stranded/radiation effects , Endonucleases/metabolism , Histones/genetics , Humans , Lymphoma, Large-Cell, Anaplastic/physiopathology , Methylation
12.
Genome Res ; 29(10): 1719-1732, 2019 10.
Article in English | MEDLINE | ID: mdl-31515286

ABSTRACT

One of the hallmarks of cancer is chromosome instability (CIN), which leads to aneuploidy, translocations, and other chromosome aberrations. However, in the vast majority of human tumors the molecular basis of CIN remains unknown, partly because not all genes controlling chromosome transmission have yet been identified. To address this question, we developed an experimental high-throughput imaging (HTI) siRNA assay that allows the identification of novel CIN genes. Our method uses a human artificial chromosome (HAC) expressing the GFP transgene. When this assay was applied to screen an siRNA library of protein kinases, we identified PINK1, TRIO, IRAK1, PNCK, and TAOK1 as potential novel genes whose knockdown induces various mitotic abnormalities and results in chromosome loss. The HAC-based assay can be applied for screening different siRNA libraries (cell cycle regulation, DNA damage response, epigenetics, and transcription factors) to identify additional genes involved in CIN. Identification of the complete spectrum of CIN genes will reveal new insights into mechanisms of chromosome segregation and may expedite the development of novel therapeutic strategies to target the CIN phenotype in cancer cells.


Subject(s)
Chromosomal Instability/genetics , Chromosomes, Human/genetics , Protein Kinases/genetics , RNA, Small Interfering/genetics , Aneuploidy , Calcium-Calmodulin-Dependent Protein Kinase Type 1/genetics , Cell Line, Tumor , Chromosomes, Artificial, Human/genetics , Guanine Nucleotide Exchange Factors/genetics , Humans , Interleukin-1 Receptor-Associated Kinases/genetics , Mitosis/genetics , Protein Kinases/isolation & purification , Protein Serine-Threonine Kinases/genetics , RNA, Double-Stranded/genetics , Transgenes , Translocation, Genetic/genetics
13.
EMBO Rep ; 20(6)2019 06.
Article in English | MEDLINE | ID: mdl-31085625

ABSTRACT

How intracellular organelles acquire their characteristic sizes is a fundamental question in cell biology. Given stereotypical changes in nuclear size in cancer, it is important to understand the mechanisms that control nuclear size in human cells. Using a high-throughput imaging RNAi screen, we identify and mechanistically characterize ELYS, a nucleoporin required for post-mitotic nuclear pore complex (NPC) assembly, as a determinant of nuclear size in mammalian cells. ELYS knockdown results in small nuclei, reduced nuclear lamin B2 localization, lower NPC density, and decreased nuclear import. Increasing nuclear import by importin α overexpression rescues nuclear size and lamin B2 import, while inhibiting importin α/ß-mediated nuclear import decreases nuclear size. Conversely, ELYS overexpression increases nuclear size, enriches nuclear lamin B2 at the nuclear periphery, and elevates NPC density and nuclear import. Consistent with these observations, knockdown or inhibition of exportin 1 increases nuclear size. Thus, we identify ELYS as a novel positive effector of mammalian nuclear size and propose that nuclear size is sensitive to NPC density and nuclear import capacity.


Subject(s)
Cell Nucleus/metabolism , DNA-Binding Proteins/metabolism , Nuclear Pore Complex Proteins/metabolism , Transcription Factors/metabolism , Active Transport, Cell Nucleus , Biomarkers , Cell Line, Tumor , Cell Nucleus/genetics , Cell Nucleus/pathology , DNA-Binding Proteins/genetics , Gene Expression Profiling , Gene Knockdown Techniques , Humans , Molecular Imaging , Nuclear Pore , Nuclear Pore Complex Proteins/genetics , Protein Binding , RNA Interference , RNA, Small Interfering/genetics , Transcription Factors/genetics
14.
Trends Genet ; 33(9): 604-615, 2017 09.
Article in English | MEDLINE | ID: mdl-28732598

ABSTRACT

High-throughput imaging (HTI) is a powerful tool in the discovery of cellular disease mechanisms. While traditional approaches to identify disease pathways often rely on knowledge of the causative genetic defect, HTI-based screens offer an unbiased discovery approach based on any morphological or functional defects of disease cells or tissues. In this review, we provide an overview of the use of HTI for the study of human disease mechanisms. We discuss key technical aspects of HTI and highlight representative examples of its practical applications for the discovery of molecular mechanisms of disease, focusing on infectious diseases and host-pathogen interactions, cancer, and rare genetic diseases. We also present some of the current challenges and possible solutions offered by novel cell culture systems and genome engineering approaches.


Subject(s)
High-Throughput Screening Assays/methods , Microscopy
15.
Cytometry A ; 97(12): 1248-1264, 2020 12.
Article in English | MEDLINE | ID: mdl-33141508

ABSTRACT

Deep learning is rapidly becoming the technique of choice for automated segmentation of nuclei in biological image analysis workflows. In order to evaluate the feasibility of training nuclear segmentation models on small, custom annotated image datasets that have been augmented, we have designed a computational pipeline to systematically compare different nuclear segmentation model architectures and model training strategies. Using this approach, we demonstrate that transfer learning and tuning of training parameters, such as the composition, size, and preprocessing of the training image dataset, can lead to robust nuclear segmentation models, which match, and often exceed, the performance of existing, off-the-shelf deep learning models pretrained on large image datasets. We envision a practical scenario where deep learning nuclear segmentation models trained in this way can be shared across a laboratory, facility, or institution, and continuously improved by training them on progressively larger and varied image datasets. Our work provides computational tools and a practical framework for deep learning-based biological image segmentation using small annotated image datasets. Published [2020]. This article is a U.S. Government work and is in the public domain in the USA.


Subject(s)
Deep Learning , Cell Nucleus , Image Processing, Computer-Assisted
16.
Nature ; 508(7496): 402-5, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24590073

ABSTRACT

Filoviruses are emerging pathogens and causative agents of viral haemorrhagic fever. Case fatality rates of filovirus disease outbreaks are among the highest reported for any human pathogen, exceeding 90% (ref. 1). Licensed therapeutic or vaccine products are not available to treat filovirus diseases. Candidate therapeutics previously shown to be efficacious in non-human primate disease models are based on virus-specific designs and have limited broad-spectrum antiviral potential. Here we show that BCX4430, a novel synthetic adenosine analogue, inhibits infection of distinct filoviruses in human cells. Biochemical, reporter-based and primer-extension assays indicate that BCX4430 inhibits viral RNA polymerase function, acting as a non-obligate RNA chain terminator. Post-exposure intramuscular administration of BCX4430 protects against Ebola virus and Marburg virus disease in rodent models. Most importantly, BCX4430 completely protects cynomolgus macaques from Marburg virus infection when administered as late as 48 hours after infection. In addition, BCX4430 exhibits broad-spectrum antiviral activity against numerous viruses, including bunyaviruses, arenaviruses, paramyxoviruses, coronaviruses and flaviviruses. This is the first report, to our knowledge, of non-human primate protection from filovirus disease by a synthetic drug-like small molecule. We provide additional pharmacological characterizations supporting the potential development of BCX4430 as a countermeasure against human filovirus diseases and other viral diseases representing major public health threats.


Subject(s)
Adenosine/analogs & derivatives , Antiviral Agents/pharmacology , Filoviridae Infections/prevention & control , Filoviridae Infections/virology , Filoviridae/drug effects , Purine Nucleosides/pharmacology , Adenine/analogs & derivatives , Administration, Oral , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , DNA-Directed RNA Polymerases/antagonists & inhibitors , DNA-Directed RNA Polymerases/metabolism , Disease Models, Animal , Ebolavirus/drug effects , Filoviridae/enzymology , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/virology , Humans , Injections, Intramuscular , Macaca fascicularis/virology , Marburg Virus Disease/prevention & control , Marburg Virus Disease/virology , Marburgvirus/drug effects , Purine Nucleosides/administration & dosage , Purine Nucleosides/chemistry , Purine Nucleosides/pharmacokinetics , Pyrrolidines , RNA/biosynthesis , Time Factors
17.
Methods ; 142: 30-38, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29408376

ABSTRACT

The spatial organization of chromosomes in the nuclear space is an extensively studied field that relies on measurements of structural features and 3D positions of chromosomes with high precision and robustness. However, no tools are currently available to image and analyze chromosome territories in a high-throughput format. Here, we have developed High-throughput Chromosome Territory Mapping (HiCTMap), a method for the robust and rapid analysis of 2D and 3D chromosome territory positioning in mammalian cells. HiCTMap is a high-throughput imaging-based chromosome detection method which enables routine analysis of chromosome structure and nuclear position. Using an optimized FISH staining protocol in a 384-well plate format in conjunction with a bespoke automated image analysis workflow, HiCTMap faithfully detects chromosome territories and their position in 2D and 3D in a large population of cells per experimental condition. We apply this novel technique to visualize chromosomes 18, X, and Y in male and female primary human skin fibroblasts, and show accurate detection of the correct number of chromosomes in the respective genotypes. Given the ability to visualize and quantitatively analyze large numbers of nuclei, we use HiCTMap to measure chromosome territory area and volume with high precision and determine the radial position of chromosome territories using either centroid or equidistant-shell analysis. The HiCTMap protocol is also compatible with RNA FISH as demonstrated by simultaneous labeling of X chromosomes and Xist RNA in female cells. We suggest HiCTMap will be a useful tool for routine precision mapping of chromosome territories in a wide range of cell types and tissues.


Subject(s)
Chromosome Mapping/methods , Image Processing, Computer-Assisted/methods , In Situ Hybridization, Fluorescence/methods , Animals , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromosome Mapping/instrumentation , Chromosomes, Human, Pair 18/genetics , Chromosomes, Human, Pair 18/metabolism , Chromosomes, Human, X/genetics , Chromosomes, Human, X/metabolism , Chromosomes, Human, Y/genetics , Chromosomes, Human, Y/metabolism , Female , Fibroblasts , Humans , Image Processing, Computer-Assisted/instrumentation , In Situ Hybridization, Fluorescence/instrumentation , Male , Primary Cell Culture/methods , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Skin/cytology , Staining and Labeling/instrumentation , Staining and Labeling/methods
18.
Histochem Cell Biol ; 150(6): 579-592, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30238154

ABSTRACT

The past decades have provided remarkable insights into how the eukaryotic cell nucleus and the genome within it are organized. The combined use of imaging, biochemistry and molecular biology approaches has revealed several basic principles of nuclear architecture and function, including the existence of chromatin domains of various sizes, the presence of a large number of non-membranous intranuclear bodies, non-random positioning of genes and chromosomes in 3D space, and a prominent role of the nuclear lamina in organizing genomes. Despite this tremendous progress in elucidating the biological properties of the cell nucleus, many questions remain. Here, we highlight some of the key open areas of investigation in the field of nuclear organization and genome architecture with a particular focus on the mechanisms and principles of higher-order genome organization, the emerging role of liquid phase separation in cellular organization, and the functional role of the nuclear lamina in physiological processes.


Subject(s)
Cell Nucleus/genetics , Cell Nucleus/metabolism , Animals , Humans , Nuclear Lamina/genetics , Nuclear Lamina/metabolism
19.
PLoS Pathog ; 12(3): e1005466, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27031835

ABSTRACT

Little is known about the repertoire of cellular factors involved in the replication of pathogenic alphaviruses. To uncover molecular regulators of alphavirus infection, and to identify candidate drug targets, we performed a high-content imaging-based siRNA screen. We revealed an actin-remodeling pathway involving Rac1, PIP5K1- α, and Arp3, as essential for infection by pathogenic alphaviruses. Infection causes cellular actin rearrangements into large bundles of actin filaments termed actin foci. Actin foci are generated late in infection concomitantly with alphavirus envelope (E2) expression and are dependent on the activities of Rac1 and Arp3. E2 associates with actin in alphavirus-infected cells and co-localizes with Rac1-PIP5K1-α along actin filaments in the context of actin foci. Finally, Rac1, Arp3, and actin polymerization inhibitors interfere with E2 trafficking from the trans-Golgi network to the cell surface, suggesting a plausible model in which transport of E2 to the cell surface is mediated via Rac1- and Arp3-dependent actin remodeling.


Subject(s)
Alphavirus Infections/genetics , Alphavirus/genetics , Cell Movement/genetics , RNA, Small Interfering/genetics , Actins/metabolism , Alphavirus/metabolism , Alphavirus Infections/metabolism , Cell Movement/physiology , DNA Replication/genetics , Humans , Protein Transport/genetics , trans-Golgi Network/genetics , trans-Golgi Network/metabolism
20.
Methods ; 123: 47-55, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28179124

ABSTRACT

The spatial organization of genomes is non-random, cell-type specific, and has been linked to cellular function. The investigation of spatial organization has traditionally relied extensively on fluorescence microscopy. The validity of the imaging methods used to probe spatial genome organization often depends on the accuracy and precision of distance measurements. Imaging-based measurements may either use 2 dimensional datasets or 3D datasets which include the z-axis information in image stacks. Here we compare the suitability of 2D vs 3D distance measurements in the analysis of various features of spatial genome organization. We find in general good agreement between 2D and 3D analysis with higher convergence of measurements as the interrogated distance increases, especially in flat cells. Overall, 3D distance measurements are more accurate than 2D distances, but are also more susceptible to noise. In particular, z-stacks are prone to error due to imaging properties such as limited resolution along the z-axis and optical aberrations, and we also find significant deviations from unimodal distance distributions caused by low sampling frequency in z. These deviations are ameliorated by significantly higher sampling frequency in the z-direction. We conclude that 2D distances are preferred for comparative analyses between cells, but 3D distances are preferred when comparing to theoretical models in large samples of cells. In general and for practical purposes, 2D distance measurements are preferable for many applications of analysis of spatial genome organization.


Subject(s)
Fibroblasts/ultrastructure , Genome, Human , Imaging, Three-Dimensional/methods , Cell Line, Transformed , Humans , Imaging, Three-Dimensional/instrumentation , In Situ Hybridization, Fluorescence/methods , Optical Imaging
SELECTION OF CITATIONS
SEARCH DETAIL