Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Int J Med Microbiol ; 307(2): 116-125, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28117265

ABSTRACT

Staphyloccocus aureus is a major human pathogen and a common cause for superficial and deep seated wound infections. The pathogen is equipped with a large arsenal of virulence factors, which facilitate attachment to various eukaryotic cell structures and modulate the host immune response. One of these factors is the extracellular adherence protein Eap, a member of the "secretable expanded repertoire adhesive molecules" (SERAM) protein family that possesses adhesive and immune modulatory properties. The secreted protein was previously shown to impair wound healing by interfering with host defense and neovascularization. However, its impact on keratinocyte proliferation and migration, two major steps in the re-epithelialization process of wounds, is not known. Here, we report that Eap affects the proliferation and migration capacities of keratinocytes by altering their morphology and adhesive properties. In particular, treatment of non-confluent HaCaT cell cultures with Eap resulted in cell morphology changes as well as a significant reduction in cell proliferation and migration. Eap-treated HaCaT cells changed their appearance from an oblong via a trapezoid to an astral-like shape, accompanied by decreases in cell volume and cell stiffness, and exhibited significantly increased cell adhesion. Eap had a similar influence on endothelial and cancer cells, indicative for a general effect of Eap on eukaryotic cell morphology and functions. Specifically, Eap was found to interfere with growth factor-stimulated activation of the mitogen-activated protein kinase (MAPK) pathway that is known to be responsible for cell shape modulation, induction of proliferation and migration of epithelial cells. Western blot analyses revealed that Eap blocked the phosphorylation of extracellular signal-regulated kinase 1 and 2 (Erk1/2) in keratinocyte growth factor (KGF)-stimulated HaCaT cells. Together, these data add another antagonistic mechanism of Eap in wound healing, whereby the bacterial protein interferes with keratinocyte migration and proliferation.


Subject(s)
Bacterial Proteins/metabolism , Cell Movement/drug effects , Cell Proliferation/drug effects , Keratinocytes/drug effects , Keratinocytes/physiology , RNA-Binding Proteins/metabolism , Staphylococcus aureus/pathogenicity , Cell Adhesion/drug effects , Cell Line , Endothelial Cells/drug effects , Epithelial Cells/drug effects , Humans , Keratinocytes/cytology , Signal Transduction/drug effects , Wound Healing/drug effects
2.
Antimicrob Agents Chemother ; 59(7): 4226-38, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25963986

ABSTRACT

Staphylococcus aureus is a major cause of nosocomial and community-acquired infections. The success of S. aureus as a pathogen is due in part to its many virulence determinants and resistance to antimicrobials. In particular, methicillin-resistant S. aureus has emerged as a major cause of infections and led to increased use of the antibiotics vancomycin and daptomycin, which has increased the isolation of vancomycin-intermediate S. aureus and daptomycin-nonsusceptible S. aureus strains. The most common mechanism by which S. aureus acquires intermediate resistance to antibiotics is by adapting its physiology and metabolism to permit growth in the presence of these antibiotics, a process known as adaptive resistance. To better understand the physiological and metabolic changes associated with adaptive resistance, six daptomycin-susceptible and -nonsusceptible isogenic strain pairs were examined for changes in growth, competitive fitness, and metabolic alterations. Interestingly, daptomycin nonsusceptibility coincides with a slightly delayed transition to the postexponential growth phase and alterations in metabolism. Specifically, daptomycin-nonsusceptible strains have decreased tricarboxylic acid cycle activity, which correlates with increased synthesis of pyrimidines and purines and increased carbon flow to pathways associated with wall teichoic acid and peptidoglycan biosynthesis. Importantly, these data provided an opportunity to alter the daptomycin nonsusceptibility phenotype by manipulating bacterial metabolism, a first step in developing compounds that target metabolic pathways that can be used in combination with daptomycin to reduce treatment failures.


Subject(s)
Anti-Bacterial Agents/pharmacology , Daptomycin/pharmacology , Drug Resistance, Bacterial/genetics , Staphylococcus aureus/metabolism , Aconitate Hydratase/metabolism , Amino Acids/metabolism , Cell Wall/metabolism , Citric Acid Cycle/drug effects , Magnetic Resonance Spectroscopy , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Peptidoglycan/chemistry , Peptidoglycan/metabolism , Phenotype , Purines/metabolism , Pyrimidines/metabolism , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Teichoic Acids/metabolism , Vancomycin Resistance/genetics
3.
J Exp Biol ; 218(Pt 8): 1159-65, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25714570

ABSTRACT

The ability of many insects to walk on vertical smooth surfaces such as glass or even on the ceiling has fascinated biologists for a long time, and has led to the discovery of highly specialized adhesive organs located at the distal end of the animals' legs. So far, research has primarily focused on structural and ultrastructural investigations leading to a deeper understanding of adhesive organ functionality and to the development of new bioinspired materials. Genetic approaches, e.g. the analysis of mutants, to achieve a better understanding of adhesive organ differentiation have not been used so far. Here, we describe the first Drosophila melanogaster mutant that develops malformed adhesive organs, resulting in a complete loss of climbing ability on vertical smooth surfaces. Interestingly, these mutants fail to make close contact between the setal tips and the smooth surface, a crucial condition for wet adhesion mediated by capillary forces. Instead, these flies walk solely on their claws. Moreover, we were able to show that the mutation is caused by a P-element insertion into the Su(z)2 gene locus. Remobilization of the P-element restores climbing ability. Furthermore, we provide evidence that the P-element insertion results in an artificial Su(z)2 transcript, which most likely causes a gain-of-function mutation. We presume that this transcript causes deregulation of yet unknown target genes involved in pulvilli differentiation. Our results nicely demonstrate that the genetically treatable model organism Drosophila is highly suitable for future investigations on adhesive organ differentiation.


Subject(s)
Drosophila Proteins/physiology , Drosophila melanogaster/physiology , Repressor Proteins/physiology , Animals , DNA Transposable Elements , Drosophila Proteins/genetics , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/genetics , Extremities/anatomy & histology , Extremities/physiology , Locomotion , Mutation , Repressor Proteins/genetics
4.
Soft Matter ; 11(46): 8913-9, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26294050

ABSTRACT

The adhesion of pathogenic bacteria to surfaces is of immense importance for health care applications. Via a combined experimental and computational approach, we studied the initiation of contact in the adhesion process of the pathogenic bacterium Staphylococcus aureus. AFM force spectroscopy with single cell bacterial probes paired with Monte Carlo simulations enabled an unprecedented molecular investigation of the contact formation. Our results reveal that bacteria attach to a surface over distances far beyond the range of classical surface forces via stochastic binding of thermally fluctuating cell wall proteins. Thereby, the bacteria are pulled into close contact with the surface as consecutive proteins of different stiffnesses attach. This mechanism greatly enhances the attachment capability of S. aureus. It, however, can be manipulated by enzymatically/chemically modifying the cell wall proteins to block their consecutive binding. Our study furthermore reveals that fluctuations in protein density and structure are much more relevant than the exact form of the binding potential.


Subject(s)
Bacterial Adhesion , Staphylococcus aureus/chemistry , Hydrophobic and Hydrophilic Interactions , Monte Carlo Method , Proteins/metabolism , Surface Properties
5.
J Exp Biol ; 215(Pt 8): 1266-71, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22442363

ABSTRACT

Insect tarsal adhesive structures secrete a thin layer of fluid into the contact area. It was previously reported that the presence of this fluid significantly increases adhesion on various substrata. Previous data obtained from representatives of different insect groups suggest a difference not only in the chemical composition of the fluid, but also in its physical properties. In the present study, we have measured for the first time changes in the droplet geometry over time and the evaporation rate of the fluid in flies (Calliphora vicina) and beetles (Coccinella septempunctata) by the use of atomic force microscopy. Flattened droplets of the beetle had lower evaporation rates than hemispherical footprints of the fly. Within 1 h, the droplet volume reduced to 21% of the initial volume for the fly, and to 65% for the beetle, suggesting a larger fraction of volatile compounds in the fly fluid. It was revealed that drop geometry changes significantly during evaporation and shows pinning effects for the fly footprints due to an assumed self-organizing oil layer on top of the water fraction of the micro-emulsion. The data obtained suggest that the adhesion strength in capillarity-based switchable adhesive systems must be time-dependent because of the specific evaporation rate of the adhesive fluid. These results are important for our understanding of the functional mechanism of insect adhesive systems and also for biomimetics of artificial capillarity-based adhesive systems.


Subject(s)
Body Fluids/metabolism , Coleoptera/anatomy & histology , Coleoptera/metabolism , Diptera/anatomy & histology , Diptera/metabolism , Animals , Biomimetics , Hydrophobic and Hydrophilic Interactions , Imaging, Three-Dimensional , Microscopy, Atomic Force , Volatilization
6.
J Exp Biol ; 213(Pt 20): 3457-62, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20889826

ABSTRACT

The surface of some insect eyes consists of arrays of cuticular protuberances, which are 50-300 nm in diameter, and are termed corneal nipples or ommatidia gratings. They were widely reported to reduce the reflectance for normally incident light, contributing to camouflage by reducing glare to predators, while furthermore enhancing the intake of light, which is especially important for nocturnal insects. Our preliminary observations suggest a third function: in contrast to the rest of the body, ommatidia of various insects remain clean, even in a heavy contaminated environment. In order to prove such an anti-contamination hypothesis of these structures, we measured the adhesive properties of polymer moulds of insect ommatidia, and compared these data with control surfaces having the same curvature radii but lacking such a nanostructure. A scanning electron microscope (SEM) study and force measurements using an atomic force microscope (AFM) on the eye surfaces of three different insect species, dragonfly Aeshna mixta (Odonata), moth Laothoe populi (Lepidoptera) and fly Volucella pellucens (Diptera), were undertaken. We revealed that adhesion is greatly reduced by corneal grating in L. populi and V. pellucens when compared with their smooth controls. The smooth cornea of A. mixta showed no statistically significant difference to its control. We assume that this anti-adhesive phenomenon is due to a decrease in the real contact area between contaminating particles and the eye's surface. Such a combination of three functions in one nanostructure can be interesting for the development of industrial multifunctional surfaces capable of enhancing light harvesting while reducing light reflection and adhesion.


Subject(s)
Eye/anatomy & histology , Insecta/anatomy & histology , Insecta/physiology , Adhesiveness , Animals , Biomechanical Phenomena/physiology , Eye/ultrastructure , Insecta/ultrastructure , Microscopy, Atomic Force , Surface Properties
8.
Colloids Surf B Biointerfaces ; 194: 111177, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32569885

ABSTRACT

It has been recently recognized that controlled surface structuring on the nanometer scale is a successful strategy to endow different materials with antimicrobial properties. Despite many studies on bacterial interactions with nanostructured surfaces, a quantitative link between surface topography and bacterial adhesion is still missing. To quantitatively link cell adhesion data with topographical surface parameters, we performed single-cell spectroscopy on chemically identical surfaces with controlled nano-contact point density achieved by immobilization of gold nanoparticles (AuNP) on gold thin films. Such materials surfaces have previously shown antimicrobial (anti-adhesive) efficacy towards Gram-negative Escherichia coli cells. In the current study, the influence of nano-structured surfaces on the surface coverage and adhesion forces of clinically relevant Candida albicans (C. albicans), the fungus primarily associated with implant infections, was investigated to validate their antimicrobial potency against different microbial cells. The adhesion forces of C. albicans cells to nanostructured surfaces showed a decreasing trend with decreasing contact-point density and correlated well with the results of the respective C. albicans cell counts. The surfaces with the lowest contact-point density, 25 AuNP/µm², resulted in an average adhesion force of 5 nN, which was up to 5 times lower compared to control and 61 AuNP/µm² surfaces. Further, detailed analyses of force-distance curves revealed that the work of adhesion, and thus the energy required to remove the C. albicans cell from the surface is up to 10 times lower on 25 AuNP/µm² surfaces compared to unstructured surfaces. These findings show that a controlled tuning of nanostructured surfaces in terms of accessible nano-contact points is crucial to generate surface structures with enhanced antimicrobial properties. The gained knowledge can be further exploited for the design of biomaterials surfaces to prevent adhesion of some most commonly encountered pathogens.


Subject(s)
Candida albicans , Metal Nanoparticles , Bacterial Adhesion , Cell Adhesion , Gold , Surface Properties
9.
Article in English | MEDLINE | ID: mdl-30038902

ABSTRACT

The extracellular adherence protein (Eap) of Staphylococcus aureus is a secreted protein known to exert a number of adhesive and immunomodulatory properties. Here we describe the intrinsic DNA binding activity of this multifunctional secretory factor. By using atomic force microscopy, we provide evidence that Eap can bind and aggregate DNA. While the origin of the DNA substrate (e.g., eukaryotic, bacterial, phage, and artificial DNA) seems to not be of major importance, the DNA structure (e.g., linear or circular) plays a critical role with respect to the ability of Eap to bind and condense DNA. Further functional assays corroborated the nature of Eap as a DNA binding protein, since Eap suppressed the formation of "neutrophil extracellular traps" (NETs), composed of DNA-histone scaffolds, which are thought to function as a neutrophil-mediated extracellular trapping mechanism. The DNA binding and aggregation activity of Eap may thereby protect S. aureus against a specific anti-microbial defense reaction from the host.


Subject(s)
Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Extracellular Traps/metabolism , Host-Pathogen Interactions , Neutrophils/immunology , RNA-Binding Proteins/metabolism , Staphylococcus aureus/immunology , Staphylococcus aureus/physiology , Cells, Cultured , Humans , Microscopy, Atomic Force , Neutrophils/microbiology
10.
Interface Focus ; 5(1): 20140036, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25657830

ABSTRACT

The morphology of the toe epithelium of the rock frog, Staurois parvus (Family Ranidae), was investigated using a variety of microscopical techniques. The toe pad epithelium is stratified (four to five cell layers), the apical parts of the cells of the outermost layer being separated by fluid-filled channels. The surface of these cells is covered by a dense array of nanopillars, which also cover the surface of subarticular tubercles and unspecialized ventral epithelium of the toes, but not the dorsal epithelium. The apical portions of the outer two layers contain fibrils that originate from the nanopillars and are oriented approximately normal to the surface. This structure is similar to the pad structure of tree frogs of the families Hylidae and Rhacophoridae, indicating evolutionary convergence and a common evolutionary design for reversible attachment in climbing frogs. The main adaptation to the torrent habitat seems to be the straightness of the channels crossing the toe pad, which will assist in drainage of excess water. The presence of nanopillar arrays on all ventral surfaces of the toes resembles that on clingfish suckers and may be a specific adaptation for underwater adhesion and friction. The relevance of these findings to the development of new biomimetically inspired reversible adhesives is discussed.

11.
J R Soc Interface ; 11(99)2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25142527

ABSTRACT

Wet adhesive systems of insects strongly rely for their function on the formation of capillary bridges with the substrate. Studies on the chemical composition and evaporation dynamics of tarsal secretions strongly suggest a difference in chemistry of secretion in beetles and flies, both possessing hairy attachment devices. This difference is assumed to influence the viscosity of the secretion. Here, we applied a microrheological technique, based on the immersion of nanometric beads in the collected tarsal footprints, to estimate secretion viscosity in a beetle (Coccinella septempunctata) and a fly (Calliphora vicina). Both species studied possess distinct differences in viscosity, the median of which was calculated as 21.8 and 10.9 mPa s, respectively. We further present an approximate theoretical model to calculate the contact formation time of spatula-like terminal contact elements using the viscosity data of the covering fluid. The estimated contact formation time is proportional to the tarsal secretion viscosity and to the square of the contact radius of the contact element.


Subject(s)
Coleoptera/physiology , Diptera/chemistry , Extremities/physiology , Models, Theoretical , Sensilla/physiology , Adhesiveness , Animals , Germany , Nanospheres , Rheology , Time Factors , Viscosity
12.
Beilstein J Nanotechnol ; 5: 1501-12, 2014.
Article in English | MEDLINE | ID: mdl-25247133

ABSTRACT

Unspecific adhesion of bacteria is usually the first step in the formation of biofilms on abiotic surfaces, yet it is unclear up to now which forces are governing this process. Alongside long-ranged van der Waals and electrostatic forces, short-ranged hydrophobic interaction plays an important role. To characterize the forces involved during approach and retraction of an individual bacterium to and from a surface, single cell force spectroscopy is applied: A single cell of the apathogenic species Staphylococcus carnosus isolate TM300 is used as bacterial probe. With the exact same bacterium, hydrophobic and hydrophilic surfaces can be probed and compared. We find that as far as 50 nm from the surface, attractive forces can already be recorded, an indication of the involvement of long-ranged forces. Yet, comparing the surfaces of different surface energy, our results corroborate the model that large, bacterial cell wall proteins are responsible for adhesion, and that their interplay with the short-ranged hydrophobic interaction of the involved surfaces is mainly responsible for adhesion. The ostensibly long range of the attraction is a result of the large size of the cell wall proteins, searching for contact via hydrophobic interaction. The model also explains the strong (weak) adhesion of S. carnosus to hydrophobic (hydrophilic) surfaces.

13.
Nat Commun ; 4: 1661, 2013.
Article in English | MEDLINE | ID: mdl-23552076

ABSTRACT

For an insect to be able to efficiently attach to surfaces, the adhesive pads on the distal parts of its legs must establish large contact areas. In case of hairy adhesive pads this requires flexibility of the contact-forming bristles, called adhesive tarsal setae. However, too flexible setae would have a low mechanical stability resulting in a decreased attachment ability of the pads. Here we show that the adhesive tarsal setae of the ladybird beetle Coccinella septempunctata feature pronounced gradients in the material composition and properties along their length. The Young's modulus ranges from 1.2 MPa at the tips, where we found the incorporation of high proportions of the elastic protein resilin, to 6.8 GPa at the bases of the setae. These gradients likely represent an evolutionary optimization, which increases the performance of the adhesive system by enabling effective adaptation to rough surfaces while simultaneously preventing lateral collapse of the setae.


Subject(s)
Adhesiveness , Coleoptera/anatomy & histology , Animals , Coleoptera/physiology , Microscopy, Atomic Force , Microscopy, Electron, Scanning
14.
J Morphol ; 274(12): 1384-96, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23999965

ABSTRACT

Cryo-scanning electron microscopy (cryo-SEM) and atomic force microscopy (AFM) offer new avenues for the study of the morphology of tree frog adhesive toe pads. Using these techniques, we compare toe pad microstructure in two distantly related species of tree frog, Litoria caerulea, White (Hylidae) and Rhacophorus prominanus, Smith (Rhacophoridae), in which the toe pads are considered to be convergent. AFM demonstrates the extraordinary similarity of both surface microstructures (largely hexagonal epithelial cells surrounded by deep channels) and nanostructures (an array of nanopillars, ca. 350 nm in diameter, all with a small dimple at the apex). The cryo-SEM studies examined the distribution of the fibrillar cytoskeleton within the different layers of the stratified toe pad epithelium, demonstrating that the cytoskeletal elements (keratin tonofilaments) that lie at an angle to the surface are relatively poorly developed in L. caerulea, clearly so in comparison to R. prominanus. Cryo-SEM also enabled the visualization of the fluid layer that is critical to a toe pad's adhesive function. This was achieved by examination of the frozen fluid residues left behind after removal of a toe within the cryo-SEM's experimental chamber. Such 'toeprints' demonstrated the presence of a wedge of fluid surrounding each toe pad, as well as fluid filling the channels that surround each epithelial cell. Cryo-SEM was used to examine epithelial cell shape. In a sample of 582 cells, 59.5% were hexagonal, the remainder being mainly pentagonal (23.1%) or heptagonal (16.1%). The distribution of differently-shaped cells was not random, but was not associated with either pad curvature or the distribution of mucous pores that provide fluid for the frogs' wet adhesion mechanism. Our main finding, the great similarity of toe pad structure in these two species, has important implications for biomimetics, for such convergent evolution suggests a good starting point for attempts to develop adhesives that will function in wet conditions.


Subject(s)
Anura/anatomy & histology , Toes/anatomy & histology , Adhesiveness , Animals , Cryoelectron Microscopy , Cytoskeleton/ultrastructure , Elastic Modulus , Epithelial Cells/ultrastructure , Epithelium/ultrastructure , Keratins , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Species Specificity
15.
J R Soc Interface ; 7(53): 1745-52, 2010 Dec 06.
Article in English | MEDLINE | ID: mdl-20427331

ABSTRACT

Pads of beetles are covered with long, deformable setae, each ending in a micrometric terminal plate coated with secretory fluid. It was recently shown that the layer of the pad secretion covering the terminal plates is responsible for the generation of strong attractive forces. However, less is known about the fluid itself because it is produced in an extremely small quantity. We present here the first experimental investigation of the rheological properties of the pad secretion in the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera, Chrysomelidae). Because the secretion is produced in an extremely small amount at the level of the terminal plate, we first developed a procedure based on capillary effects to collect the secretion for rheological experiments. In order to study the collected fluid (less than 1 nl) through passive microrheology, we managed to incorporate micrometric probes (melamine beads) that were initially in the form of a dry powder. Finally, the bead thermal motions were observed optically and recorded to determine the mechanical properties of the surrounding medium. We achieved this quantitative measurement with the collected volume, which is much smaller than the usual 1 µl sample volume required for this technique. Surprisingly, the beetle secretion was found to behave as a purely viscous liquid, of high viscosity (about 100 times that of water). This suggests that no specific complex fluid behaviour is needed by this adhesive system during beetle locomotion. We describe a scenario for the contact formation between the spatula at the setal tip and a smooth substrate, during the insect walk. We show that the attachment dynamics of the insect pad computed from the high measured viscosity is in good agreement with the observed insect pace. We finally discuss the consequences of the viscosity of the secretion on the insect adhesion.


Subject(s)
Bodily Secretions/chemistry , Coleoptera/chemistry , Extremities , Locomotion/physiology , Specimen Handling/methods , Animals , Biomechanical Phenomena , Coleoptera/physiology , Microspheres , Rheology , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL