Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO J ; 41(23): e110595, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36305367

ABSTRACT

Mammalian SWI/SNF/BAF chromatin remodeling complexes influence cell lineage determination. While the contribution of these complexes to neural progenitor cell (NPC) proliferation and differentiation has been reported, little is known about the transcriptional profiles that determine neurogenesis or gliogenesis. Here, we report that BCL7A is a modulator of the SWI/SNF/BAF complex that stimulates the genome-wide occupancy of the ATPase subunit BRG1. We demonstrate that BCL7A is dispensable for SWI/SNF/BAF complex integrity, whereas it is essential to regulate Notch/Wnt pathway signaling and mitochondrial bioenergetics in differentiating NPCs. Pharmacological stimulation of Wnt signaling restores mitochondrial respiration and attenuates the defective neurogenic patterns observed in NPCs lacking BCL7A. Consistently, treatment with an enhancer of mitochondrial biogenesis, pioglitazone, partially restores mitochondrial respiration and stimulates neuronal differentiation of BCL7A-deficient NPCs. Using conditional BCL7A knockout mice, we reveal that BCL7A expression in NPCs and postmitotic neurons is required for neuronal plasticity and supports behavioral and cognitive performance. Together, our findings define the specific contribution of BCL7A-containing SWI/SNF/BAF complexes to mitochondria-driven NPC commitment, thereby providing a better understanding of the cell-intrinsic transcriptional processes that connect metabolism, neuronal morphogenesis, and cognitive flexibility.


Subject(s)
Cell Differentiation , Microfilament Proteins , Neural Stem Cells , Animals , Mice , Adenosine Triphosphatases/metabolism , Chromatin Assembly and Disassembly , Energy Metabolism , Mitochondria/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Microfilament Proteins/metabolism , Neural Stem Cells/cytology
2.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731950

ABSTRACT

The periodontal ligament (PDL) is a highly specialized fibrous tissue comprising heterogeneous cell populations of an intricate nature. These complexities, along with challenges due to cell culture, impede a comprehensive understanding of periodontal pathophysiology. This study aims to address this gap, employing single-cell RNA sequencing (scRNA-seq) technology to analyze the genetic intricacies of PDL both in vivo and in vitro. Primary human PDL samples (n = 7) were split for direct in vivo analysis and cell culture under serum-containing and serum-free conditions. Cell hashing and sorting, scRNA-seq library preparation using the 10x Genomics protocol, and Illumina sequencing were conducted. Primary analysis was performed using Cellranger, with downstream analysis via the R packages Seurat and SCORPIUS. Seven distinct PDL cell clusters were identified comprising different cellular subsets, each characterized by unique genetic profiles, with some showing donor-specific patterns in representation and distribution. Formation of these cellular clusters was influenced by culture conditions, particularly serum presence. Furthermore, certain cell populations were found to be inherent to the PDL tissue, while others exhibited variability across donors. This study elucidates specific genes and cell clusters within the PDL, revealing both inherent and context-driven subpopulations. The impact of culture conditions-notably the presence of serum-on cell cluster formation highlights the critical need for refining culture protocols, as comprehending these influences can drive the creation of superior culture systems vital for advancing research in PDL biology and regenerative therapies. These discoveries not only deepen our comprehension of PDL biology but also open avenues for future investigations into uncovering underlying mechanisms.


Subject(s)
Periodontal Ligament , Single-Cell Analysis , Humans , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Single-Cell Analysis/methods , Cells, Cultured , RNA-Seq/methods , Sequence Analysis, RNA/methods , Male , Female , Gene Expression Profiling/methods , Adult , Transcriptome , Single-Cell Gene Expression Analysis
3.
Int J Mol Sci ; 25(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542188

ABSTRACT

Induced pluripotent stem cells (iPSCs) and their derivatives have been described to display epigenetic memory of their founder cells, as well as de novo reprogramming-associated alterations. In order to selectively explore changes due to the reprogramming process and not to heterologous somatic memory, we devised a circular reprogramming approach where somatic stem cells are used to generate iPSCs, which are subsequently re-differentiated into their original fate. As somatic founder cells, we employed human embryonic stem cell-derived neural stem cells (NSCs) and compared them to iPSC-derived NSCs derived thereof. Global transcription profiling of this isogenic circular system revealed remarkably similar transcriptomes of both NSC populations, with the exception of 36 transcripts. Amongst these we detected a disproportionately large fraction of X chromosomal genes, all of which were upregulated in iPSC-NSCs. Concurrently, we detected differential methylation of X chromosomal sites spatially coinciding with regions harboring differentially expressed genes. While our data point to a pronounced overall reinstallation of autosomal transcriptomic and methylation signatures when a defined somatic lineage is propagated through pluripotency, they also indicate that X chromosomal genes may partially escape this reinstallation process. Considering the broad application of iPSCs in disease modeling and regenerative approaches, such reprogramming-associated alterations in X chromosomal gene expression and DNA methylation deserve particular attention.


Subject(s)
Induced Pluripotent Stem Cells , Neural Stem Cells , Humans , DNA Methylation , Neural Stem Cells/metabolism , Cell Differentiation/genetics , Epigenesis, Genetic , Cellular Reprogramming/genetics
4.
Cell Commun Signal ; 20(1): 47, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35392923

ABSTRACT

BACKGROUND: NOS2 expression is mostly found in bacteria-exposed or cytokine-treated tissues and is mostly connected to innate immune reactions. There are three isoforms of NOS2 (NOS2-1 to -3). In RNA-seq data sets, analyzing inflammatory gene expression, only expression of the NOS2-1 mRNA isoform is detected. However, the expression of NOS2 in differentiating human pluripotent stems (hPSCs) has not been analyzed yet. METHODS: Public available RNA-seq databases were screened for data of hPSCs during differentiation to different target cells. An isoform specific algorithm was used to analyze NOS2 mRNA isoform expression. In addition, we differentiated four different human iPSC cell lines toward cortical neurons and analyzed NOS2 mRNA expression by qRT-PCR and 5'-RACE. The functionality of the NOS2-2 protein was analyzed by transient transfection of expression clones in human DLD1 cells and nitrate measurement in the supernatant of these cells. RESULTS: In RNA-seq databases we detected a transient expression of the NOS2 mRNA during the differentiation of hPSCs to cardiomyocytes, chondrocytes, mesenchymal stromal cells, neurons, syncytiotrophoblast cells, and trophoblasts. NOS2 mRNA isoform specific analyses showed, that the transiently expressed NOS2 mRNA in differentiating hPSC (NOS2-2; "diff-iNOS") differ remarkably from the already described NOS2 transcript found in colon or induced islets (NOS2-1; "immuno-iNOS"). Also, analysis of the NOS2 mRNA- and protein expression during the differentiation of four different hiPSC lines towards cortical neurons showed a transient expression of the NOS2 mRNA and NOS2 protein on day 18 of the differentiation course. 5'-RACE experiments and isoform specific qRT-PCR analyses revealed that only the NOS2-2 mRNA isoform was expressed in these experiments. To analyze the functionality of the NOS2-2 protein, we transfected human DLD-1 cells with tetracycline inducible expression clones encoding the NOS2-1- or -2 coding sequence. After induction of the NOS2-1 or -2 mRNA expression by tetracycline a similar nitrate production was measured proofing the functionality of the NOS2-2 protein isoform. CONCLUSIONS: Our data show that a differentiation specific NOS2 isoform (NOS2-2) is transiently expressed during differentiation of hPSC. Video Abstract.


Subject(s)
Pluripotent Stem Cells , RNA Isoforms , Tetracycline , Cell Differentiation , Humans , Isoenzymes/genetics , Nitrates/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Pluripotent Stem Cells/cytology , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
Mol Cell Neurosci ; 110: 103568, 2021 01.
Article in English | MEDLINE | ID: mdl-33068718

ABSTRACT

The incidence of Alzheimer's disease is increasing with the aging population, and it has become one of the main health concerns of modern society. The dissection of the underlying pathogenic mechanisms and the development of effective therapies remain extremely challenging, also because available animal and cell culture models do not fully recapitulate the whole spectrum of pathological changes. The advent of human pluripotent stem cells and cell reprogramming has provided new prospects for tackling these challenges in a human and even patient-specific setting. Yet, experimental modeling of non-cell autonomous and extracellular disease-related alterations has remained largely inaccessible. These limitations are about to be overcome by advances in the development of 3D cell culture systems including organoids, neurospheroids and matrix-embedded 3D cultures, which have been shown to recapitulate extracellular pathologies such as plaque formation in vitro. Recent xenograft studies have even taken human stem cell-based disease modeling to an in vivo scenario where grafted neurons are probed in a disease background in the context of a rodent brain. Here, we review the latest developments in this emerging field along with their advantages, challenges, and future prospects.


Subject(s)
Alzheimer Disease/metabolism , Precision Medicine/methods , Primary Cell Culture/methods , Alzheimer Disease/etiology , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Gene Editing/methods , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Transplantation, Heterologous/methods
6.
EMBO J ; 35(21): 2350-2370, 2016 11 02.
Article in English | MEDLINE | ID: mdl-27621269

ABSTRACT

Nuclear clearance of TDP-43 into cytoplasmic aggregates is a key driver of neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), but the mechanisms are unclear. Here, we show that TDP-43 knockdown specifically reduces the number and motility of RAB11-positive recycling endosomes in dendrites, while TDP-43 overexpression has the opposite effect. This is associated with delayed transferrin recycling in TDP-43-knockdown neurons and decreased ß2-transferrin levels in patient CSF Whole proteome quantification identified the upregulation of the ESCRT component VPS4B upon TDP-43 knockdown in neurons. Luciferase reporter assays and chromatin immunoprecipitation suggest that TDP-43 represses VPS4B transcription. Preventing VPS4B upregulation or expression of its functional antagonist ALIX restores trafficking of recycling endosomes. Proteomic analysis revealed the broad reduction in surface expression of key receptors upon TDP-43 knockdown, including ErbB4, the neuregulin 1 receptor. TDP-43 knockdown delays the surface delivery of ErbB4. ErbB4 overexpression, but not neuregulin 1 stimulation, prevents dendrite loss upon TDP-43 knockdown. Thus, impaired recycling of ErbB4 and other receptors to the cell surface may contribute to TDP-43-induced neurodegeneration by blocking trophic signaling.


Subject(s)
DNA-Binding Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomes/metabolism , Neurons/metabolism , Receptor, ErbB-4/metabolism , ATPases Associated with Diverse Cellular Activities , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Cells, Cultured , DNA-Binding Proteins/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Gene Knockdown Techniques , Hippocampus/cytology , Humans , Protein Transport , Rats , Receptor, ErbB-4/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Signal Transduction
8.
Nature ; 515(7526): 274-8, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25307057

ABSTRACT

Alzheimer's disease is the most common form of dementia, characterized by two pathological hallmarks: amyloid-ß plaques and neurofibrillary tangles. The amyloid hypothesis of Alzheimer's disease posits that the excessive accumulation of amyloid-ß peptide leads to neurofibrillary tangles composed of aggregated hyperphosphorylated tau. However, to date, no single disease model has serially linked these two pathological events using human neuronal cells. Mouse models with familial Alzheimer's disease (FAD) mutations exhibit amyloid-ß-induced synaptic and memory deficits but they do not fully recapitulate other key pathological events of Alzheimer's disease, including distinct neurofibrillary tangle pathology. Human neurons derived from Alzheimer's disease patients have shown elevated levels of toxic amyloid-ß species and phosphorylated tau but did not demonstrate amyloid-ß plaques or neurofibrillary tangles. Here we report that FAD mutations in ß-amyloid precursor protein and presenilin 1 are able to induce robust extracellular deposition of amyloid-ß, including amyloid-ß plaques, in a human neural stem-cell-derived three-dimensional (3D) culture system. More importantly, the 3D-differentiated neuronal cells expressing FAD mutations exhibited high levels of detergent-resistant, silver-positive aggregates of phosphorylated tau in the soma and neurites, as well as filamentous tau, as detected by immunoelectron microscopy. Inhibition of amyloid-ß generation with ß- or γ-secretase inhibitors not only decreased amyloid-ß pathology, but also attenuated tauopathy. We also found that glycogen synthase kinase 3 (GSK3) regulated amyloid-ß-mediated tau phosphorylation. We have successfully recapitulated amyloid-ß and tau pathology in a single 3D human neural cell culture system. Our unique strategy for recapitulating Alzheimer's disease pathology in a 3D neural cell culture model should also serve to facilitate the development of more precise human neural cell models of other neurodegenerative disorders.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Cell Culture Techniques/methods , Models, Biological , Neural Stem Cells/metabolism , Alzheimer Disease/genetics , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Cell Differentiation , Drug Evaluation, Preclinical/methods , Extracellular Space/metabolism , Glycogen Synthase Kinase 3/metabolism , Humans , Microtubule-Associated Proteins/metabolism , Neural Stem Cells/pathology , Neurites/metabolism , Phosphorylation , Presenilin-1/metabolism , Protein Aggregation, Pathological , Reproducibility of Results , tau Proteins/chemistry , tau Proteins/metabolism
9.
Eur J Neurosci ; 49(4): 561-589, 2019 02.
Article in English | MEDLINE | ID: mdl-30656775

ABSTRACT

Recent advances in cell reprogramming have enabled assessment of disease-related cellular traits in patient-derived somatic cells, thus providing a versatile platform for disease modeling and drug development. Given the limited access to vital human brain cells, this technology is especially relevant for neurodegenerative disorders such as Parkinson's disease (PD) as a tool to decipher underlying pathomechanisms. Importantly, recent progress in genome-editing technologies has provided an ability to analyze isogenic induced pluripotent stem cell (iPSC) pairs that differ only in a single genetic change, thus allowing a thorough assessment of the molecular and cellular phenotypes that result from monogenetic risk factors. In this review, we summarize the current state of iPSC-based modeling of PD with a focus on leucine-rich repeat kinase 2 (LRRK2), one of the most prominent monogenetic risk factors for PD linked to both familial and idiopathic forms. The LRRK2 protein is a primarily cytosolic multi-domain protein contributing to regulation of several pathways including autophagy, mitochondrial function, vesicle transport, nuclear architecture and cell morphology. We summarize iPSC-based studies that contributed to improving our understanding of the function of LRRK2 and its variants in the context of PD etiopathology. These data, along with results obtained in our own studies, underscore the multifaceted role of LRRK2 in regulating cellular homeostasis on several levels, including proteostasis, mitochondrial dynamics and regulation of the cytoskeleton. Finally, we expound advantages and limitations of reprogramming technologies for disease modeling and drug development and provide an outlook on future challenges and expectations offered by this exciting technology.


Subject(s)
Induced Pluripotent Stem Cells , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mitophagy , Models, Neurological , Parkinson Disease , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/genetics , Parkinson Disease/therapy
10.
Brain ; 140(6): 1561-1578, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28459997

ABSTRACT

Despite extensive efforts, half of patients with rare movement disorders such as hereditary spastic paraplegias and cerebellar ataxias remain genetically unexplained, implicating novel genes and unrecognized mutations in known genes. Non-coding DNA variants are suspected to account for a substantial part of undiscovered causes of rare diseases. Here we identified mutations located deep in introns of POLR3A to be a frequent cause of hereditary spastic paraplegia and cerebellar ataxia. First, whole-exome sequencing findings in a recessive spastic ataxia family turned our attention to intronic variants in POLR3A, a gene previously associated with hypomyelinating leukodystrophy type 7. Next, we screened a cohort of hereditary spastic paraplegia and cerebellar ataxia cases (n = 618) for mutations in POLR3A and identified compound heterozygous POLR3A mutations in ∼3.1% of index cases. Interestingly, >80% of POLR3A mutation carriers presented the same deep-intronic mutation (c.1909+22G>A), which activates a cryptic splice site in a tissue and stage of development-specific manner and leads to a novel distinct and uniform phenotype. The phenotype is characterized by adolescent-onset progressive spastic ataxia with frequent occurrence of tremor, involvement of the central sensory tracts and dental problems (hypodontia, early onset of severe and aggressive periodontal disease). Instead of the typical hypomyelination magnetic resonance imaging pattern associated with classical POLR3A mutations, cases carrying c.1909+22G>A demonstrated hyperintensities along the superior cerebellar peduncles. These hyperintensities may represent the structural correlate to the cerebellar symptoms observed in these patients. The associated c.1909+22G>A variant was significantly enriched in 1139 cases with spastic ataxia-related phenotypes as compared to unrelated neurological and non-neurological phenotypes and healthy controls (P = 1.3 × 10-4). In this study we demonstrate that (i) autosomal-recessive mutations in POLR3A are a frequent cause of hereditary spastic ataxias, accounting for about 3% of hitherto genetically unclassified autosomal recessive and sporadic cases; and (ii) hypomyelination is frequently absent in POLR3A-related syndromes, especially when intronic mutations are present, and thus can no longer be considered as the unifying feature of POLR3A disease. Furthermore, our results demonstrate that substantial progress in revealing the causes of Mendelian diseases can be made by exploring the non-coding sequences of the human genome.


Subject(s)
Intellectual Disability/genetics , Muscle Spasticity/genetics , Optic Atrophy/genetics , RNA Polymerase III/genetics , Spastic Paraplegia, Hereditary/genetics , Spinocerebellar Ataxias/genetics , Aged , Cell Culture Techniques , Exons/genetics , Female , Genetic Association Studies , Humans , Induced Pluripotent Stem Cells , Intellectual Disability/diagnostic imaging , Intellectual Disability/physiopathology , Introns/genetics , Male , Middle Aged , Muscle Spasticity/diagnostic imaging , Muscle Spasticity/physiopathology , Mutation , Optic Atrophy/diagnostic imaging , Optic Atrophy/physiopathology , Pedigree , Phenotype , Spastic Paraplegia, Hereditary/diagnostic imaging , Spastic Paraplegia, Hereditary/physiopathology , Spinocerebellar Ataxias/diagnostic imaging , Spinocerebellar Ataxias/physiopathology
11.
Nature ; 480(7378): 543-6, 2011 Nov 23.
Article in English | MEDLINE | ID: mdl-22113611

ABSTRACT

Machado-Joseph disease (MJD; also called spinocerebellar ataxia type 3) is a dominantly inherited late-onset neurodegenerative disorder caused by expansion of polyglutamine (polyQ)-encoding CAG repeats in the MJD1 gene (also known as ATXN3). Proteolytic liberation of highly aggregation-prone polyQ fragments from the protective sequence of the MJD1 gene product ataxin 3 (ATXN3) has been proposed to trigger the formation of ATXN3-containing aggregates, the neuropathological hallmark of MJD. ATXN3 fragments are detected in brain tissue of MJD patients and transgenic mice expressing mutant human ATXN3(Q71), and their amount increases with disease severity, supporting a relationship between ATXN3 processing and disease progression. The formation of early aggregation intermediates is thought to have a critical role in disease initiation, but the precise pathogenic mechanism operating in MJD has remained elusive. Here we show that L-glutamate-induced excitation of patient-specific induced pluripotent stem cell (iPSC)-derived neurons initiates Ca(2+)-dependent proteolysis of ATXN3 followed by the formation of SDS-insoluble aggregates. This phenotype could be abolished by calpain inhibition, confirming a key role of this protease in ATXN3 aggregation. Aggregate formation was further dependent on functional Na(+) and K(+) channels as well as ionotropic and voltage-gated Ca(2+) channels, and was not observed in iPSCs, fibroblasts or glia, thereby providing an explanation for the neuron-specific phenotype of this disease. Our data illustrate that iPSCs enable the study of aberrant protein processing associated with late-onset neurodegenerative disorders in patient-specific neurons.


Subject(s)
Machado-Joseph Disease/pathology , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Ataxin-3 , Calcium/metabolism , Calpain/metabolism , Cells, Cultured , Excitatory Amino Acids/pharmacology , Glutamic Acid/pharmacology , Humans , Neurons/drug effects
12.
Nature ; 471(7336): 58-62, 2011 Mar 03.
Article in English | MEDLINE | ID: mdl-21368824

ABSTRACT

The mechanisms underlying the low efficiency of reprogramming somatic cells into induced pluripotent stem (iPS) cells are poorly understood. There is a clear need to study whether the reprogramming process itself compromises genomic integrity and, through this, the efficiency of iPS cell establishment. Using a high-resolution single nucleotide polymorphism array, we compared copy number variations (CNVs) of different passages of human iPS cells with their fibroblast cell origins and with human embryonic stem (ES) cells. Here we show that significantly more CNVs are present in early-passage human iPS cells than intermediate passage human iPS cells, fibroblasts or human ES cells. Most CNVs are formed de novo and generate genetic mosaicism in early-passage human iPS cells. Most of these novel CNVs rendered the affected cells at a selective disadvantage. Remarkably, expansion of human iPS cells in culture selects rapidly against mutated cells, driving the lines towards a genetic state resembling human ES cells.


Subject(s)
Cellular Reprogramming/genetics , DNA Copy Number Variations/genetics , Induced Pluripotent Stem Cells/metabolism , Selection, Genetic , Cell Line , Chromosome Fragile Sites/genetics , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Haplotypes/genetics , Humans , In Situ Hybridization, Fluorescence , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/pathology , Mosaicism , Mutagenesis/genetics , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide/genetics , Selection, Genetic/genetics
13.
Cell Mol Life Sci ; 73(10): 2089-104, 2016 May.
Article in English | MEDLINE | ID: mdl-26573968

ABSTRACT

Spinal muscular atrophy (SMA) is a devastating motoneuron (MN) disorder caused by homozygous loss of SMN1. Rarely, SMN1-deleted individuals are fully asymptomatic despite carrying identical SMN2 copies as their SMA III-affected siblings suggesting protection by genetic modifiers other than SMN2. High plastin 3 (PLS3) expression has previously been found in lymphoblastoid cells but not in fibroblasts of asymptomatic compared to symptomatic siblings. To find out whether PLS3 is also upregulated in MNs of asymptomatic individuals and thus a convincing SMA protective modifier, we generated induced pluripotent stem cells (iPSCs) from fibroblasts of three asymptomatic and three SMA III-affected siblings from two families and compared these to iPSCs from a SMA I patient and control individuals. MNs were differentiated from iPSC-derived small molecule neural precursor cells (smNPCs). All four genotype classes showed similar capacity to differentiate into MNs at day 8. However, SMA I-derived MN survival was significantly decreased while SMA III- and asymptomatic-derived MN survival was moderately reduced compared to controls at day 27. SMN expression levels and concomitant gem numbers broadly matched SMN2 copy number distribution; SMA I presented the lowest levels, whereas SMA III and asymptomatic showed similar levels. In contrast, PLS3 was significantly upregulated in mixed MN cultures from asymptomatic individuals pinpointing a tissue-specific regulation. Evidence for strong PLS3 accumulation in shaft and rim of growth cones in MN cultures from asymptomatic individuals implies an important role in neuromuscular synapse formation and maintenance. These findings provide strong evidence that PLS3 is a genuine SMA protective modifier.


Subject(s)
Membrane Glycoproteins/metabolism , Microfilament Proteins/metabolism , Motor Neurons/pathology , Muscular Atrophy, Spinal/genetics , Neural Stem Cells/cytology , Survival of Motor Neuron 1 Protein/genetics , Up-Regulation , Biopsy , Cell Differentiation , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Deletion , Gene Silencing , Genetic Vectors , Genotype , Humans , Immunohistochemistry , Induced Pluripotent Stem Cells/cytology , Karyotyping , Lymphocytes/cytology , Male , Microscopy, Confocal , Mutation , Pedigree , Phenotype , RNA, Small Interfering/metabolism , Skin/pathology
14.
Glia ; 63(12): 2152-67, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26123132

ABSTRACT

Neural precursor cells (NPCs) derived from human pluripotent stem cells (hPSCs) represent an attractive tool for the in vitro generation of various neural cell types. However, the developmentally early NPCs emerging during hPSC differentiation typically show a strong propensity for neuronal differentiation, with more limited potential for generating astrocytes and, in particular, for generating oligodendrocytes. This phenomenon corresponds well to the consecutive and protracted generation of neurons and GLIA during normal human development. To obtain a more gliogenic NPC type, we combined growth factor-mediated expansion with pre-exposure to the differentiation-inducing agent retinoic acid and subsequent immunoisolation of CD133-positive cells. This protocol yields an adherent and self-renewing population of hindbrain/spinal cord radial glia (RG)-like neural precursor cells (RGL-NPCs) expressing typical neural stem cell markers such as nestin, ASCL1, SOX2, and PAX6 as well as RG markers BLBP, GLAST, vimentin, and GFAP. While RGL-NPCs maintain the ability for tripotential differentiation into neurons, astrocytes, and oligodendrocytes, they exhibit greatly enhanced propensity for oligodendrocyte generation. Under defined differentiation conditions promoting the expression of the major oligodendrocyte fate-determinants OLIG1/2, NKX6.2, NKX2.2, and SOX10, RGL-NPCs efficiently convert into NG2-positive oligodendroglial progenitor cells (OPCs) and are subsequently capable of in vivo myelination. Representing a stable intermediate between PSCs and OPCs, RGL-NPCs expedite the generation of PSC-derived oligodendrocytes with O4-, 4860-, and myelin basic protein (MBP)-positive cells that already appear within 7 weeks following growth factor withdrawal-induced differentiation. Thus, RGL-NPCs may serve as robust tool for time-efficient generation of human oligodendrocytes from embryonic and induced pluripotent stem cells.


Subject(s)
Cell Culture Techniques/methods , Ependymoglial Cells/physiology , Oligodendroglia/physiology , Pluripotent Stem Cells/physiology , AC133 Antigen , Animals , Antigens, CD/metabolism , Cell Differentiation/physiology , Cell Line , Cell Transplantation , Embryonic Stem Cells/physiology , Fibroblast Growth Factors/metabolism , Gene Expression Profiling , Glycoproteins/metabolism , Homeobox Protein Nkx-2.2 , Homeodomain Proteins , Humans , Immunohistochemistry , Mice, Knockout , Mice, Mutant Strains , Nuclear Proteins , Peptides/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors , Tretinoin/metabolism
15.
Hum Mol Genet ; 22(2): 398-407, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23077215

ABSTRACT

Functional loss of SMN1 causes proximal spinal muscular atrophy (SMA), the most common genetic condition accounting for infant lethality. Hence, the hypomorphic copy gene SMN2 is the only resource of functional SMN protein in SMA patients and influences SMA severity in a dose-dependent manner. Consequently, current therapeutic approaches focus on SMN2. Histone deacetylase inhibitors (HDACi), such as the short chain fatty acid VPA (valproic acid), ameliorate the SMA phenotype by activating the SMN2 expression. By analyzing blood SMN2 expression in 16 VPA-treated SMA patients, about one-third of individuals were identified as positive responders presenting increased SMN2 transcript levels. In 66% of enrolled patients, a concordant response was detected in the respective fibroblasts. Most importantly, by taking the detour of reprograming SMA patients' fibroblasts, we showed that the VPA response was maintained even in GABAergic neurons derived from induced pluripotent stem cells (iPS) cells. Differential expression microarray analysis revealed a complete lack of response to VPA in non-responders, which was associated with an increased expression of the fatty acid translocase CD36. The pivotal role of CD36 as the cause of non-responsiveness was proven in various in vitro approaches. Most importantly, knockdown of CD36 in SMA fibroblasts converted non- into pos-responders. In summary, the concordant response from blood to the central nervous system (CNS) to VPA may allow selection of pos-responders prior to therapy. Increased CD36 expression accounts for VPA non-responsiveness. These findings may be essential not only for SMA but also for other diseases such as epilepsy or migraine frequently treated with VPA.


Subject(s)
CD36 Antigens/metabolism , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/metabolism , Valproic Acid/therapeutic use , CD36 Antigens/genetics , Cell Line , Fibroblasts/drug effects , Fibroblasts/metabolism , GABAergic Neurons/drug effects , GABAergic Neurons/metabolism , Gene Expression Profiling , Humans , Muscular Atrophy, Spinal/genetics , Valproic Acid/pharmacology
16.
Brain ; 135(Pt 5): 1586-605, 2012 May.
Article in English | MEDLINE | ID: mdl-22447120

ABSTRACT

During central nervous system autoimmunity, interactions between infiltrating immune cells and brain-resident cells are critical for disease progression and ultimately organ damage. Here, we demonstrate that local cross-talk between invading autoreactive T cells and auto-antigen-presenting myeloid cells within the central nervous system results in myeloid cell activation, which is crucial for disease progression during experimental autoimmune encephalomyelitis, the animal model of multiple sclerosis. This T cell-mediated licensing of central nervous system myeloid cells triggered astrocytic CCL2-release and promoted recruitment of inflammatory CCR2(+)-monocytes, which are the main effectors of disease progression. By employing a cell-specific knockout model, we identify the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) in myeloid cells as key regulator of their disease-determining interactions with autoreactive T cells and brain-resident cells, respectively. LysM-PPARγ(KO) mice exhibited disease exacerbation during the effector phase of experimental autoimmune encephalomyelitis characterized by enhanced activation of central nervous system myeloid cells accompanied by pronounced local CCL2 production and inflammatory monocyte invasion, which finally resulted in increased demyelination and neuronal damage. Pharmacological PPARγ activation decreased antigen-specific T cell-mediated licensing of central nervous system myeloid cells, reduced myeloid cell-mediated neurotoxicity and hence dampened central nervous system autoimmunity. Importantly, human monocytes derived from patients with multiple sclerosis clearly responded to PPARγ-mediated control of proinflammatory activation and production of neurotoxic mediators. Furthermore, PPARγ in human monocytes restricted their capacity to activate human astrocytes leading to dampened astrocytic CCL2 production. Together, interference with the disease-promoting cross-talk between central nervous system myeloid cells, autoreactive T cells and brain-resident cells represents a novel therapeutic approach that limits disease progression and lesion development during ongoing central nervous system autoimmunity.


Subject(s)
Autoimmunity/physiology , Central Nervous System/immunology , Central Nervous System/pathology , Encephalomyelitis, Autoimmune, Experimental/pathology , Myeloid Cells/physiology , PPAR gamma/metabolism , Analysis of Variance , Animals , Animals, Newborn , Antigens, CD/metabolism , Autoimmunity/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/genetics , Cell Differentiation/physiology , Cells, Cultured , Cerebellum/cytology , Coculture Techniques , Cytokines/metabolism , Disease Models, Animal , Embryo, Mammalian , Encephalomyelitis, Autoimmune, Experimental/immunology , Flow Cytometry , Freund's Adjuvant/adverse effects , Gene Knockdown Techniques , Glycoproteins/administration & dosage , Green Fluorescent Proteins/genetics , Hippocampus/cytology , Humans , Hypoglycemic Agents/administration & dosage , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Knockout , Monocytes/physiology , Myelin-Oligodendrocyte Glycoprotein , Myeloid Cells/immunology , Neuroglia/metabolism , Neuroglia/pathology , Neurons/metabolism , PPAR gamma/deficiency , Peptide Fragments/administration & dosage , Pioglitazone , RNA, Small Interfering/metabolism , Receptors, CCR2/metabolism , T-Lymphocytes , Thiazolidinediones/administration & dosage
17.
Transl Psychiatry ; 13(1): 143, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37137886

ABSTRACT

FIP200 plays important roles in homeostatic processes such as autophagy and signaling pathways such as focal adhesion kinase (FAK) signaling. Furthermore, genetic studies suggest an association of FIP200 mutations with psychiatric disorders. However, its potential connections to psychiatric disorders and specific roles in human neurons are not clear. We set out to establish a human-specific model to study the functional consequences of neuronal FIP200 deficiency. To this end, we generated two independent sets of isogenic human pluripotent stem cell lines with homozygous FIP200KO alleles, which were then used for the derivation of glutamatergic neurons via forced expression of NGN2. FIP200KO neurons exhibited pathological axonal swellings, showed autophagy deficiency, and subsequently elevated p62 protein levels. Moreover, monitoring the electrophysiological activity of neuronal cultures on multi-electrode arrays revealed that FIP200KO resulted in a hyperactive network. This hyperactivity could be abolished by glutamatergic receptor antagonist CNQX, suggesting a strengthened glutamatergic synaptic activation in FIP200KO neurons. Furthermore, cell surface proteomic analysis revealed metabolic dysregulation and abnormal cell adhesion-related processes in FIP200KO neurons. Interestingly, an ULK1/2-specific autophagy inhibitor could recapitulate axonal swellings and hyperactivity in wild-type neurons, whereas inhibition of FAK signaling was able to normalize the hyperactivity of FIP200KO neurons. These results suggest that impaired autophagy and presumably also disinhibition of FAK can contribute to the hyperactivity of FIP200KO neuronal networks, whereas pathological axonal swellings are primarily due to autophagy deficiency. Taken together, our study reveals the consequences of FIP200 deficiency in induced human glutamatergic neurons, which might, in the end, help to understand cellular pathomechanisms contributing to neuropsychiatric conditions.


Subject(s)
Pluripotent Stem Cells , Proteomics , Humans , Autophagy-Related Proteins , Axons/pathology , Neurons
18.
J Neurosci Methods ; 373: 109562, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35292305

ABSTRACT

BACKGROUND: Transcription factor-based forward programming enables the efficient generation of forebrain excitatory and inhibitory neurons from human pluripotent stem cells (hPSCs). This provides an opportunity to study stimulation-response patterns in highly defined neuronal networks in a controlled and customizable in vitro environment. NEW METHOD: Cell populations composed of defined ratios of excitatory and inhibitory neurons were generated by forward programming genome-edited human hPSCs carrying the inducible transcription factors NGN2 and ASCL1/DLX2, respectively. These populations were cultured on multi-electrode arrays (MEAs), and population responses elicited by distinct spatial and temporal stimulation patterns were analyzed. In parallel, in silico network models fed with neuronal parameters obtained from the in vitro cultures were developed to explore potential mechanisms underlying experimental observations. RESULTS: Neuronal cultures developed network-level electrophysiological activities with pronounced synchronized network bursts (NBs), which responded to synaptic modulators. Interestingly, local electrical pulse stimulation at frequencies ≤ 0.2 Hz reliably elicited NBs, while frequencies of ≥ 1 Hz yielded no homogeneous responses, but only sporadic NBs. In contrast, multi-site stimulation at the same frequency could elicit NBs robustly. Data from computational models suggest that this phenomenon can be explained by exhaustion and presynaptic functional paralysis of targeted circuits by high-frequency local stimulation. COMPARISON WITH EXISTING METHODS: Compared to hPSC-derived neurons generated solely by small molecule treatment, forward-programmed excitatory and inhibitory neurons enable the composition of highly confectionized networks. In silico simulation of induced biological network responses can be directly used to devise and validate mechanistic hypotheses underlying the recorded network dynamics. CONCLUSIONS: The present study demonstrates the prospect of the iPSC technology for conducting personalized in vitro studies of human neuronal networks and their responses to electric stimuli. It also illustrates how the combined use of biological and in silico neuronal networks can support the development of mechanistic hypotheses underlying network responses to specific stimuli.


Subject(s)
Induced Pluripotent Stem Cells , Neurons , Electric Stimulation , Electrophysiological Phenomena , Humans , Induced Pluripotent Stem Cells/physiology , Neurons/physiology , Prosencephalon
19.
Front Cell Neurosci ; 16: 1039957, 2022.
Article in English | MEDLINE | ID: mdl-36733665

ABSTRACT

Human induced pluripotent stem cells (hiPSCs) are a promising approach to study neurological and neuropsychiatric diseases. Most methods to record the activity of these cells have major drawbacks as they are invasive or they do not allow single cell resolution. Genetically encoded voltage indicators (GEVIs) open the path to high throughput visualization of undisturbed neuronal activity. However, conventional GEVIs perturb membrane integrity through inserting multiple copies of transmembrane domains into the plasma membrane. To circumvent large add-ons to the plasma membrane, we used a minimally invasive novel hybrid dark quencher GEVI to record the physiological and pathological firing patterns of hiPSCs-derived sensory neurons from patients with inherited erythromelalgia, a chronic pain condition associated with recurrent attacks of redness and swelling in the distal extremities. We observed considerable differences in action potential firing patterns between patient and control neurons that were previously overlooked with other recording methods. Our system also performed well in hiPSC-derived forebrain neurons where it detected spontaneous synchronous bursting behavior, thus opening the path to future applications in other cell types and disease models including Parkinson's disease, Alzheimer's disease, epilepsy, and schizophrenia, conditions associated with disturbances of neuronal activity and synchrony.

20.
Stem Cell Reports ; 17(10): 2349-2364, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36179692

ABSTRACT

Combining multiple Parkinson's disease (PD) relevant cellular phenotypes might increase the accuracy of midbrain dopaminergic neuron (mDAN) in vitro models. We differentiated patient-derived induced pluripotent stem cells (iPSCs) with a LRRK2 G2019S mutation, isogenic control, and genetically unrelated iPSCs into mDANs. Using automated fluorescence microscopy in 384-well-plate format, we identified elevated levels of α-synuclein (αSyn) and serine 129 phosphorylation, reduced dendritic complexity, and mitochondrial dysfunction. Next, we measured additional image-based phenotypes and used machine learning (ML) to accurately classify mDANs according to their genotype. Additionally, we show that chemical compound treatments, targeting LRRK2 kinase activity or αSyn levels, are detectable when using ML classification based on multiple image-based phenotypes. We validated our approach using a second isogenic patient-derived SNCA gene triplication mDAN model which overexpresses αSyn. This phenotyping and classification strategy improves the practical exploitability of mDANs for disease modeling and the identification of novel LRRK2-associated drug targets.


Subject(s)
Induced Pluripotent Stem Cells , Parkinson Disease , Dopaminergic Neurons/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Inducible T-Cell Co-Stimulator Protein/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Machine Learning , Mesencephalon/metabolism , Mutation , Parkinson Disease/genetics , Parkinson Disease/therapy , Serine , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL